reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
=====================
LLVM Coding Standards
=====================

.. contents::
   :local:

Introduction
============

This document attempts to describe a few coding standards that are being used in
the LLVM source tree.  Although no coding standards should be regarded as
absolute requirements to be followed in all instances, coding standards are
particularly important for large-scale code bases that follow a library-based
design (like LLVM).

While this document may provide guidance for some mechanical formatting issues,
whitespace, or other "microscopic details", these are not fixed standards.
Always follow the golden rule:

.. _Golden Rule:

    **If you are extending, enhancing, or bug fixing already implemented code,
    use the style that is already being used so that the source is uniform and
    easy to follow.**

Note that some code bases (e.g. ``libc++``) have really good reasons to deviate
from the coding standards.  In the case of ``libc++``, this is because the
naming and other conventions are dictated by the C++ standard.  If you think
there is a specific good reason to deviate from the standards here, please bring
it up on the LLVM-dev mailing list.

There are some conventions that are not uniformly followed in the code base
(e.g. the naming convention).  This is because they are relatively new, and a
lot of code was written before they were put in place.  Our long term goal is
for the entire codebase to follow the convention, but we explicitly *do not*
want patches that do large-scale reformatting of existing code.  On the other
hand, it is reasonable to rename the methods of a class if you're about to
change it in some other way.  Just do the reformatting as a separate commit
from the functionality change.
  
The ultimate goal of these guidelines is to increase the readability and
maintainability of our common source base.

Languages, Libraries, and Standards
===================================

Most source code in LLVM and other LLVM projects using these coding standards
is C++ code. There are some places where C code is used either due to
environment restrictions, historical restrictions, or due to third-party source
code imported into the tree. Generally, our preference is for standards
conforming, modern, and portable C++ code as the implementation language of
choice.

C++ Standard Versions
---------------------

LLVM, Clang, and LLD are currently written using C++14 conforming code,
although we restrict ourselves to features which are available in the major
toolchains supported as host compilers. The LLDB project is even more
aggressive in the set of host compilers supported and thus uses still more
features. Regardless of the supported features, code is expected to (when
reasonable) be standard, portable, and modern C++14 code. We avoid unnecessary
vendor-specific extensions, etc.

C++ Standard Library
--------------------

Use the C++ standard library facilities whenever they are available for
a particular task. LLVM and related projects emphasize and rely on the standard
library facilities for as much as possible. Common support libraries providing
functionality missing from the standard library for which there are standard
interfaces or active work on adding standard interfaces will often be
implemented in the LLVM namespace following the expected standard interface.

There are some exceptions such as the standard I/O streams library which are
avoided. Also, there is much more detailed information on these subjects in the
:doc:`ProgrammersManual`.

Supported C++14 Language and Library Features
---------------------------------------------

While LLVM, Clang, and LLD use C++14, not all features are available in all of
the toolchains which we support. The set of features supported for use in LLVM
is the intersection of those supported in the minimum requirements described
in the :doc:`GettingStarted` page, section `Software`.
The ultimate definition of this set is what build bots with those respective
toolchains accept. Don't argue with the build bots. However, we have some
guidance below to help you know what to expect.

Each toolchain provides a good reference for what it accepts:

* Clang: https://clang.llvm.org/cxx_status.html
* GCC: https://gcc.gnu.org/projects/cxx-status.html#cxx14
* MSVC: https://msdn.microsoft.com/en-us/library/hh567368.aspx

Other Languages
---------------

Any code written in the Go programming language is not subject to the
formatting rules below. Instead, we adopt the formatting rules enforced by
the `gofmt`_ tool.

Go code should strive to be idiomatic. Two good sets of guidelines for what
this means are `Effective Go`_ and `Go Code Review Comments`_.

.. _gofmt:
  https://golang.org/cmd/gofmt/

.. _Effective Go:
  https://golang.org/doc/effective_go.html

.. _Go Code Review Comments:
  https://github.com/golang/go/wiki/CodeReviewComments

Mechanical Source Issues
========================

Source Code Formatting
----------------------

Commenting
^^^^^^^^^^

Comments are one critical part of readability and maintainability.  Everyone
knows they should comment their code, and so should you.  When writing comments,
write them as English prose, which means they should use proper capitalization,
punctuation, etc.  Aim to describe what the code is trying to do and why, not
*how* it does it at a micro level. Here are a few critical things to document:

.. _header file comment:

File Headers
""""""""""""

Every source file should have a header on it that describes the basic purpose of
the file.  If a file does not have a header, it should not be checked into the
tree.  The standard header looks like this:

.. code-block:: c++

  //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
  //
  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  // See https://llvm.org/LICENSE.txt for license information.
  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  //
  //===----------------------------------------------------------------------===//
  ///
  /// \file
  /// This file contains the declaration of the Instruction class, which is the
  /// base class for all of the VM instructions.
  ///
  //===----------------------------------------------------------------------===//

A few things to note about this particular format: The "``-*- C++ -*-``" string
on the first line is there to tell Emacs that the source file is a C++ file, not
a C file (Emacs assumes ``.h`` files are C files by default).

.. note::

    This tag is not necessary in ``.cpp`` files.  The name of the file is also
    on the first line, along with a very short description of the purpose of the
    file.  This is important when printing out code and flipping though lots of
    pages.

The next section in the file is a concise note that defines the license that the
file is released under.  This makes it perfectly clear what terms the source
code can be distributed under and should not be modified in any way.

The main body is a ``doxygen`` comment (identified by the ``///`` comment
marker instead of the usual ``//``) describing the purpose of the file.  The
first sentence (or a passage beginning with ``\brief``) is used as an abstract.
Any additional information should be separated by a blank line.  If an
algorithm is being implemented or something tricky is going on, a reference
to the paper where it is published should be included, as well as any notes or
*gotchas* in the code to watch out for.

Class overviews
"""""""""""""""

Classes are one fundamental part of a good object oriented design.  As such, a
class definition should have a comment block that explains what the class is
used for and how it works.  Every non-trivial class is expected to have a
``doxygen`` comment block.

Method information
""""""""""""""""""

Methods defined in a class (as well as any global functions) should also be
documented properly.  A quick note about what it does and a description of the
borderline behaviour is all that is necessary here (unless something
particularly tricky or insidious is going on).  The hope is that people can
figure out how to use your interfaces without reading the code itself.

Good things to talk about here are what happens when something unexpected
happens: does the method return null?  Abort?  Format your hard disk?

