reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
llvm-exegesis - LLVM Machine Instruction Benchmark
==================================================

.. program:: llvm-exegesis

SYNOPSIS
--------

:program:`llvm-exegesis` [*options*]

DESCRIPTION
-----------

:program:`llvm-exegesis` is a benchmarking tool that uses information available
in LLVM to measure host machine instruction characteristics like latency,
throughput, or port decomposition.

Given an LLVM opcode name and a benchmarking mode, :program:`llvm-exegesis`
generates a code snippet that makes execution as serial (resp. as parallel) as
possible so that we can measure the latency (resp. inverse throughput/uop decomposition)
of the instruction.
The code snippet is jitted and executed on the host subtarget. The time taken
(resp. resource usage) is measured using hardware performance counters. The
result is printed out as YAML to the standard output.

The main goal of this tool is to automatically (in)validate the LLVM's TableDef
scheduling models. To that end, we also provide analysis of the results.

:program:`llvm-exegesis` can also benchmark arbitrary user-provided code
snippets.

EXAMPLE 1: benchmarking instructions
------------------------------------

Assume you have an X86-64 machine. To measure the latency of a single
instruction, run:

.. code-block:: bash

    $ llvm-exegesis -mode=latency -opcode-name=ADD64rr

Measuring the uop decomposition or inverse throughput of an instruction works similarly:

.. code-block:: bash

    $ llvm-exegesis -mode=uops -opcode-name=ADD64rr
    $ llvm-exegesis -mode=inverse_throughput -opcode-name=ADD64rr


The output is a YAML document (the default is to write to stdout, but you can
redirect the output to a file using `-benchmarks-file`):

.. code-block:: none

  ---
  key:
    opcode_name:     ADD64rr
    mode:            latency
    config:          ''
  cpu_name:        haswell
  llvm_triple:     x86_64-unknown-linux-gnu
  num_repetitions: 10000
  measurements:
    - { key: latency, value: 1.0058, debug_string: '' }
  error:           ''
  info:            'explicit self cycles, selecting one aliasing configuration.
  Snippet:
  ADD64rr R8, R8, R10
  '
  ...

To measure the latency of all instructions for the host architecture, run:

.. code-block:: bash

  #!/bin/bash
  readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut -f2 -d=) - 1))
  for INSTRUCTION in $(seq 1 ${INSTRUCTIONS});
  do
    ./build/bin/llvm-exegesis -mode=latency -opcode-index=${INSTRUCTION} | sed -n '/---/,$p'
  done

FIXME: Provide an :program:`llvm-exegesis` option to test all instructions.


EXAMPLE 2: benchmarking a custom code snippet
---------------------------------------------

To measure the latency/uops of a custom piece of code, you can specify the
`snippets-file` option (`-` reads from standard input).

.. code-block:: bash

    $ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-

Real-life code snippets typically depend on registers or memory.
:program:`llvm-exegesis` checks the liveliness of registers (i.e. any register
use has a corresponding def or is a "live in"). If your code depends on the
value of some registers, you have two options:

- Mark the register as requiring a definition. :program:`llvm-exegesis` will
  automatically assign a value to the register. This can be done using the
  directive `LLVM-EXEGESIS-DEFREG <reg name> <hex_value>`, where `<hex_value>`
  is a bit pattern used to fill `<reg_name>`. If `<hex_value>` is smaller than
  the register width, it will be sign-extended.
- Mark the register as a "live in". :program:`llvm-exegesis` will benchmark
  using whatever value was in this registers on entry. This can be done using
  the directive `LLVM-EXEGESIS-LIVEIN <reg name>`.

For example, the following code snippet depends on the values of XMM1 (which
will be set by the tool) and the memory buffer passed in RDI (live in).

.. code-block:: none

  # LLVM-EXEGESIS-LIVEIN RDI
  # LLVM-EXEGESIS-DEFREG XMM1 42
  vmulps	(%rdi), %xmm1, %xmm2
  vhaddps	%xmm2, %xmm2, %xmm3
  addq $0x10, %rdi


EXAMPLE 3: analysis
-------------------

Assuming you have a set of benchmarked instructions (either latency or uops) as
YAML in file `/tmp/benchmarks.yaml`, you can analyze the results using the
following command:

.. code-block:: bash

    $ llvm-exegesis -mode=analysis \
  -benchmarks-file=/tmp/benchmarks.yaml \
  -analysis-clusters-output-file=/tmp/clusters.csv \
  -analysis-inconsistencies-output-file=/tmp/inconsistencies.html

This will group the instructions into clusters with the same performance
characteristics. The clusters will be written out to `/tmp/clusters.csv` in the
following format:

.. code-block:: none

  cluster_id,opcode_name,config,sched_class
  ...
  2,ADD32ri8_DB,,WriteALU,1.00
  2,ADD32ri_DB,,WriteALU,1.01
  2,ADD32rr,,WriteALU,1.01
  2,ADD32rr_DB,,WriteALU,1.00
  2,ADD32rr_REV,,WriteALU,1.00
  2,ADD64i32,,WriteALU,1.01
  2,ADD64ri32,,WriteALU,1.01
  2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00
  2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02
  2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01
  2,ADD64ri8,,WriteALU,1.00
  2,SETBr,,WriteSETCC,1.01
  ...

