reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
=====================
YAML I/O
=====================

.. contents::
   :local:

Introduction to YAML
====================

YAML is a human readable data serialization language.  The full YAML language 
spec can be read at `yaml.org 
<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
or string.  The pound/hash symbol (#) begins a comment line.   A mapping is 
a set of key-value pairs where the key ends with a colon.  For example:

.. code-block:: yaml

     # a mapping
     name:      Tom
     hat-size:  7
     
A sequence is a list of items where each item starts with a leading dash ('-'). 
For example:

.. code-block:: yaml

     # a sequence
     - x86
     - x86_64
     - PowerPC

You can combine mappings and sequences by indenting.  For example a sequence
of mappings in which one of the mapping values is itself a sequence:

.. code-block:: yaml

     # a sequence of mappings with one key's value being a sequence
     - name:      Tom
       cpus:
        - x86
        - x86_64
     - name:      Bob
       cpus:
        - x86
     - name:      Dan
       cpus:
        - PowerPC
        - x86

Sometime sequences are known to be short and the one entry per line is too
verbose, so YAML offers an alternate syntax for sequences called a "Flow
Sequence" in which you put comma separated sequence elements into square 
brackets.  The above example could then be simplified to :


.. code-block:: yaml

     # a sequence of mappings with one key's value being a flow sequence
     - name:      Tom
       cpus:      [ x86, x86_64 ]
     - name:      Bob
       cpus:      [ x86 ]
     - name:      Dan
       cpus:      [ PowerPC, x86 ]


Introduction to YAML I/O
========================

The use of indenting makes the YAML easy for a human to read and understand,
but having a program read and write YAML involves a lot of tedious details.
The YAML I/O library structures and simplifies reading and writing YAML 
documents.

YAML I/O assumes you have some "native" data structures which you want to be
able to dump as YAML and recreate from YAML.  The first step is to try 
writing example YAML for your data structures. You may find after looking at 
possible YAML representations that a direct mapping of your data structures
to YAML is not very readable.  Often the fields are not in the order that
a human would find readable.  Or the same information is replicated in multiple
locations, making it hard for a human to write such YAML correctly.  

In relational database theory there is a design step called normalization in 
which you reorganize fields and tables.  The same considerations need to 
go into the design of your YAML encoding.  But, you may not want to change
your existing native data structures.  Therefore, when writing out YAML
there may be a normalization step, and when reading YAML there would be a
corresponding denormalization step.  

YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some 
abstract base templates.  You specialize those templates on your data types.
For instance, if you have an enumerated type FooBar you could specialize 
ScalarEnumerationTraits on that type and define the enumeration() method:

.. code-block:: c++

    using llvm::yaml::ScalarEnumerationTraits;
    using llvm::yaml::IO;

    template <>
    struct ScalarEnumerationTraits<FooBar> {
      static void enumeration(IO &io, FooBar &value) {
      ...
      }
    };


As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 
both reading and writing YAML. That is, the mapping between in-memory enum
values and the YAML string representation is only in one place.
This assures that the code for writing and parsing of YAML stays in sync.

To specify a YAML mappings, you define a specialization on 
llvm::yaml::MappingTraits.
If your native data structure happens to be a struct that is already normalized,
then the specialization is simple.  For example:

.. code-block:: c++
   
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
    
    template <>
    struct MappingTraits<Person> {
      static void mapping(IO &io, Person &info) {
        io.mapRequired("name",         info.name);
        io.mapOptional("hat-size",     info.hatSize);
      }
    };


A YAML sequence is automatically inferred if you data type has begin()/end()
iterators and a push_back() method.  Therefore any of the STL containers
(such as std::vector<>) will automatically translate to YAML sequences.