Comment Formatting
^^^^^^^^^^^^^^^^^^

In general, prefer C++ style comments (``//`` for normal comments, ``///`` for
``doxygen`` documentation comments).  They take less space, require
less typing, don't have nesting problems, etc.  There are a few cases when it is
useful to use C style (``/* */``) comments however:

#. When writing C code: Obviously if you are writing C code, use C style
   comments.

#. When writing a header file that may be ``#include``\d by a C source file.

#. When writing a source file that is used by a tool that only accepts C style
   comments.

#. When documenting the significance of constants used as actual parameters in
   a call. This is most helpful for ``bool`` parameters, or passing ``0`` or
   ``nullptr``. Typically you add the formal parameter name, which ought to be
   meaningful. For example, it's not clear what the parameter means in this call:

   .. code-block:: c++

     Object.emitName(nullptr);

   An in-line C-style comment makes the intent obvious:

   .. code-block:: c++

     Object.emitName(/*Prefix=*/nullptr);

Commenting out large blocks of code is discouraged, but if you really have to do
this (for documentation purposes or as a suggestion for debug printing), use
``#if 0`` and ``#endif``. These nest properly and are better behaved in general
than C style comments.

Doxygen Use in Documentation Comments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use the ``\file`` command to turn the standard file header into a file-level
comment.

Include descriptive paragraphs for all public interfaces (public classes,
member and non-member functions).  Don't just restate the information that can
be inferred from the API name.  The first sentence (or a paragraph beginning
with ``\brief``) is used as an abstract. Try to use a single sentence as the
``\brief`` adds visual clutter.  Put detailed discussion into separate
paragraphs.

To refer to parameter names inside a paragraph, use the ``\p name`` command.
Don't use the ``\arg name`` command since it starts a new paragraph that
contains documentation for the parameter.

Wrap non-inline code examples in ``\code ... \endcode``.

To document a function parameter, start a new paragraph with the
``\param name`` command.  If the parameter is used as an out or an in/out
parameter, use the ``\param [out] name`` or ``\param [in,out] name`` command,
respectively.

To describe function return value, start a new paragraph with the ``\returns``
command.

A minimal documentation comment:

.. code-block:: c++

  /// Sets the xyzzy property to \p Baz.
  void setXyzzy(bool Baz);

A documentation comment that uses all Doxygen features in a preferred way:

.. code-block:: c++

  /// Does foo and bar.
  ///
  /// Does not do foo the usual way if \p Baz is true.
  ///
  /// Typical usage:
  /// \code
  ///   fooBar(false, "quux", Res);
  /// \endcode
  ///
  /// \param Quux kind of foo to do.
  /// \param [out] Result filled with bar sequence on foo success.
  ///
  /// \returns true on success.
  bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);

Don't duplicate the documentation comment in the header file and in the
implementation file.  Put the documentation comments for public APIs into the
header file.  Documentation comments for private APIs can go to the
implementation file.  In any case, implementation files can include additional
comments (not necessarily in Doxygen markup) to explain implementation details
as needed.

Don't duplicate function or class name at the beginning of the comment.
For humans it is obvious which function or class is being documented;
automatic documentation processing tools are smart enough to bind the comment
to the correct declaration.

Wrong:

.. code-block:: c++

  // In Something.h:

  /// Something - An abstraction for some complicated thing.
  class Something {
  public:
    /// fooBar - Does foo and bar.
    void fooBar();
  };

  // In Something.cpp:

  /// fooBar - Does foo and bar.
  void Something::fooBar() { ... }

Correct:

.. code-block:: c++

  // In Something.h:

  /// An abstraction for some complicated thing.
  class Something {
  public:
    /// Does foo and bar.
    void fooBar();
  };

  // In Something.cpp:

  // Builds a B-tree in order to do foo.  See paper by...
  void Something::fooBar() { ... }

It is not required to use additional Doxygen features, but sometimes it might
be a good idea to do so.

Consider:

* adding comments to any narrow namespace containing a collection of
  related functions or types;

* using top-level groups to organize a collection of related functions at
  namespace scope where the grouping is smaller than the namespace;

* using member groups and additional comments attached to member
  groups to organize within a class.

For example:

.. code-block:: c++

  class Something {
    /// \name Functions that do Foo.
    /// @{
    void fooBar();
    void fooBaz();
    /// @}
    ...
  };

``#include`` Style
^^^^^^^^^^^^^^^^^^

Immediately after the `header file comment`_ (and include guards if working on a
header file), the `minimal list of #includes`_ required by the file should be
listed.  We prefer these ``#include``\s to be listed in this order:

.. _Main Module Header:
.. _Local/Private Headers:

#. Main Module Header
#. Local/Private Headers
#. LLVM project/subproject headers (``clang/...``, ``lldb/...``, ``llvm/...``, etc)
#. System ``#include``\s

and each category should be sorted lexicographically by the full path.

The `Main Module Header`_ file applies to ``.cpp`` files which implement an
interface defined by a ``.h`` file.  This ``#include`` should always be included
**first** regardless of where it lives on the file system.  By including a
header file first in the ``.cpp`` files that implement the interfaces, we ensure
that the header does not have any hidden dependencies which are not explicitly
``#include``\d in the header, but should be. It is also a form of documentation
in the ``.cpp`` file to indicate where the interfaces it implements are defined.

LLVM project and subproject headers should be grouped from most specific to least
specific, for the same reasons described above.  For example, LLDB depends on
both clang and LLVM, and clang depends on LLVM.  So an LLDB source file should
include ``lldb`` headers first, followed by ``clang`` headers, followed by
``llvm`` headers, to reduce the possibility (for example) of an LLDB header
accidentally picking up a missing include due to the previous inclusion of that
header in the main source file or some earlier header file.  clang should
similarly include its own headers before including llvm headers.  This rule
applies to all LLVM subprojects.

.. _fit into 80 columns:

Source Code Width
^^^^^^^^^^^^^^^^^

Write your code to fit within 80 columns of text.  This helps those of us who
like to print out code and look at your code in an ``xterm`` without resizing
it.

The longer answer is that there must be some limit to the width of the code in
order to reasonably allow developers to have multiple files side-by-side in
windows on a modest display.  If you are going to pick a width limit, it is
somewhat arbitrary but you might as well pick something standard.  Going with 90
columns (for example) instead of 80 columns wouldn't add any significant value
and would be detrimental to printing out code.  Also many other projects have
standardized on 80 columns, so some people have already configured their editors
for it (vs something else, like 90 columns).

This is one of many contentious issues in coding standards, but it is not up for
debate.

