reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the loop memory dependence that was originally
// developed for the loop vectorizer.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-accesses"

static cl::opt<unsigned, true>
VectorizationFactor("force-vector-width", cl::Hidden,
                    cl::desc("Sets the SIMD width. Zero is autoselect."),
                    cl::location(VectorizerParams::VectorizationFactor));
unsigned VectorizerParams::VectorizationFactor;

static cl::opt<unsigned, true>
VectorizationInterleave("force-vector-interleave", cl::Hidden,
                        cl::desc("Sets the vectorization interleave count. "
                                 "Zero is autoselect."),
                        cl::location(
                            VectorizerParams::VectorizationInterleave));
unsigned VectorizerParams::VectorizationInterleave;

static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
    "runtime-memory-check-threshold", cl::Hidden,
    cl::desc("When performing memory disambiguation checks at runtime do not "
             "generate more than this number of comparisons (default = 8)."),
    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;

/// The maximum iterations used to merge memory checks
static cl::opt<unsigned> MemoryCheckMergeThreshold(
    "memory-check-merge-threshold", cl::Hidden,
    cl::desc("Maximum number of comparisons done when trying to merge "
             "runtime memory checks. (default = 100)"),
    cl::init(100));

/// Maximum SIMD width.
const unsigned VectorizerParams::MaxVectorWidth = 64;

/// We collect dependences up to this threshold.
static cl::opt<unsigned>
    MaxDependences("max-dependences", cl::Hidden,
                   cl::desc("Maximum number of dependences collected by "
                            "loop-access analysis (default = 100)"),
                   cl::init(100));

/// This enables versioning on the strides of symbolically striding memory
/// accesses in code like the following.
///   for (i = 0; i < N; ++i)
///     A[i * Stride1] += B[i * Stride2] ...
///
/// Will be roughly translated to
///    if (Stride1 == 1 && Stride2 == 1) {
///      for (i = 0; i < N; i+=4)
///       A[i:i+3] += ...
///    } else
///      ...
static cl::opt<bool> EnableMemAccessVersioning(
    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    cl::desc("Enable symbolic stride memory access versioning"));

/// Enable store-to-load forwarding conflict detection. This option can
/// be disabled for correctness testing.
static cl::opt<bool> EnableForwardingConflictDetection(
    "store-to-load-forwarding-conflict-detection", cl::Hidden,
    cl::desc("Enable conflict detection in loop-access analysis"),
    cl::init(true));

bool VectorizerParams::isInterleaveForced() {
  return ::VectorizationInterleave.getNumOccurrences() > 0;
}

Value *llvm::stripIntegerCast(Value *V) {
  if (auto *CI = dyn_cast<CastInst>(V))
    if (CI->getOperand(0)->getType()->isIntegerTy())
      return CI->getOperand(0);
  return V;
}

const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
                                            const ValueToValueMap &PtrToStride,
                                            Value *Ptr, Value *OrigPtr) {
  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);

  // If there is an entry in the map return the SCEV of the pointer with the
  // symbolic stride replaced by one.
  ValueToValueMap::const_iterator SI =
      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
  if (SI != PtrToStride.end()) {
    Value *StrideVal = SI->second;

    // Strip casts.
    StrideVal = stripIntegerCast(StrideVal);

    ScalarEvolution *SE = PSE.getSE();
    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
    const auto *CT =
        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));

    PSE.addPredicate(*SE->getEqualPredicate(U, CT));
    auto *Expr = PSE.getSCEV(Ptr);

    LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
                      << " by: " << *Expr << "\n");
    return Expr;
  }

  // Otherwise, just return the SCEV of the original pointer.
  return OrigSCEV;
}

/// Calculate Start and End points of memory access.
/// Let's assume A is the first access and B is a memory access on N-th loop
/// iteration. Then B is calculated as:
///   B = A + Step*N .
/// Step value may be positive or negative.
/// N is a calculated back-edge taken count:
///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
/// Start and End points are calculated in the following way:
/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
/// where SizeOfElt is the size of single memory access in bytes.
///
/// There is no conflict when the intervals are disjoint:
/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
                                    unsigned DepSetId, unsigned ASId,
                                    const ValueToValueMap &Strides,
                                    PredicatedScalarEvolution &PSE) {
  // Get the stride replaced scev.
  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
  ScalarEvolution *SE = PSE.getSE();

  const SCEV *ScStart;
  const SCEV *ScEnd;

  if (SE->isLoopInvariant(Sc, Lp))
    ScStart = ScEnd = Sc;
  else {
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
    assert(AR && "Invalid addrec expression");
    const SCEV *Ex = PSE.getBackedgeTakenCount();

    ScStart = AR->getStart();
    ScEnd = AR->evaluateAtIteration(Ex, *SE);
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // For expressions with negative step, the upper bound is ScStart and the
    // lower bound is ScEnd.
    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
      if (CStep->getValue()->isNegative())
        std::swap(ScStart, ScEnd);
    } else {
      // Fallback case: the step is not constant, but we can still
      // get the upper and lower bounds of the interval by using min/max
      // expressions.
      ScStart = SE->getUMinExpr(ScStart, ScEnd);
      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
    }
    // Add the size of the pointed element to ScEnd.
    unsigned EltSize =
      Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
    const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
    ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
  }