:program:`llvm-exegesis` will also analyze the clusters to point out
inconsistencies in the scheduling information. The output is an html file. For
example, `/tmp/inconsistencies.html` will contain messages like the following :

.. image:: llvm-exegesis-analysis.png
  :align: center

Note that the scheduling class names will be resolved only when
:program:`llvm-exegesis` is compiled in debug mode, else only the class id will
be shown. This does not invalidate any of the analysis results though.

OPTIONS
-------

.. option:: -help

 Print a summary of command line options.

.. option:: -opcode-index=<LLVM opcode index>

 Specify the opcode to measure, by index. See example 1 for details.
 Either `opcode-index`, `opcode-name` or `snippets-file` must be set.

.. option:: -opcode-name=<opcode name 1>,<opcode name 2>,...

 Specify the opcode to measure, by name. Several opcodes can be specified as
 a comma-separated list. See example 1 for details.
 Either `opcode-index`, `opcode-name` or `snippets-file` must be set.

 .. option:: -snippets-file=<filename>

  Specify the custom code snippet to measure. See example 2 for details.
  Either `opcode-index`, `opcode-name` or `snippets-file` must be set.

.. option:: -mode=[latency|uops|inverse_throughput|analysis]

 Specify the run mode. Note that if you pick `analysis` mode, you also need
 to specify at least one of the `-analysis-clusters-output-file=` and
 `-analysis-inconsistencies-output-file=`.

.. option:: -num-repetitions=<Number of repetitions>

 Specify the number of repetitions of the asm snippet.
 Higher values lead to more accurate measurements but lengthen the benchmark.

.. option:: -max-configs-per-opcode=<value>

 Specify the maximum configurations that can be generated for each opcode.
 By default this is `1`, meaning that we assume that a single measurement is
 enough to characterize an opcode. This might not be true of all instructions:
 for example, the performance characteristics of the LEA instruction on X86
 depends on the value of assigned registers and immediates. Setting a value of
 `-max-configs-per-opcode` larger than `1` allows `llvm-exegesis` to explore
 more configurations to discover if some register or immediate assignments
 lead to different performance characteristics.


.. option:: -benchmarks-file=</path/to/file>

 File to read (`analysis` mode) or write (`latency`/`uops`/`inverse_throughput`
 modes) benchmark results. "-" uses stdin/stdout.

.. option:: -analysis-clusters-output-file=</path/to/file>

 If provided, write the analysis clusters as CSV to this file. "-" prints to
 stdout. By default, this analysis is not run.

.. option:: -analysis-inconsistencies-output-file=</path/to/file>

 If non-empty, write inconsistencies found during analysis to this file. `-`
 prints to stdout. By default, this analysis is not run.

.. option:: -analysis-clustering=[dbscan,naive]

 Specify the clustering algorithm to use. By default DBSCAN will be used.
 Naive clustering algorithm is better for doing further work on the
 `-analysis-inconsistencies-output-file=` output, it will create one cluster
 per opcode, and check that the cluster is stable (all points are neighbours).

.. option:: -analysis-numpoints=<dbscan numPoints parameter>

 Specify the numPoints parameters to be used for DBSCAN clustering
 (`analysis` mode, DBSCAN only).

.. option:: -analysis-clustering-epsilon=<dbscan epsilon parameter>

 Specify the epsilon parameter used for clustering of benchmark points
 (`analysis` mode).

.. option:: -analysis-inconsistency-epsilon=<epsilon>

 Specify the epsilon parameter used for detection of when the cluster
 is different from the LLVM schedule profile values (`analysis` mode).

.. option:: -analysis-display-unstable-clusters

 If there is more than one benchmark for an opcode, said benchmarks may end up
 not being clustered into the same cluster if the measured performance
 characteristics are different. by default all such opcodes are filtered out.
 This flag will instead show only such unstable opcodes.

.. option:: -ignore-invalid-sched-class=false

 If set, ignore instructions that do not have a sched class (class idx = 0).

.. option:: -mcpu=<cpu name>

 If set, measure the cpu characteristics using the counters for this CPU. This
 is useful when creating new sched models (the host CPU is unknown to LLVM).

.. option:: --dump-object-to-disk=true

 By default, llvm-exegesis will dump the generated code to a temporary file to
 enable code inspection. You may disable it to speed up the execution and save
 disk space.

EXIT STATUS
-----------

:program:`llvm-exegesis` returns 0 on success. Otherwise, an error message is
printed to standard error, and the tool returns a non 0 value.