Whitespace
^^^^^^^^^^

In all cases, prefer spaces to tabs in source files.  People have different
preferred indentation levels, and different styles of indentation that they
like; this is fine.  What isn't fine is that different editors/viewers expand
tabs out to different tab stops.  This can cause your code to look completely
unreadable, and it is not worth dealing with.

As always, follow the `Golden Rule`_ above: follow the style of
existing code if you are modifying and extending it.  If you like four spaces of
indentation, **DO NOT** do that in the middle of a chunk of code with two spaces
of indentation.  Also, do not reindent a whole source file: it makes for
incredible diffs that are absolutely worthless.

Do not commit changes that include trailing whitespace. If you find trailing
whitespace in a file, do not remove it unless you're otherwise changing that
line of code. Some common editors will automatically remove trailing whitespace
when saving a file which causes unrelated changes to appear in diffs and
commits.

Indent Code Consistently
^^^^^^^^^^^^^^^^^^^^^^^^

Okay, in your first year of programming you were told that indentation is
important. If you didn't believe and internalize this then, now is the time.
Just do it. With the introduction of C++11, there are some new formatting
challenges that merit some suggestions to help have consistent, maintainable,
and tool-friendly formatting and indentation.

Format Lambdas Like Blocks Of Code
""""""""""""""""""""""""""""""""""

When formatting a multi-line lambda, format it like a block of code, that's
what it is. If there is only one multi-line lambda in a statement, and there
are no expressions lexically after it in the statement, drop the indent to the
standard two space indent for a block of code, as if it were an if-block opened
by the preceding part of the statement:

.. code-block:: c++

  std::sort(foo.begin(), foo.end(), [&](Foo a, Foo b) -> bool {
    if (a.blah < b.blah)
      return true;
    if (a.baz < b.baz)
      return true;
    return a.bam < b.bam;
  });

To take best advantage of this formatting, if you are designing an API which
accepts a continuation or single callable argument (be it a functor, or
a ``std::function``), it should be the last argument if at all possible.

If there are multiple multi-line lambdas in a statement, or there is anything
interesting after the lambda in the statement, indent the block two spaces from
the indent of the ``[]``:

.. code-block:: c++

  dyn_switch(V->stripPointerCasts(),
             [] (PHINode *PN) {
               // process phis...
             },
             [] (SelectInst *SI) {
               // process selects...
             },
             [] (LoadInst *LI) {
               // process loads...
             },
             [] (AllocaInst *AI) {
               // process allocas...
             });

Braced Initializer Lists
""""""""""""""""""""""""

With C++11, there are significantly more uses of braced lists to perform
initialization. These allow you to easily construct aggregate temporaries in
expressions among other niceness. They now have a natural way of ending up
nested within each other and within function calls in order to build up
aggregates (such as option structs) from local variables. To make matters
worse, we also have many more uses of braces in an expression context that are
*not* performing initialization.

The historically common formatting of braced initialization of aggregate
variables does not mix cleanly with deep nesting, general expression contexts,
function arguments, and lambdas. We suggest new code use a simple rule for
formatting braced initialization lists: act as-if the braces were parentheses
in a function call. The formatting rules exactly match those already well
understood for formatting nested function calls. Examples:

.. code-block:: c++

  foo({a, b, c}, {1, 2, 3});

  llvm::Constant *Mask[] = {
      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)};

This formatting scheme also makes it particularly easy to get predictable,
consistent, and automatic formatting with tools like `Clang Format`_.

.. _Clang Format: https://clang.llvm.org/docs/ClangFormat.html

Language and Compiler Issues
----------------------------

Treat Compiler Warnings Like Errors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If your code has compiler warnings in it, something is wrong --- you aren't
casting values correctly, you have "questionable" constructs in your code, or
you are doing something legitimately wrong.  Compiler warnings can cover up
legitimate errors in output and make dealing with a translation unit difficult.

It is not possible to prevent all warnings from all compilers, nor is it
desirable.  Instead, pick a standard compiler (like ``gcc``) that provides a
good thorough set of warnings, and stick to it.  At least in the case of
``gcc``, it is possible to work around any spurious errors by changing the
syntax of the code slightly.  For example, a warning that annoys me occurs when
I write code like this:

.. code-block:: c++

  if (V = getValue()) {
    ...
  }

``gcc`` will warn me that I probably want to use the ``==`` operator, and that I
probably mistyped it.  In most cases, I haven't, and I really don't want the
spurious errors.  To fix this particular problem, I rewrite the code like
this:

.. code-block:: c++

  if ((V = getValue())) {
    ...
  }

which shuts ``gcc`` up.  Any ``gcc`` warning that annoys you can be fixed by
massaging the code appropriately.

Write Portable Code
^^^^^^^^^^^^^^^^^^^

In almost all cases, it is possible and within reason to write completely
portable code.  If there are cases where it isn't possible to write portable
code, isolate it behind a well defined (and well documented) interface.

In practice, this means that you shouldn't assume much about the host compiler
(and Visual Studio tends to be the lowest common denominator).  If advanced
features are used, they should only be an implementation detail of a library
which has a simple exposed API, and preferably be buried in ``libSystem``.

Do not use RTTI or Exceptions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In an effort to reduce code and executable size, LLVM does not use RTTI
(e.g. ``dynamic_cast<>;``) or exceptions.  These two language features violate
the general C++ principle of *"you only pay for what you use"*, causing
executable bloat even if exceptions are never used in the code base, or if RTTI
is never used for a class.  Because of this, we turn them off globally in the
code.

That said, LLVM does make extensive use of a hand-rolled form of RTTI that use
templates like :ref:`isa\<>, cast\<>, and dyn_cast\<> <isa>`.
This form of RTTI is opt-in and can be
:doc:`added to any class <HowToSetUpLLVMStyleRTTI>`. It is also
substantially more efficient than ``dynamic_cast<>``.

.. _static constructor:

Do not use Static Constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Static constructors and destructors (e.g. global variables whose types have a
constructor or destructor) should not be added to the code base, and should be
removed wherever possible.  Besides `well known problems
<https://yosefk.com/c++fqa/ctors.html#fqa-10.12>`_ where the order of
initialization is undefined between globals in different source files, the
entire concept of static constructors is at odds with the common use case of
LLVM as a library linked into a larger application.
  
Consider the use of LLVM as a JIT linked into another application (perhaps for
`OpenGL, custom languages <https://llvm.org/Users.html>`_, `shaders in movies
<https://llvm.org/devmtg/2010-11/Gritz-OpenShadingLang.pdf>`_, etc). Due to the
design of static constructors, they must be executed at startup time of the
entire application, regardless of whether or how LLVM is used in that larger
application.  There are two problems with this:

* The time to run the static constructors impacts startup time of applications
  --- a critical time for GUI apps, among others.
  