Once you have defined specializations for your data types, you can 
programmatically use YAML I/O to write a YAML document:

.. code-block:: c++
   
    using llvm::yaml::Output;

    Person tom;
    tom.name = "Tom";
    tom.hatSize = 8;
    Person dan;
    dan.name = "Dan";
    dan.hatSize = 7;
    std::vector<Person> persons;
    persons.push_back(tom);
    persons.push_back(dan);
    
    Output yout(llvm::outs());
    yout << persons;
   
This would write the following:

.. code-block:: yaml

     - name:      Tom
       hat-size:  8
     - name:      Dan
       hat-size:  7

And you can also read such YAML documents with the following code:

.. code-block:: c++

    using llvm::yaml::Input;

    typedef std::vector<Person> PersonList;
    std::vector<PersonList> docs;
    
    Input yin(document.getBuffer());
    yin >> docs;
    
    if ( yin.error() )
      return;
    
    // Process read document
    for ( PersonList &pl : docs ) {
      for ( Person &person : pl ) {
        cout << "name=" << person.name;
      }
    }
  
One other feature of YAML is the ability to define multiple documents in a 
single file.  That is why reading YAML produces a vector of your document type.



Error Handling
==============

When parsing a YAML document, if the input does not match your schema (as 
expressed in your XxxTraits<> specializations).  YAML I/O 
will print out an error message and your Input object's error() method will 
return true. For instance the following document:

.. code-block:: yaml

     - name:      Tom
       shoe-size: 12
     - name:      Dan
       hat-size:  7

Has a key (shoe-size) that is not defined in the schema.  YAML I/O will 
automatically generate this error:

.. code-block:: yaml

    YAML:2:2: error: unknown key 'shoe-size'
      shoe-size:       12
      ^~~~~~~~~

Similar errors are produced for other input not conforming to the schema.


Scalars
=======

YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
library provides support for translating between YAML scalars and specific
C++ types.


Built-in types
--------------
The following types have built-in support in YAML I/O:

* bool
* float
* double
* StringRef
* std::string
* int64_t
* int32_t
* int16_t
* int8_t
* uint64_t
* uint32_t
* uint16_t
* uint8_t

That is, you can use those types in fields of MappingTraits or as element type
in sequence.  When reading, YAML I/O will validate that the string found
is convertible to that type and error out if not.


Unique types
------------
Given that YAML I/O is trait based, the selection of how to convert your data
to YAML is based on the type of your data.  But in C++ type matching, typedefs
do not generate unique type names.  That means if you have two typedefs of
unsigned int, to YAML I/O both types look exactly like unsigned int.  To
facilitate make unique type names, YAML I/O provides a macro which is used
like a typedef on built-in types, but expands to create a class with conversion
operators to and from the base type.  For example:

.. code-block:: c++

    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)

This generates two classes MyFooFlags and MyBarFlags which you can use in your
native data structures instead of uint32_t. They are implicitly 
converted to and from uint32_t.  The point of creating these unique types
is that you can now specify traits on them to get different YAML conversions.

Hex types
---------
An example use of a unique type is that YAML I/O provides fixed sized unsigned
integers that are written with YAML I/O as hexadecimal instead of the decimal
format used by the built-in integer types:

* Hex64
* Hex32
* Hex16
* Hex8

You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
be that when YAML I/O writes out that type it will be formatted in hexadecimal.


ScalarEnumerationTraits
-----------------------
YAML I/O supports translating between in-memory enumerations and a set of string
values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
on your enumeration type and define a enumeration() method. 
For instance, suppose you had an enumeration of CPUs and a struct with it as 
a field:

.. code-block:: c++

    enum CPUs {
      cpu_x86_64  = 5,
      cpu_x86     = 7,
      cpu_PowerPC = 8
    };
    
    struct Info {
      CPUs      cpu;
      uint32_t  flags;
    };
    
To support reading and writing of this enumeration, you can define a 
ScalarEnumerationTraits specialization on CPUs, which can then be used 
as a field type: 

