reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
//===- HashTable.h - PDB Hash Table -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
#define LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H

#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/DebugInfo/PDB/Native/RawError.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

namespace llvm {

class BinaryStreamReader;
class BinaryStreamWriter;

namespace pdb {

Error readSparseBitVector(BinaryStreamReader &Stream, SparseBitVector<> &V);
Error writeSparseBitVector(BinaryStreamWriter &Writer, SparseBitVector<> &Vec);

template <typename ValueT> class HashTable;

template <typename ValueT>
class HashTableIterator
    : public iterator_facade_base<HashTableIterator<ValueT>,
                                  std::forward_iterator_tag,
                                  const std::pair<uint32_t, ValueT>> {
  friend HashTable<ValueT>;

  HashTableIterator(const HashTable<ValueT> &Map, uint32_t Index,
                    bool IsEnd)
      : Map(&Map), Index(Index), IsEnd(IsEnd) {}

public:
  HashTableIterator(const HashTable<ValueT> &Map) : Map(&Map) {
    int I = Map.Present.find_first();
    if (I == -1) {
      Index = 0;
      IsEnd = true;
    } else {
      Index = static_cast<uint32_t>(I);
      IsEnd = false;
    }
  }

  HashTableIterator &operator=(const HashTableIterator &R) {
    Map = R.Map;
    return *this;
  }
  bool operator==(const HashTableIterator &R) const {
    if (IsEnd && R.IsEnd)
      return true;
    if (IsEnd != R.IsEnd)
      return false;

    return (Map == R.Map) && (Index == R.Index);
  }
  const std::pair<uint32_t, ValueT> &operator*() const {
    assert(Map->Present.test(Index));
    return Map->Buckets[Index];
  }

  // Implement postfix op++ in terms of prefix op++ by using the superclass
  // implementation.
  using iterator_facade_base<HashTableIterator<ValueT>,
                             std::forward_iterator_tag,
                             const std::pair<uint32_t, ValueT>>::operator++;
  HashTableIterator &operator++() {
    while (Index < Map->Buckets.size()) {
      ++Index;
      if (Map->Present.test(Index))
        return *this;
    }

    IsEnd = true;
    return *this;
  }

private:
  bool isEnd() const { return IsEnd; }
  uint32_t index() const { return Index; }

  const HashTable<ValueT> *Map;
  uint32_t Index;
  bool IsEnd;
};

template <typename ValueT>
class HashTable {
  struct Header {
    support::ulittle32_t Size;
    support::ulittle32_t Capacity;
  };

  using BucketList = std::vector<std::pair<uint32_t, ValueT>>;

public:
  using const_iterator = HashTableIterator<ValueT>;
  friend const_iterator;

  HashTable() { Buckets.resize(8); }
  explicit HashTable(uint32_t Capacity) {
    Buckets.resize(Capacity);
  }

  Error load(BinaryStreamReader &Stream) {
    const Header *H;
    if (auto EC = Stream.readObject(H))
      return EC;
    if (H->Capacity == 0)
      return make_error<RawError>(raw_error_code::corrupt_file,
                                  "Invalid Hash Table Capacity");
    if (H->Size > maxLoad(H->Capacity))
      return make_error<RawError>(raw_error_code::corrupt_file,
                                  "Invalid Hash Table Size");

    Buckets.resize(H->Capacity);

    if (auto EC = readSparseBitVector(Stream, Present))
      return EC;
    if (Present.count() != H->Size)
      return make_error<RawError>(raw_error_code::corrupt_file,
                                  "Present bit vector does not match size!");

    if (auto EC = readSparseBitVector(Stream, Deleted))
      return EC;
    if (Present.intersects(Deleted))
      return make_error<RawError>(raw_error_code::corrupt_file,
                                  "Present bit vector intersects deleted!");

    for (uint32_t P : Present) {
      if (auto EC = Stream.readInteger(Buckets[P].first))
        return EC;
      const ValueT *Value;
      if (auto EC = Stream.readObject(Value))
        return EC;
      Buckets[P].second = *Value;
    }

    return Error::success();
  }

  uint32_t calculateSerializedLength() const {
    uint32_t Size = sizeof(Header);

    constexpr int BitsPerWord = 8 * sizeof(uint32_t);

    int NumBitsP = Present.find_last() + 1;
    int NumBitsD = Deleted.find_last() + 1;

    uint32_t NumWordsP = alignTo(NumBitsP, BitsPerWord) / BitsPerWord;
    uint32_t NumWordsD = alignTo(NumBitsD, BitsPerWord) / BitsPerWord;

    // Present bit set number of words (4 bytes), followed by that many actual
    // words (4 bytes each).
    Size += sizeof(uint32_t);
    Size += NumWordsP * sizeof(uint32_t);

    // Deleted bit set number of words (4 bytes), followed by that many actual
    // words (4 bytes each).
    Size += sizeof(uint32_t);
    Size += NumWordsD * sizeof(uint32_t);