* The static constructors cause the app to pull many extra pages of memory off
  the disk: both the code for the constructor in each ``.o`` file and the small
  amount of data that gets touched. In addition, touched/dirty pages put more
  pressure on the VM system on low-memory machines.

We would really like for there to be zero cost for linking in an additional LLVM
target or other library into an application, but static constructors violate
this goal.
  
That said, LLVM unfortunately does contain static constructors.  It would be a
`great project <https://llvm.org/PR11944>`_ for someone to purge all static
constructors from LLVM, and then enable the ``-Wglobal-constructors`` warning
flag (when building with Clang) to ensure we do not regress in the future.

Use of ``class`` and ``struct`` Keywords
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In C++, the ``class`` and ``struct`` keywords can be used almost
interchangeably. The only difference is when they are used to declare a class:
``class`` makes all members private by default while ``struct`` makes all
members public by default.

Unfortunately, not all compilers follow the rules and some will generate
different symbols based on whether ``class`` or ``struct`` was used to declare
the symbol (e.g., MSVC).  This can lead to problems at link time.

* All declarations and definitions of a given ``class`` or ``struct`` must use
  the same keyword.  For example:

.. code-block:: c++

  class Foo;

  // Breaks mangling in MSVC.
  struct Foo { int Data; };

* As a rule of thumb, ``struct`` should be kept to structures where *all*
  members are declared public.

.. code-block:: c++

  // Foo feels like a class... this is strange.
  struct Foo {
  private:
    int Data;
  public:
    Foo() : Data(0) { }
    int getData() const { return Data; }
    void setData(int D) { Data = D; }
  };

  // Bar isn't POD, but it does look like a struct.
  struct Bar {
    int Data;
    Bar() : Data(0) { }
  };

Do not use Braced Initializer Lists to Call a Constructor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In C++11 there is a "generalized initialization syntax" which allows calling
constructors using braced initializer lists. Do not use these to call
constructors with any interesting logic or if you care that you're calling some
*particular* constructor. Those should look like function calls using
parentheses rather than like aggregate initialization. Similarly, if you need
to explicitly name the type and call its constructor to create a temporary,
don't use a braced initializer list. Instead, use a braced initializer list
(without any type for temporaries) when doing aggregate initialization or
something notionally equivalent. Examples:

.. code-block:: c++

  class Foo {
  public:
    // Construct a Foo by reading data from the disk in the whizbang format, ...
    Foo(std::string filename);

    // Construct a Foo by looking up the Nth element of some global data ...
    Foo(int N);

    // ...
  };

  // The Foo constructor call is very deliberate, no braces.
  std::fill(foo.begin(), foo.end(), Foo("name"));

  // The pair is just being constructed like an aggregate, use braces.
  bar_map.insert({my_key, my_value});

If you use a braced initializer list when initializing a variable, use an equals before the open curly brace:

.. code-block:: c++

  int data[] = {0, 1, 2, 3};

Use ``auto`` Type Deduction to Make Code More Readable
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Some are advocating a policy of "almost always ``auto``" in C++11, however LLVM
uses a more moderate stance. Use ``auto`` if and only if it makes the code more
readable or easier to maintain. Don't "almost always" use ``auto``, but do use
``auto`` with initializers like ``cast<Foo>(...)`` or other places where the
type is already obvious from the context. Another time when ``auto`` works well
for these purposes is when the type would have been abstracted away anyways,
often behind a container's typedef such as ``std::vector<T>::iterator``.

Similarly, C++14 adds generic lambda expressions where parameter types can be
``auto``. Use these where you would have used a template.

Beware unnecessary copies with ``auto``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The convenience of ``auto`` makes it easy to forget that its default behavior
is a copy.  Particularly in range-based ``for`` loops, careless copies are
expensive.

As a rule of thumb, use ``auto &`` unless you need to copy the result, and use
``auto *`` when copying pointers.

.. code-block:: c++

  // Typically there's no reason to copy.
  for (const auto &Val : Container) { observe(Val); }
  for (auto &Val : Container) { Val.change(); }

  // Remove the reference if you really want a new copy.
  for (auto Val : Container) { Val.change(); saveSomewhere(Val); }

  // Copy pointers, but make it clear that they're pointers.
  for (const auto *Ptr : Container) { observe(*Ptr); }
  for (auto *Ptr : Container) { Ptr->change(); }

Beware of non-determinism due to ordering of pointers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In general, there is no relative ordering among pointers. As a result,
when unordered containers like sets and maps are used with pointer keys
the iteration order is undefined. Hence, iterating such containers may
result in non-deterministic code generation. While the generated code
might not necessarily be "wrong code", this non-determinism might result
in unexpected runtime crashes or simply hard to reproduce bugs on the
customer side making it harder to debug and fix.

As a rule of thumb, in case an ordered result is expected, remember to
sort an unordered container before iteration. Or use ordered containers
like vector/MapVector/SetVector if you want to iterate pointer keys.

Beware of non-deterministic sorting order of equal elements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

std::sort uses a non-stable sorting algorithm in which the order of equal
elements is not guaranteed to be preserved. Thus using std::sort for a
container having equal elements may result in non-determinstic behavior.
To uncover such instances of non-determinism, LLVM has introduced a new
llvm::sort wrapper function. For an EXPENSIVE_CHECKS build this will randomly
shuffle the container before sorting. As a rule of thumb, always make sure to
use llvm::sort instead of std::sort.

Style Issues
============

The High-Level Issues
---------------------

Self-contained Headers
^^^^^^^^^^^^^^^^^^^^^^

Header files should be self-contained (compile on their own) and end in .h.
Non-header files that are meant for inclusion should end in .inc and be used
sparingly.

All header files should be self-contained. Users and refactoring tools should
not have to adhere to special conditions to include the header. Specifically, a
header should have header guards and include all other headers it needs.

There are rare cases where a file designed to be included is not
self-contained. These are typically intended to be included at unusual
locations, such as the middle of another file. They might not use header
guards, and might not include their prerequisites. Name such files with the
.inc extension. Use sparingly, and prefer self-contained headers when possible.

In general, a header should be implemented by one or more ``.cpp`` files.  Each
of these ``.cpp`` files should include the header that defines their interface
first.  This ensures that all of the dependences of the header have been
properly added to the header itself, and are not implicit.  System headers
should be included after user headers for a translation unit.