  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
}

SmallVector<RuntimePointerChecking::PointerCheck, 4>
RuntimePointerChecking::generateChecks() const {
  SmallVector<PointerCheck, 4> Checks;

  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];

      if (needsChecking(CGI, CGJ))
        Checks.push_back(std::make_pair(&CGI, &CGJ));
    }
  }
  return Checks;
}

void RuntimePointerChecking::generateChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  assert(Checks.empty() && "Checks is not empty");
  groupChecks(DepCands, UseDependencies);
  Checks = generateChecks();
}

bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
                                           const CheckingPtrGroup &N) const {
  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
      if (needsChecking(M.Members[I], N.Members[J]))
        return true;
  return false;
}

/// Compare \p I and \p J and return the minimum.
/// Return nullptr in case we couldn't find an answer.
static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
                                   ScalarEvolution *SE) {
  const SCEV *Diff = SE->getMinusSCEV(J, I);
  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);

  if (!C)
    return nullptr;
  if (C->getValue()->isNegative())
    return J;
  return I;
}

bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
  const SCEV *Start = RtCheck.Pointers[Index].Start;
  const SCEV *End = RtCheck.Pointers[Index].End;

  // Compare the starts and ends with the known minimum and maximum
  // of this set. We need to know how we compare against the min/max
  // of the set in order to be able to emit memchecks.
  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
  if (!Min0)
    return false;

  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
  if (!Min1)
    return false;

  // Update the low bound  expression if we've found a new min value.
  if (Min0 == Start)
    Low = Start;

  // Update the high bound expression if we've found a new max value.
  if (Min1 != End)
    High = End;

  Members.push_back(Index);
  return true;
}

void RuntimePointerChecking::groupChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  // We build the groups from dependency candidates equivalence classes
  // because:
  //    - We know that pointers in the same equivalence class share
  //      the same underlying object and therefore there is a chance
  //      that we can compare pointers
  //    - We wouldn't be able to merge two pointers for which we need
  //      to emit a memcheck. The classes in DepCands are already
  //      conveniently built such that no two pointers in the same
  //      class need checking against each other.

  // We use the following (greedy) algorithm to construct the groups
  // For every pointer in the equivalence class:
  //   For each existing group:
  //   - if the difference between this pointer and the min/max bounds
  //     of the group is a constant, then make the pointer part of the
  //     group and update the min/max bounds of that group as required.

  CheckingGroups.clear();

  // If we need to check two pointers to the same underlying object
  // with a non-constant difference, we shouldn't perform any pointer
  // grouping with those pointers. This is because we can easily get
  // into cases where the resulting check would return false, even when
  // the accesses are safe.
  //
  // The following example shows this:
  // for (i = 0; i < 1000; ++i)
  //   a[5000 + i * m] = a[i] + a[i + 9000]
  //
  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
  // (0, 10000) which is always false. However, if m is 1, there is no
  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
  // us to perform an accurate check in this case.
  //
  // The above case requires that we have an UnknownDependence between
  // accesses to the same underlying object. This cannot happen unless
  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
  // is also false. In this case we will use the fallback path and create
  // separate checking groups for all pointers.

  // If we don't have the dependency partitions, construct a new
  // checking pointer group for each pointer. This is also required
  // for correctness, because in this case we can have checking between
  // pointers to the same underlying object.
  if (!UseDependencies) {
    for (unsigned I = 0; I < Pointers.size(); ++I)
      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
    return;
  }

  unsigned TotalComparisons = 0;

  DenseMap<Value *, unsigned> PositionMap;
  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
    PositionMap[Pointers[Index].PointerValue] = Index;

  // We need to keep track of what pointers we've already seen so we
  // don't process them twice.
  SmallSet<unsigned, 2> Seen;

  // Go through all equivalence classes, get the "pointer check groups"
  // and add them to the overall solution. We use the order in which accesses
  // appear in 'Pointers' to enforce determinism.
  for (unsigned I = 0; I < Pointers.size(); ++I) {
    // We've seen this pointer before, and therefore already processed
    // its equivalence class.
    if (Seen.count(I))
      continue;

    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
                                           Pointers[I].IsWritePtr);

    SmallVector<CheckingPtrGroup, 2> Groups;
    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));

    // Because DepCands is constructed by visiting accesses in the order in
    // which they appear in alias sets (which is deterministic) and the
    // iteration order within an equivalence class member is only dependent on
    // the order in which unions and insertions are performed on the
    // equivalence class, the iteration order is deterministic.
    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
         MI != ME; ++MI) {
      unsigned Pointer = PositionMap[MI->getPointer()];
      bool Merged = false;
      // Mark this pointer as seen.
      Seen.insert(Pointer);