    // One (Key, ValueT) pair for each entry Present.
    Size += (sizeof(uint32_t) + sizeof(ValueT)) * size();

    return Size;
  }

  Error commit(BinaryStreamWriter &Writer) const {
    Header H;
    H.Size = size();
    H.Capacity = capacity();
    if (auto EC = Writer.writeObject(H))
      return EC;

    if (auto EC = writeSparseBitVector(Writer, Present))
      return EC;

    if (auto EC = writeSparseBitVector(Writer, Deleted))
      return EC;

    for (const auto &Entry : *this) {
      if (auto EC = Writer.writeInteger(Entry.first))
        return EC;
      if (auto EC = Writer.writeObject(Entry.second))
        return EC;
    }
    return Error::success();
  }

  void clear() {
    Buckets.resize(8);
    Present.clear();
    Deleted.clear();
  }

  bool empty() const { return size() == 0; }
  uint32_t capacity() const { return Buckets.size(); }
  uint32_t size() const { return Present.count(); }

  const_iterator begin() const { return const_iterator(*this); }
  const_iterator end() const { return const_iterator(*this, 0, true); }

  /// Find the entry whose key has the specified hash value, using the specified
  /// traits defining hash function and equality.
  template <typename Key, typename TraitsT>
  const_iterator find_as(const Key &K, TraitsT &Traits) const {
    uint32_t H = Traits.hashLookupKey(K) % capacity();
    uint32_t I = H;
    Optional<uint32_t> FirstUnused;
    do {
      if (isPresent(I)) {
        if (Traits.storageKeyToLookupKey(Buckets[I].first) == K)
          return const_iterator(*this, I, false);
      } else {
        if (!FirstUnused)
          FirstUnused = I;
        // Insertion occurs via linear probing from the slot hint, and will be
        // inserted at the first empty / deleted location.  Therefore, if we are
        // probing and find a location that is neither present nor deleted, then
        // nothing must have EVER been inserted at this location, and thus it is
        // not possible for a matching value to occur later.
        if (!isDeleted(I))
          break;
      }
      I = (I + 1) % capacity();
    } while (I != H);

    // The only way FirstUnused would not be set is if every single entry in the
    // table were Present.  But this would violate the load factor constraints
    // that we impose, so it should never happen.
    assert(FirstUnused);
    return const_iterator(*this, *FirstUnused, true);
  }

  /// Set the entry using a key type that the specified Traits can convert
  /// from a real key to an internal key.
  template <typename Key, typename TraitsT>
  bool set_as(const Key &K, ValueT V, TraitsT &Traits) {
    return set_as_internal(K, std::move(V), Traits, None);
  }

  template <typename Key, typename TraitsT>
  ValueT get(const Key &K, TraitsT &Traits) const {
    auto Iter = find_as(K, Traits);
    assert(Iter != end());
    return (*Iter).second;
  }

protected:
  bool isPresent(uint32_t K) const { return Present.test(K); }
  bool isDeleted(uint32_t K) const { return Deleted.test(K); }

  BucketList Buckets;
  mutable SparseBitVector<> Present;
  mutable SparseBitVector<> Deleted;

private:
  /// Set the entry using a key type that the specified Traits can convert
  /// from a real key to an internal key.
  template <typename Key, typename TraitsT>
  bool set_as_internal(const Key &K, ValueT V, TraitsT &Traits,
                       Optional<uint32_t> InternalKey) {
    auto Entry = find_as(K, Traits);
    if (Entry != end()) {
      assert(isPresent(Entry.index()));
      assert(Traits.storageKeyToLookupKey(Buckets[Entry.index()].first) == K);
      // We're updating, no need to do anything special.
      Buckets[Entry.index()].second = V;
      return false;
    }

    auto &B = Buckets[Entry.index()];
    assert(!isPresent(Entry.index()));
    assert(Entry.isEnd());
    B.first = InternalKey ? *InternalKey : Traits.lookupKeyToStorageKey(K);
    B.second = V;
    Present.set(Entry.index());
    Deleted.reset(Entry.index());

    grow(Traits);

    assert((find_as(K, Traits)) != end());
    return true;
  }

  static uint32_t maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }

  template <typename TraitsT>
  void grow(TraitsT &Traits) {
    uint32_t S = size();
    uint32_t MaxLoad = maxLoad(capacity());
    if (S < maxLoad(capacity()))
      return;
    assert(capacity() != UINT32_MAX && "Can't grow Hash table!");

    uint32_t NewCapacity = (capacity() <= INT32_MAX) ? MaxLoad * 2 : UINT32_MAX;

    // Growing requires rebuilding the table and re-hashing every item.  Make a
    // copy with a larger capacity, insert everything into the copy, then swap
    // it in.
    HashTable NewMap(NewCapacity);
    for (auto I : Present) {
      auto LookupKey = Traits.storageKeyToLookupKey(Buckets[I].first);
      NewMap.set_as_internal(LookupKey, Buckets[I].second, Traits,
                             Buckets[I].first);
    }

    Buckets.swap(NewMap.Buckets);
    std::swap(Present, NewMap.Present);
    std::swap(Deleted, NewMap.Deleted);
    assert(capacity() == NewCapacity);
    assert(size() == S);
  }
};

} // end namespace pdb

} // end namespace llvm

#endif // LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H