Library Layering
^^^^^^^^^^^^^^^^

A directory of header files (for example ``include/llvm/Foo``) defines a
library (``Foo``). Dependencies between libraries are defined by the
``LLVMBuild.txt`` file in their implementation (``lib/Foo``). One library (both
its headers and implementation) should only use things from the libraries
listed in its dependencies.

Some of this constraint can be enforced by classic Unix linkers (Mac & Windows
linkers, as well as lld, do not enforce this constraint). A Unix linker
searches left to right through the libraries specified on its command line and
never revisits a library. In this way, no circular dependencies between
libraries can exist.

This doesn't fully enforce all inter-library dependencies, and importantly
doesn't enforce header file circular dependencies created by inline functions.
A good way to answer the "is this layered correctly" would be to consider
whether a Unix linker would succeed at linking the program if all inline
functions were defined out-of-line. (& for all valid orderings of dependencies
- since linking resolution is linear, it's possible that some implicit
dependencies can sneak through: A depends on B and C, so valid orderings are
"C B A" or "B C A", in both cases the explicit dependencies come before their
use. But in the first case, B could still link successfully if it implicitly
depended on C, or the opposite in the second case)

.. _minimal list of #includes:

``#include`` as Little as Possible
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``#include`` hurts compile time performance.  Don't do it unless you have to,
especially in header files.

But wait! Sometimes you need to have the definition of a class to use it, or to
inherit from it.  In these cases go ahead and ``#include`` that header file.  Be
aware however that there are many cases where you don't need to have the full
definition of a class.  If you are using a pointer or reference to a class, you
don't need the header file.  If you are simply returning a class instance from a
prototyped function or method, you don't need it.  In fact, for most cases, you
simply don't need the definition of a class. And not ``#include``\ing speeds up
compilation.

It is easy to try to go too overboard on this recommendation, however.  You
**must** include all of the header files that you are using --- you can include
them either directly or indirectly through another header file.  To make sure
that you don't accidentally forget to include a header file in your module
header, make sure to include your module header **first** in the implementation
file (as mentioned above).  This way there won't be any hidden dependencies that
you'll find out about later.

Keep "Internal" Headers Private
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Many modules have a complex implementation that causes them to use more than one
implementation (``.cpp``) file.  It is often tempting to put the internal
communication interface (helper classes, extra functions, etc) in the public
module header file.  Don't do this!

If you really need to do something like this, put a private header file in the
same directory as the source files, and include it locally.  This ensures that
your private interface remains private and undisturbed by outsiders.

.. note::

    It's okay to put extra implementation methods in a public class itself. Just
    make them private (or protected) and all is well.

.. _early exits:

Use Early Exits and ``continue`` to Simplify Code
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When reading code, keep in mind how much state and how many previous decisions
have to be remembered by the reader to understand a block of code.  Aim to
reduce indentation where possible when it doesn't make it more difficult to
understand the code.  One great way to do this is by making use of early exits
and the ``continue`` keyword in long loops.  As an example of using an early
exit from a function, consider this "bad" code:

.. code-block:: c++

  Value *doSomething(Instruction *I) {
    if (!I->isTerminator() &&
        I->hasOneUse() && doOtherThing(I)) {
      ... some long code ....
    }

    return 0;
  }

This code has several problems if the body of the ``'if'`` is large.  When
you're looking at the top of the function, it isn't immediately clear that this
*only* does interesting things with non-terminator instructions, and only
applies to things with the other predicates.  Second, it is relatively difficult
to describe (in comments) why these predicates are important because the ``if``
statement makes it difficult to lay out the comments.  Third, when you're deep
within the body of the code, it is indented an extra level.  Finally, when
reading the top of the function, it isn't clear what the result is if the
predicate isn't true; you have to read to the end of the function to know that
it returns null.

It is much preferred to format the code like this:

.. code-block:: c++

  Value *doSomething(Instruction *I) {
    // Terminators never need 'something' done to them because ... 
    if (I->isTerminator())
      return 0;

    // We conservatively avoid transforming instructions with multiple uses
    // because goats like cheese.
    if (!I->hasOneUse())
      return 0;

    // This is really just here for example.
    if (!doOtherThing(I))
      return 0;
    
    ... some long code ....
  }

This fixes these problems.  A similar problem frequently happens in ``for``
loops.  A silly example is something like this:

.. code-block:: c++

  for (Instruction &I : BB) {
    if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
      Value *LHS = BO->getOperand(0);
      Value *RHS = BO->getOperand(1);
      if (LHS != RHS) {
        ...
      }
    }
  }

When you have very, very small loops, this sort of structure is fine. But if it
exceeds more than 10-15 lines, it becomes difficult for people to read and
understand at a glance. The problem with this sort of code is that it gets very
nested very quickly. Meaning that the reader of the code has to keep a lot of
context in their brain to remember what is going immediately on in the loop,
because they don't know if/when the ``if`` conditions will have ``else``\s etc.
It is strongly preferred to structure the loop like this:

.. code-block:: c++

  for (Instruction &I : BB) {
    auto *BO = dyn_cast<BinaryOperator>(&I);
    if (!BO) continue;

    Value *LHS = BO->getOperand(0);
    Value *RHS = BO->getOperand(1);
    if (LHS == RHS) continue;

    ...
  }

This has all the benefits of using early exits for functions: it reduces nesting
of the loop, it makes it easier to describe why the conditions are true, and it
makes it obvious to the reader that there is no ``else`` coming up that they
have to push context into their brain for.  If a loop is large, this can be a
big understandability win.

Don't use ``else`` after a ``return``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For similar reasons above (reduction of indentation and easier reading), please
do not use ``'else'`` or ``'else if'`` after something that interrupts control
flow --- like ``return``, ``break``, ``continue``, ``goto``, etc. For
example, this is *bad*:

.. code-block:: c++

  case 'J': {
    if (Signed) {
      Type = Context.getsigjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_sigjmp_buf;
        return QualType();
      } else {
        break;
      }
    } else {
      Type = Context.getjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_jmp_buf;
        return QualType();
      } else {
        break;
      }
    }
  }

It is better to write it like this:

.. code-block:: c++

  case 'J':
    if (Signed) {
      Type = Context.getsigjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_sigjmp_buf;
        return QualType();
      }
    } else {
      Type = Context.getjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_jmp_buf;
        return QualType();
      }
    }
    break;

Or better yet (in this case) as:

.. code-block:: c++

  case 'J':
    if (Signed)
      Type = Context.getsigjmp_bufType();
    else
      Type = Context.getjmp_bufType();
    
    if (Type.isNull()) {
      Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :
                       ASTContext::GE_Missing_jmp_buf;
      return QualType();
    }
    break;

The idea is to reduce indentation and the amount of code you have to keep track
of when reading the code.
              