.. code-block:: c++

    using llvm::yaml::ScalarEnumerationTraits;
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;

    template <>
    struct ScalarEnumerationTraits<CPUs> {
      static void enumeration(IO &io, CPUs &value) {
        io.enumCase(value, "x86_64",  cpu_x86_64);
        io.enumCase(value, "x86",     cpu_x86);
        io.enumCase(value, "PowerPC", cpu_PowerPC);
      }
    };
 
    template <>
    struct MappingTraits<Info> {
      static void mapping(IO &io, Info &info) {
        io.mapRequired("cpu",       info.cpu);
        io.mapOptional("flags",     info.flags, 0);
      }
    };

When reading YAML, if the string found does not match any of the strings
specified by enumCase() methods, an error is automatically generated.
When writing YAML, if the value being written does not match any of the values
specified by the enumCase() methods, a runtime assertion is triggered.
  

BitValue
--------
Another common data structure in C++ is a field where each bit has a unique
meaning.  This is often used in a "flags" field.  YAML I/O has support for
converting such fields to a flow sequence.   For instance suppose you 
had the following bit flags defined:

.. code-block:: c++

    enum {
      flagsPointy = 1
      flagsHollow = 2
      flagsFlat   = 4
      flagsRound  = 8
    };

    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
    
To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
on MyFlags and provide the bit values and their names.   

.. code-block:: c++

    using llvm::yaml::ScalarBitSetTraits;
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;

    template <>
    struct ScalarBitSetTraits<MyFlags> {
      static void bitset(IO &io, MyFlags &value) {
        io.bitSetCase(value, "hollow",  flagHollow);
        io.bitSetCase(value, "flat",    flagFlat);
        io.bitSetCase(value, "round",   flagRound);
        io.bitSetCase(value, "pointy",  flagPointy);
      }
    };
    
    struct Info {
      StringRef   name;
      MyFlags     flags;
    };
    
    template <>
    struct MappingTraits<Info> {
      static void mapping(IO &io, Info& info) {
        io.mapRequired("name",  info.name);
        io.mapRequired("flags", info.flags);
       }
    };

With the above, YAML I/O (when writing) will test mask each value in the 
bitset trait against the flags field, and each that matches will
cause the corresponding string to be added to the flow sequence.  The opposite
is done when reading and any unknown string values will result in a error. With 
the above schema, a same valid YAML document is:

.. code-block:: yaml

    name:    Tom
    flags:   [ pointy, flat ]

Sometimes a "flags" field might contains an enumeration part
defined by a bit-mask.

.. code-block:: c++

    enum {
      flagsFeatureA = 1,
      flagsFeatureB = 2,
      flagsFeatureC = 4,

      flagsCPUMask = 24,

      flagsCPU1 = 8,
      flagsCPU2 = 16
    };

To support reading and writing such fields, you need to use the maskedBitSet()
method and provide the bit values, their names and the enumeration mask.

.. code-block:: c++

    template <>
    struct ScalarBitSetTraits<MyFlags> {
      static void bitset(IO &io, MyFlags &value) {
        io.bitSetCase(value, "featureA",  flagsFeatureA);
        io.bitSetCase(value, "featureB",  flagsFeatureB);
        io.bitSetCase(value, "featureC",  flagsFeatureC);
        io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
        io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
      }
    };

YAML I/O (when writing) will apply the enumeration mask to the flags field,
and compare the result and values from the bitset. As in case of a regular
bitset, each that matches will cause the corresponding string to be added
to the flow sequence.

Custom Scalar
-------------
Sometimes for readability a scalar needs to be formatted in a custom way. For
instance your internal data structure may use a integer for time (seconds since
some epoch), but in YAML it would be much nicer to express that integer in 
some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support  
custom formatting and parsing of scalar types by specializing ScalarTraits<> on
your data type.  When writing, YAML I/O will provide the native type and
your specialization must create a temporary llvm::StringRef.  When reading,
YAML I/O will provide an llvm::StringRef of scalar and your specialization
must convert that to your native data type.  An outline of a custom scalar type
looks like:

.. code-block:: c++

    using llvm::yaml::ScalarTraits;
    using llvm::yaml::IO;

    template <>
    struct ScalarTraits<MyCustomType> {
      static void output(const MyCustomType &value, void*,
                         llvm::raw_ostream &out) {
        out << value;  // do custom formatting here
      }
      static StringRef input(StringRef scalar, void*, MyCustomType &value) {
        // do custom parsing here.  Return the empty string on success,
        // or an error message on failure.
        return StringRef();
      }
      // Determine if this scalar needs quotes.
      static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
    };

Block Scalars
-------------

YAML block scalars are string literals that are represented in YAML using the
literal block notation, just like the example shown below:

.. code-block:: yaml

    text: |
      First line
      Second line

The YAML I/O library provides support for translating between YAML block scalars
and specific C++ types by allowing you to specialize BlockScalarTraits<> on
your data type. The library doesn't provide any built-in support for block
scalar I/O for types like std::string and llvm::StringRef as they are already
supported by YAML I/O and use the ordinary scalar notation by default.

BlockScalarTraits specializations are very similar to the
ScalarTraits specialization - YAML I/O will provide the native type and your
specialization must create a temporary llvm::StringRef when writing, and
it will also provide an llvm::StringRef that has the value of that block scalar
and your specialization must convert that to your native data type when reading.
An example of a custom type with an appropriate specialization of
BlockScalarTraits is shown below:

.. code-block:: c++

    using llvm::yaml::BlockScalarTraits;
    using llvm::yaml::IO;

    struct MyStringType {
      std::string Str;
    };

    template <>
    struct BlockScalarTraits<MyStringType> {
      static void output(const MyStringType &Value, void *Ctxt,
                         llvm::raw_ostream &OS) {
        OS << Value.Str;
      }

      static StringRef input(StringRef Scalar, void *Ctxt,
                             MyStringType &Value) {
        Value.Str = Scalar.str();
        return StringRef();
      }
    };

    

Mappings
========

To be translated to or from a YAML mapping for your type T you must specialize  
llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 
method. If your native data structures use pointers to a class everywhere,
you can specialize on the class pointer.  Examples:

.. code-block:: c++
   
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
    
    // Example of struct Foo which is used by value
    template <>
    struct MappingTraits<Foo> {
      static void mapping(IO &io, Foo &foo) {
        io.mapOptional("size",      foo.size);
      ...
      }
    };

    // Example of struct Bar which is natively always a pointer
    template <>
    struct MappingTraits<Bar*> {
      static void mapping(IO &io, Bar *&bar) {
        io.mapOptional("size",    bar->size);
      ...
      }
    };


No Normalization
----------------

The mapping() method is responsible, if needed, for normalizing and 
denormalizing. In a simple case where the native data structure requires no 
normalization, the mapping method just uses mapOptional() or mapRequired() to 
bind the struct's fields to YAML key names.  For example:

.. code-block:: c++
   
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
    
    template <>
    struct MappingTraits<Person> {
      static void mapping(IO &io, Person &info) {
        io.mapRequired("name",         info.name);
        io.mapOptional("hat-size",     info.hatSize);
      }
    };


Normalization
----------------

When [de]normalization is required, the mapping() method needs a way to access
normalized values as fields. To help with this, there is
a template MappingNormalization<> which you can then use to automatically
do the normalization and denormalization.  The template is used to create
a local variable in your mapping() method which contains the normalized keys.

Suppose you have native data type 
Polar which specifies a position in polar coordinates (distance, angle):

.. code-block:: c++
   
    struct Polar {
      float distance;
      float angle;
    };

but you've decided the normalized YAML for should be in x,y coordinates. That 
is, you want the yaml to look like:

.. code-block:: yaml

    x:   10.3
    y:   -4.7

You can support this by defining a MappingTraits that normalizes the polar
coordinates to x,y coordinates when writing YAML and denormalizes x,y 
coordinates into polar when reading YAML.  