Turn Predicate Loops into Predicate Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is very common to write small loops that just compute a boolean value.  There
are a number of ways that people commonly write these, but an example of this
sort of thing is:

.. code-block:: c++

  bool FoundFoo = false;
  for (unsigned I = 0, E = BarList.size(); I != E; ++I)
    if (BarList[I]->isFoo()) {
      FoundFoo = true;
      break;
    }

  if (FoundFoo) {
    ...
  }

This sort of code is awkward to write, and is almost always a bad sign.  Instead
of this sort of loop, we strongly prefer to use a predicate function (which may
be `static`_) that uses `early exits`_ to compute the predicate.  We prefer the
code to be structured like this:

.. code-block:: c++

  /// \returns true if the specified list has an element that is a foo.
  static bool containsFoo(const std::vector<Bar*> &List) {
    for (unsigned I = 0, E = List.size(); I != E; ++I)
      if (List[I]->isFoo())
        return true;
    return false;
  }
  ...

  if (containsFoo(BarList)) {
    ...
  }

There are many reasons for doing this: it reduces indentation and factors out
code which can often be shared by other code that checks for the same predicate.
More importantly, it *forces you to pick a name* for the function, and forces
you to write a comment for it.  In this silly example, this doesn't add much
value.  However, if the condition is complex, this can make it a lot easier for
the reader to understand the code that queries for this predicate.  Instead of
being faced with the in-line details of how we check to see if the BarList
contains a foo, we can trust the function name and continue reading with better
locality.

The Low-Level Issues
--------------------

Name Types, Functions, Variables, and Enumerators Properly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Poorly-chosen names can mislead the reader and cause bugs. We cannot stress
enough how important it is to use *descriptive* names.  Pick names that match
the semantics and role of the underlying entities, within reason.  Avoid
abbreviations unless they are well known.  After picking a good name, make sure
to use consistent capitalization for the name, as inconsistency requires clients
to either memorize the APIs or to look it up to find the exact spelling.

In general, names should be in camel case (e.g. ``TextFileReader`` and
``isLValue()``).  Different kinds of declarations have different rules:

* **Type names** (including classes, structs, enums, typedefs, etc) should be
  nouns and start with an upper-case letter (e.g. ``TextFileReader``).

* **Variable names** should be nouns (as they represent state).  The name should
  be camel case, and start with an upper case letter (e.g. ``Leader`` or
  ``Boats``).
  
* **Function names** should be verb phrases (as they represent actions), and
  command-like function should be imperative.  The name should be camel case,
  and start with a lower case letter (e.g. ``openFile()`` or ``isFoo()``).

* **Enum declarations** (e.g. ``enum Foo {...}``) are types, so they should
  follow the naming conventions for types.  A common use for enums is as a
  discriminator for a union, or an indicator of a subclass.  When an enum is
  used for something like this, it should have a ``Kind`` suffix
  (e.g. ``ValueKind``).
  
* **Enumerators** (e.g. ``enum { Foo, Bar }``) and **public member variables**
  should start with an upper-case letter, just like types.  Unless the
  enumerators are defined in their own small namespace or inside a class,
  enumerators should have a prefix corresponding to the enum declaration name.
  For example, ``enum ValueKind { ... };`` may contain enumerators like
  ``VK_Argument``, ``VK_BasicBlock``, etc.  Enumerators that are just
  convenience constants are exempt from the requirement for a prefix.  For
  instance:

  .. code-block:: c++

      enum {
        MaxSize = 42,
        Density = 12
      };
  
As an exception, classes that mimic STL classes can have member names in STL's
style of lower-case words separated by underscores (e.g. ``begin()``,
``push_back()``, and ``empty()``). Classes that provide multiple
iterators should add a singular prefix to ``begin()`` and ``end()``
(e.g. ``global_begin()`` and ``use_begin()``).

Here are some examples of good and bad names:

.. code-block:: c++

  class VehicleMaker {
    ...
    Factory<Tire> F;            // Bad -- abbreviation and non-descriptive.
    Factory<Tire> Factory;      // Better.
    Factory<Tire> TireFactory;  // Even better -- if VehicleMaker has more than one
                                // kind of factories.
  };

  Vehicle makeVehicle(VehicleType Type) {
    VehicleMaker M;                         // Might be OK if having a short life-span.
    Tire Tmp1 = M.makeTire();               // Bad -- 'Tmp1' provides no information.
    Light Headlight = M.makeLight("head");  // Good -- descriptive.
    ...
  }

Assert Liberally
^^^^^^^^^^^^^^^^

Use the "``assert``" macro to its fullest.  Check all of your preconditions and
assumptions, you never know when a bug (not necessarily even yours) might be
caught early by an assertion, which reduces debugging time dramatically.  The
"``<cassert>``" header file is probably already included by the header files you
are using, so it doesn't cost anything to use it.

To further assist with debugging, make sure to put some kind of error message in
the assertion statement, which is printed if the assertion is tripped. This
helps the poor debugger make sense of why an assertion is being made and
enforced, and hopefully what to do about it.  Here is one complete example:

.. code-block:: c++

  inline Value *getOperand(unsigned I) {
    assert(I < Operands.size() && "getOperand() out of range!");
    return Operands[I];
  }

Here are more examples:

.. code-block:: c++

  assert(Ty->isPointerType() && "Can't allocate a non-pointer type!");

  assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");

  assert(idx < getNumSuccessors() && "Successor # out of range!");

  assert(V1.getType() == V2.getType() && "Constant types must be identical!");

  assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");

You get the idea.

In the past, asserts were used to indicate a piece of code that should not be
reached.  These were typically of the form:

.. code-block:: c++

  assert(0 && "Invalid radix for integer literal");

This has a few issues, the main one being that some compilers might not
understand the assertion, or warn about a missing return in builds where
assertions are compiled out.

Today, we have something much better: ``llvm_unreachable``:

.. code-block:: c++

  llvm_unreachable("Invalid radix for integer literal");

When assertions are enabled, this will print the message if it's ever reached
and then exit the program. When assertions are disabled (i.e. in release
builds), ``llvm_unreachable`` becomes a hint to compilers to skip generating
code for this branch. If the compiler does not support this, it will fall back
to the "abort" implementation.

Neither assertions or ``llvm_unreachable`` will abort the program on a release
build. If the error condition can be triggered by user input then the
recoverable error mechanism described in :doc:`ProgrammersManual` should be
used instead. In cases where this is not practical, ``report_fatal_error`` may
be used.

Another issue is that values used only by assertions will produce an "unused
value" warning when assertions are disabled.  For example, this code will warn:

.. code-block:: c++

  unsigned Size = V.size();
  assert(Size > 42 && "Vector smaller than it should be");

  bool NewToSet = Myset.insert(Value);
  assert(NewToSet && "The value shouldn't be in the set yet");

These are two interesting different cases. In the first case, the call to
``V.size()`` is only useful for the assert, and we don't want it executed when
assertions are disabled.  Code like this should move the call into the assert
itself.  In the second case, the side effects of the call must happen whether
the assert is enabled or not.  In this case, the value should be cast to void to
disable the warning.  To be specific, it is preferred to write the code like
this:

.. code-block:: c++

  assert(V.size() > 42 && "Vector smaller than it should be");

  bool NewToSet = Myset.insert(Value); (void)NewToSet;
  assert(NewToSet && "The value shouldn't be in the set yet");

Do Not Use ``using namespace std``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In LLVM, we prefer to explicitly prefix all identifiers from the standard
namespace with an "``std::``" prefix, rather than rely on "``using namespace
std;``".

In header files, adding a ``'using namespace XXX'`` directive pollutes the
namespace of any source file that ``#include``\s the header.  This is clearly a
bad thing.

In implementation files (e.g. ``.cpp`` files), the rule is more of a stylistic
rule, but is still important.  Basically, using explicit namespace prefixes
makes the code **clearer**, because it is immediately obvious what facilities
are being used and where they are coming from. And **more portable**, because
namespace clashes cannot occur between LLVM code and other namespaces.  The
portability rule is important because different standard library implementations
expose different symbols (potentially ones they shouldn't), and future revisions
to the C++ standard will add more symbols to the ``std`` namespace.  As such, we
never use ``'using namespace std;'`` in LLVM.

The exception to the general rule (i.e. it's not an exception for the ``std``
namespace) is for implementation files.  For example, all of the code in the
LLVM project implements code that lives in the 'llvm' namespace.  As such, it is
ok, and actually clearer, for the ``.cpp`` files to have a ``'using namespace
llvm;'`` directive at the top, after the ``#include``\s.  This reduces
indentation in the body of the file for source editors that indent based on
braces, and keeps the conceptual context cleaner.  The general form of this rule
is that any ``.cpp`` file that implements code in any namespace may use that
namespace (and its parents'), but should not use any others.

Provide a Virtual Method Anchor for Classes in Headers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If a class is defined in a header file and has a vtable (either it has virtual
methods or it derives from classes with virtual methods), it must always have at
least one out-of-line virtual method in the class.  Without this, the compiler
will copy the vtable and RTTI into every ``.o`` file that ``#include``\s the
header, bloating ``.o`` file sizes and increasing link times.

Don't use default labels in fully covered switches over enumerations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``-Wswitch`` warns if a switch, without a default label, over an enumeration
does not cover every enumeration value. If you write a default label on a fully
covered switch over an enumeration then the ``-Wswitch`` warning won't fire
when new elements are added to that enumeration. To help avoid adding these
kinds of defaults, Clang has the warning ``-Wcovered-switch-default`` which is
off by default but turned on when building LLVM with a version of Clang that
supports the warning.

A knock-on effect of this stylistic requirement is that when building LLVM with
GCC you may get warnings related to "control may reach end of non-void function"
if you return from each case of a covered switch-over-enum because GCC assumes
that the enum expression may take any representable value, not just those of
individual enumerators. To suppress this warning, use ``llvm_unreachable`` after
the switch.

Use range-based ``for`` loops wherever possible
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The introduction of range-based ``for`` loops in C++11 means that explicit
manipulation of iterators is rarely necessary. We use range-based ``for``
loops wherever possible for all newly added code. For example:

.. code-block:: c++

  BasicBlock *BB = ...
  for (Instruction &I : *BB)
    ... use I ...

Don't evaluate ``end()`` every time through a loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In cases where range-based ``for`` loops can't be used and it is necessary
to write an explicit iterator-based loop, pay close attention to whether
``end()`` is re-evaluted on each loop iteration. One common mistake is to
write a loop in this style:

.. code-block:: c++

  BasicBlock *BB = ...
  for (auto I = BB->begin(); I != BB->end(); ++I)
    ... use I ...

The problem with this construct is that it evaluates "``BB->end()``" every time
through the loop.  Instead of writing the loop like this, we strongly prefer
loops to be written so that they evaluate it once before the loop starts.  A
convenient way to do this is like so:

.. code-block:: c++

  BasicBlock *BB = ...
  for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
    ... use I ...

The observant may quickly point out that these two loops may have different
semantics: if the container (a basic block in this case) is being mutated, then
"``BB->end()``" may change its value every time through the loop and the second
loop may not in fact be correct.  If you actually do depend on this behavior,
please write the loop in the first form and add a comment indicating that you
did it intentionally.

Why do we prefer the second form (when correct)?  Writing the loop in the first
form has two problems. First it may be less efficient than evaluating it at the
start of the loop.  In this case, the cost is probably minor --- a few extra
loads every time through the loop.  However, if the base expression is more
complex, then the cost can rise quickly.  I've seen loops where the end
expression was actually something like: "``SomeMap[X]->end()``" and map lookups
really aren't cheap.  By writing it in the second form consistently, you
eliminate the issue entirely and don't even have to think about it.

The second (even bigger) issue is that writing the loop in the first form hints
to the reader that the loop is mutating the container (a fact that a comment
would handily confirm!).  If you write the loop in the second form, it is
immediately obvious without even looking at the body of the loop that the
container isn't being modified, which makes it easier to read the code and
understand what it does.

While the second form of the loop is a few extra keystrokes, we do strongly
prefer it.

``#include <iostream>`` is Forbidden
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The use of ``#include <iostream>`` in library files is hereby **forbidden**,
because many common implementations transparently inject a `static constructor`_
into every translation unit that includes it.
  
Note that using the other stream headers (``<sstream>`` for example) is not
problematic in this regard --- just ``<iostream>``. However, ``raw_ostream``
provides various APIs that are better performing for almost every use than
``std::ostream`` style APIs.

.. note::

  New code should always use `raw_ostream`_ for writing, or the
  ``llvm::MemoryBuffer`` API for reading files.

.. _raw_ostream:

Use ``raw_ostream``
^^^^^^^^^^^^^^^^^^^

LLVM includes a lightweight, simple, and efficient stream implementation in
``llvm/Support/raw_ostream.h``, which provides all of the common features of
``std::ostream``.  All new code should use ``raw_ostream`` instead of
``ostream``.