.. code-block:: c++
   
    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
        
    template <>
    struct MappingTraits<Polar> {
      
      class NormalizedPolar {
      public:
        NormalizedPolar(IO &io)
          : x(0.0), y(0.0) {
        }
        NormalizedPolar(IO &, Polar &polar)
          : x(polar.distance * cos(polar.angle)), 
            y(polar.distance * sin(polar.angle)) {
        }
        Polar denormalize(IO &) {
          return Polar(sqrt(x*x+y*y), arctan(x,y));
        }
         
        float        x;
        float        y;
      };

      static void mapping(IO &io, Polar &polar) {
        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
        
        io.mapRequired("x",    keys->x);
        io.mapRequired("y",    keys->y);
      }
    };

When writing YAML, the local variable "keys" will be a stack allocated 
instance of NormalizedPolar, constructed from the supplied polar object which
initializes it x and y fields.  The mapRequired() methods then write out the x
and y values as key/value pairs.  

When reading YAML, the local variable "keys" will be a stack allocated instance
of NormalizedPolar, constructed by the empty constructor.  The mapRequired 
methods will find the matching key in the YAML document and fill in the x and y 
fields of the NormalizedPolar object keys. At the end of the mapping() method
when the local keys variable goes out of scope, the denormalize() method will
automatically be called to convert the read values back to polar coordinates,
and then assigned back to the second parameter to mapping().

In some cases, the normalized class may be a subclass of the native type and
could be returned by the denormalize() method, except that the temporary
normalized instance is stack allocated.  In these cases, the utility template
MappingNormalizationHeap<> can be used instead.  It just like 
MappingNormalization<> except that it heap allocates the normalized object
when reading YAML.  It never destroys the normalized object.  The denormalize()
method can this return "this".


Default values
--------------
Within a mapping() method, calls to io.mapRequired() mean that that key is 
required to exist when parsing YAML documents, otherwise YAML I/O will issue an 
error.

On the other hand, keys registered with io.mapOptional() are allowed to not 
exist in the YAML document being read.  So what value is put in the field 
for those optional keys? 
There are two steps to how those optional fields are filled in. First, the  
second parameter to the mapping() method is a reference to a native class.  That
native class must have a default constructor.  Whatever value the default
constructor initially sets for an optional field will be that field's value.
Second, the mapOptional() method has an optional third parameter.  If provided
it is the value that mapOptional() should set that field to if the YAML document  
does not have that key.  

There is one important difference between those two ways (default constructor
and third parameter to mapOptional). When YAML I/O generates a YAML document, 
if the mapOptional() third parameter is used, if the actual value being written
is the same as (using ==) the default value, then that key/value is not written.


Order of Keys
--------------

When writing out a YAML document, the keys are written in the order that the
calls to mapRequired()/mapOptional() are made in the mapping() method. This
gives you a chance to write the fields in an order that a human reader of
the YAML document would find natural.  This may be different that the order
of the fields in the native class.

When reading in a YAML document, the keys in the document can be in any order, 
but they are processed in the order that the calls to mapRequired()/mapOptional() 
are made in the mapping() method.  That enables some interesting 
functionality.  For instance, if the first field bound is the cpu and the second
field bound is flags, and the flags are cpu specific, you can programmatically
switch how the flags are converted to and from YAML based on the cpu.  
This works for both reading and writing. For example:

.. code-block:: c++

    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
    
    struct Info {
      CPUs        cpu;
      uint32_t    flags;
    };

    template <>
    struct MappingTraits<Info> {
      static void mapping(IO &io, Info &info) {
        io.mapRequired("cpu",       info.cpu);
        // flags must come after cpu for this to work when reading yaml
        if ( info.cpu == cpu_x86_64 )
          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
        else
          io.mapRequired("flags",  *(My86Flags*)info.flags);
     }
    };


Tags
----

The YAML syntax supports tags as a way to specify the type of a node before
it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
static typing, so there are limits to how you can use tags with the YAML I/O
model. Recently, we added support to YAML I/O for checking/setting the optional 
tag on a map. Using this functionality it is even possbile to support different 
mappings, as long as they are convertible.  