Unlike ``std::ostream``, ``raw_ostream`` is not a template and can be forward
declared as ``class raw_ostream``.  Public headers should generally not include
the ``raw_ostream`` header, but use forward declarations and constant references
to ``raw_ostream`` instances.

Avoid ``std::endl``
^^^^^^^^^^^^^^^^^^^

The ``std::endl`` modifier, when used with ``iostreams`` outputs a newline to
the output stream specified.  In addition to doing this, however, it also
flushes the output stream.  In other words, these are equivalent:

.. code-block:: c++

  std::cout << std::endl;
  std::cout << '\n' << std::flush;

Most of the time, you probably have no reason to flush the output stream, so
it's better to use a literal ``'\n'``.

Don't use ``inline`` when defining a function in a class definition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A member function defined in a class definition is implicitly inline, so don't
put the ``inline`` keyword in this case.

Don't:

.. code-block:: c++

  class Foo {
  public:
    inline void bar() {
      // ...
    }
  };

Do:

.. code-block:: c++

  class Foo {
  public:
    void bar() {
      // ...
    }
  };

Microscopic Details
-------------------

This section describes preferred low-level formatting guidelines along with
reasoning on why we prefer them.

Spaces Before Parentheses
^^^^^^^^^^^^^^^^^^^^^^^^^

We prefer to put a space before an open parenthesis only in control flow
statements, but not in normal function call expressions and function-like
macros.  For example, this is good:

.. code-block:: c++

  if (X) ...
  for (I = 0; I != 100; ++I) ...
  while (LLVMRocks) ...

  somefunc(42);
  assert(3 != 4 && "laws of math are failing me");
  
  A = foo(42, 92) + bar(X);

and this is bad:

.. code-block:: c++

  if(X) ...
  for(I = 0; I != 100; ++I) ...
  while(LLVMRocks) ...

  somefunc (42);
  assert (3 != 4 && "laws of math are failing me");
  
  A = foo (42, 92) + bar (X);

The reason for doing this is not completely arbitrary.  This style makes control
flow operators stand out more, and makes expressions flow better. The function
call operator binds very tightly as a postfix operator.  Putting a space after a
function name (as in the last example) makes it appear that the code might bind
the arguments of the left-hand-side of a binary operator with the argument list
of a function and the name of the right side.  More specifically, it is easy to
misread the "``A``" example as:

.. code-block:: c++

  A = foo ((42, 92) + bar) (X);

when skimming through the code.  By avoiding a space in a function, we avoid
this misinterpretation.

Prefer Preincrement
^^^^^^^^^^^^^^^^^^^

Hard fast rule: Preincrement (``++X``) may be no slower than postincrement
(``X++``) and could very well be a lot faster than it.  Use preincrementation
whenever possible.

The semantics of postincrement include making a copy of the value being
incremented, returning it, and then preincrementing the "work value".  For
primitive types, this isn't a big deal. But for iterators, it can be a huge
issue (for example, some iterators contains stack and set objects in them...
copying an iterator could invoke the copy ctor's of these as well).  In general,
get in the habit of always using preincrement, and you won't have a problem.


Namespace Indentation
^^^^^^^^^^^^^^^^^^^^^

In general, we strive to reduce indentation wherever possible.  This is useful
because we want code to `fit into 80 columns`_ without wrapping horribly, but
also because it makes it easier to understand the code. To facilitate this and
avoid some insanely deep nesting on occasion, don't indent namespaces. If it
helps readability, feel free to add a comment indicating what namespace is
being closed by a ``}``.  For example:

.. code-block:: c++

  namespace llvm {
  namespace knowledge {

  /// This class represents things that Smith can have an intimate
  /// understanding of and contains the data associated with it.
  class Grokable {
  ...
  public:
    explicit Grokable() { ... }
    virtual ~Grokable() = 0;
  
    ...

  };

  } // end namespace knowledge
  } // end namespace llvm


Feel free to skip the closing comment when the namespace being closed is
obvious for any reason. For example, the outer-most namespace in a header file
is rarely a source of confusion. But namespaces both anonymous and named in
source files that are being closed half way through the file probably could use
clarification.

.. _static:

Anonymous Namespaces
^^^^^^^^^^^^^^^^^^^^

After talking about namespaces in general, you may be wondering about anonymous
namespaces in particular.  Anonymous namespaces are a great language feature
that tells the C++ compiler that the contents of the namespace are only visible
within the current translation unit, allowing more aggressive optimization and
eliminating the possibility of symbol name collisions.  Anonymous namespaces are
to C++ as "static" is to C functions and global variables.  While "``static``"
is available in C++, anonymous namespaces are more general: they can make entire
classes private to a file.

The problem with anonymous namespaces is that they naturally want to encourage
indentation of their body, and they reduce locality of reference: if you see a
random function definition in a C++ file, it is easy to see if it is marked
static, but seeing if it is in an anonymous namespace requires scanning a big
chunk of the file.

Because of this, we have a simple guideline: make anonymous namespaces as small
as possible, and only use them for class declarations.  For example, this is
good:

.. code-block:: c++

  namespace {
  class StringSort {
  ...
  public:
    StringSort(...)
    bool operator<(const char *RHS) const;
  };
  } // end anonymous namespace

  static void runHelper() { 
    ... 
  }

  bool StringSort::operator<(const char *RHS) const {
    ...
  }

This is bad:

.. code-block:: c++

  namespace {

  class StringSort {
  ...
  public:
    StringSort(...)
    bool operator<(const char *RHS) const;
  };

  void runHelper() { 
    ... 
  }

  bool StringSort::operator<(const char *RHS) const {
    ...
  }

  } // end anonymous namespace

This is bad specifically because if you're looking at "``runHelper``" in the middle
of a large C++ file, that you have no immediate way to tell if it is local to
the file.  When it is marked static explicitly, this is immediately obvious.
Also, there is no reason to enclose the definition of "``operator<``" in the
namespace just because it was declared there.

See Also
========

A lot of these comments and recommendations have been culled from other sources.
Two particularly important books for our work are:

#. `Effective C++
   <https://www.amazon.com/Effective-Specific-Addison-Wesley-Professional-Computing/dp/0321334876>`_
   by Scott Meyers.  Also interesting and useful are "More Effective C++" and
   "Effective STL" by the same author.

#. `Large-Scale C++ Software Design
   <https://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620>`_
   by John Lakos

If you get some free time, and you haven't read them: do so, you might learn
something.