To check a tag, inside your mapping() method you can use io.mapTag() to specify
what the tag should be.  This will also add that tag when writing yaml.

Validation
----------

Sometimes in a yaml map, each key/value pair is valid, but the combination is
not.  This is similar to something having no syntax errors, but still having
semantic errors.  To support semantic level checking, YAML I/O allows
an optional ``validate()`` method in a MappingTraits template specialization.  

When parsing yaml, the ``validate()`` method is call *after* all key/values in 
the map have been processed. Any error message returned by the ``validate()`` 
method during input will be printed just a like a syntax error would be printed.
When writing yaml, the ``validate()`` method is called *before* the yaml 
key/values  are written.  Any error during output will trigger an ``assert()`` 
because it is a programming error to have invalid struct values.


.. code-block:: c++

    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;
    
    struct Stuff {
      ...
    };

    template <>
    struct MappingTraits<Stuff> {
      static void mapping(IO &io, Stuff &stuff) {
      ...
      }
      static StringRef validate(IO &io, Stuff &stuff) {
        // Look at all fields in 'stuff' and if there
        // are any bad values return a string describing
        // the error.  Otherwise return an empty string.
        return StringRef();
      }
    };

Flow Mapping
------------
A YAML "flow mapping" is a mapping that uses the inline notation
(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be
written in YAML using flow mapping, your MappingTraits specialization should
add "static const bool flow = true;". For instance:

.. code-block:: c++

    using llvm::yaml::MappingTraits;
    using llvm::yaml::IO;

    struct Stuff {
      ...
    };

    template <>
    struct MappingTraits<Stuff> {
      static void mapping(IO &io, Stuff &stuff) {
        ...
      }

      static const bool flow = true;
    }

Flow mappings are subject to line wrapping according to the Output object
configuration.

Sequence
========

To be translated to or from a YAML sequence for your type T you must specialize
llvm::yaml::SequenceTraits on T and implement two methods:
``size_t size(IO &io, T&)`` and
``T::value_type& element(IO &io, T&, size_t indx)``.  For example:

.. code-block:: c++

  template <>
  struct SequenceTraits<MySeq> {
    static size_t size(IO &io, MySeq &list) { ... }
    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
  };

The size() method returns how many elements are currently in your sequence.
The element() method returns a reference to the i'th element in the sequence. 
When parsing YAML, the element() method may be called with an index one bigger
than the current size.  Your element() method should allocate space for one
more element (using default constructor if element is a C++ object) and returns
a reference to that new allocated space.  


Flow Sequence
-------------
A YAML "flow sequence" is a sequence that when written to YAML it uses the 
inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
be written in YAML as a flow sequence, your SequenceTraits specialization should
add "static const bool flow = true;".  For instance:

.. code-block:: c++

  template <>
  struct SequenceTraits<MyList> {
    static size_t size(IO &io, MyList &list) { ... }
    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
    
    // The existence of this member causes YAML I/O to use a flow sequence
    static const bool flow = true;
  };

With the above, if you used MyList as the data type in your native data 
structures, then when converted to YAML, a flow sequence of integers 
will be used (e.g. [ 10, -3, 4 ]).

Flow sequences are subject to line wrapping according to the Output object
configuration.

Utility Macros
--------------
Since a common source of sequences is std::vector<>, YAML I/O provides macros:
LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
can be used to easily specify SequenceTraits<> on a std::vector type.  YAML 
I/O does not partial specialize SequenceTraits on std::vector<> because that
would force all vectors to be sequences.  An example use of the macros:

.. code-block:: c++

  std::vector<MyType1>;
  std::vector<MyType2>;
  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)



Document List
=============

YAML allows you to define multiple "documents" in a single YAML file.  Each 
new document starts with a left aligned "---" token.  The end of all documents
is denoted with a left aligned "..." token.  Many users of YAML will never
have need for multiple documents.  The top level node in their YAML schema
will be a mapping or sequence. For those cases, the following is not needed.
But for cases where you do want multiple documents, you can specify a
trait for you document list type.  The trait has the same methods as 
SequenceTraits but is named DocumentListTraits.  For example:

.. code-block:: c++

  template <>
  struct DocumentListTraits<MyDocList> {
    static size_t size(IO &io, MyDocList &list) { ... }
    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
  };


User Context Data
=================
When an llvm::yaml::Input or llvm::yaml::Output object is created their 
constructors take an optional "context" parameter.  This is a pointer to 
whatever state information you might need.  

For instance, in a previous example we showed how the conversion type for a 
flags field could be determined at runtime based on the value of another field 
in the mapping. But what if an inner mapping needs to know some field value
of an outer mapping?  That is where the "context" parameter comes in. You
can set values in the context in the outer map's mapping() method and
retrieve those values in the inner map's mapping() method.

The context value is just a void*.  All your traits which use the context 
and operate on your native data types, need to agree what the context value
actually is.  It could be a pointer to an object or struct which your various
traits use to shared context sensitive information.


Output
======

The llvm::yaml::Output class is used to generate a YAML document from your 
in-memory data structures, using traits defined on your data types.  
To instantiate an Output object you need an llvm::raw_ostream, an optional 
context pointer and an optional wrapping column:

.. code-block:: c++

      class Output : public IO {
      public:
        Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);
    
Once you have an Output object, you can use the C++ stream operator on it
to write your native data as YAML. One thing to recall is that a YAML file
can contain multiple "documents".  If the top level data structure you are
streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
are generating one document and wraps the mapping output 
with  "``---``" and trailing "``...``".  

The WrapColumn parameter will cause the flow mappings and sequences to
line-wrap when they go over the supplied column. Pass 0 to completely
suppress the wrapping.

.. code-block:: c++
   
    using llvm::yaml::Output;

    void dumpMyMapDoc(const MyMapType &info) {
      Output yout(llvm::outs());
      yout << info;
    }

The above could produce output like:

.. code-block:: yaml

     ---
     name:      Tom
     hat-size:  7
     ...

On the other hand, if the top level data structure you are streaming as YAML
has a DocumentListTraits specialization, then Output walks through each element
of your DocumentList and generates a "---" before the start of each element
and ends with a "...".

.. code-block:: c++
   
    using llvm::yaml::Output;

    void dumpMyMapDoc(const MyDocListType &docList) {
      Output yout(llvm::outs());
      yout << docList;
    }

The above could produce output like:

.. code-block:: yaml

     ---
     name:      Tom
     hat-size:  7
     ---
     name:      Tom
     shoe-size:  11
     ...

Input
=====

The llvm::yaml::Input class is used to parse YAML document(s) into your native
data structures. To instantiate an Input
object you need a StringRef to the entire YAML file, and optionally a context 
pointer:

.. code-block:: c++

      class Input : public IO {
      public:
        Input(StringRef inputContent, void *context=NULL);
    
Once you have an Input object, you can use the C++ stream operator to read
the document(s).  If you expect there might be multiple YAML documents in
one file, you'll need to specialize DocumentListTraits on a list of your
document type and stream in that document list type.  Otherwise you can
just stream in the document type.  Also, you can check if there was 
any syntax errors in the YAML be calling the error() method on the Input
object.  For example:

.. code-block:: c++
   
     // Reading a single document
     using llvm::yaml::Input;

     Input yin(mb.getBuffer());
     
     // Parse the YAML file
     MyDocType theDoc;
     yin >> theDoc;

     // Check for error
     if ( yin.error() )
       return;
  
      
.. code-block:: c++
   
     // Reading multiple documents in one file
     using llvm::yaml::Input;

     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(MyDocType)
     
     Input yin(mb.getBuffer());
     
     // Parse the YAML file
     std::vector<MyDocType> theDocList;
     yin >> theDocList;

     // Check for error
     if ( yin.error() )
       return;