      // Go through all the existing sets and see if we can find one
      // which can include this pointer.
      for (CheckingPtrGroup &Group : Groups) {
        // Don't perform more than a certain amount of comparisons.
        // This should limit the cost of grouping the pointers to something
        // reasonable.  If we do end up hitting this threshold, the algorithm
        // will create separate groups for all remaining pointers.
        if (TotalComparisons > MemoryCheckMergeThreshold)
          break;

        TotalComparisons++;

        if (Group.addPointer(Pointer)) {
          Merged = true;
          break;
        }
      }

      if (!Merged)
        // We couldn't add this pointer to any existing set or the threshold
        // for the number of comparisons has been reached. Create a new group
        // to hold the current pointer.
        Groups.push_back(CheckingPtrGroup(Pointer, *this));
    }

    // We've computed the grouped checks for this partition.
    // Save the results and continue with the next one.
    llvm::copy(Groups, std::back_inserter(CheckingGroups));
  }
}

bool RuntimePointerChecking::arePointersInSamePartition(
    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
    unsigned PtrIdx2) {
  return (PtrToPartition[PtrIdx1] != -1 &&
          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
}

bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
  const PointerInfo &PointerI = Pointers[I];
  const PointerInfo &PointerJ = Pointers[J];

  // No need to check if two readonly pointers intersect.
  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
    return false;

  // Only need to check pointers between two different dependency sets.
  if (PointerI.DependencySetId == PointerJ.DependencySetId)
    return false;

  // Only need to check pointers in the same alias set.
  if (PointerI.AliasSetId != PointerJ.AliasSetId)
    return false;

  return true;
}

void RuntimePointerChecking::printChecks(
    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    unsigned Depth) const {
  unsigned N = 0;
  for (const auto &Check : Checks) {
    const auto &First = Check.first->Members, &Second = Check.second->Members;

    OS.indent(Depth) << "Check " << N++ << ":\n";

    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
    for (unsigned K = 0; K < First.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";

    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
    for (unsigned K = 0; K < Second.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
  }
}

void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {

  OS.indent(Depth) << "Run-time memory checks:\n";
  printChecks(OS, Checks, Depth);

  OS.indent(Depth) << "Grouped accesses:\n";
  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    const auto &CG = CheckingGroups[I];

    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
                         << ")\n";
    for (unsigned J = 0; J < CG.Members.size(); ++J) {
      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
                           << "\n";
    }
  }
}

namespace {

/// Analyses memory accesses in a loop.
///
/// Checks whether run time pointer checks are needed and builds sets for data
/// dependence checking.
class AccessAnalysis {
public:
  /// Read or write access location.
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;

  AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
                 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
                 PredicatedScalarEvolution &PSE)
      : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
        IsRTCheckAnalysisNeeded(false), PSE(PSE) {}

  /// Register a load  and whether it is only read from.
  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
    Accesses.insert(MemAccessInfo(Ptr, false));
    if (IsReadOnly)
      ReadOnlyPtr.insert(Ptr);
  }

  /// Register a store.
  void addStore(MemoryLocation &Loc) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
    Accesses.insert(MemAccessInfo(Ptr, true));
  }

  /// Check if we can emit a run-time no-alias check for \p Access.
  ///
  /// Returns true if we can emit a run-time no alias check for \p Access.
  /// If we can check this access, this also adds it to a dependence set and
  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
  /// we will attempt to use additional run-time checks in order to get
  /// the bounds of the pointer.
  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
                            MemAccessInfo Access,
                            const ValueToValueMap &Strides,
                            DenseMap<Value *, unsigned> &DepSetId,
                            Loop *TheLoop, unsigned &RunningDepId,
                            unsigned ASId, bool ShouldCheckStride,
                            bool Assume);

  /// Check whether we can check the pointers at runtime for
  /// non-intersection.
  ///
  /// Returns true if we need no check or if we do and we can generate them
  /// (i.e. the pointers have computable bounds).
  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
                       Loop *TheLoop, const ValueToValueMap &Strides,
                       bool ShouldCheckWrap = false);

  /// Goes over all memory accesses, checks whether a RT check is needed
  /// and builds sets of dependent accesses.
  void buildDependenceSets() {
    processMemAccesses();
  }

  /// Initial processing of memory accesses determined that we need to
  /// perform dependency checking.
  ///
  /// Note that this can later be cleared if we retry memcheck analysis without
  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }

  /// We decided that no dependence analysis would be used.  Reset the state.
  void resetDepChecks(MemoryDepChecker &DepChecker) {
    CheckDeps.clear();
    DepChecker.clearDependences();
  }

  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }

private:
  typedef SetVector<MemAccessInfo> PtrAccessSet;

  /// Go over all memory access and check whether runtime pointer checks
  /// are needed and build sets of dependency check candidates.
  void processMemAccesses();

  /// Set of all accesses.
  PtrAccessSet Accesses;

  const DataLayout &DL;

  /// The loop being checked.
  const Loop *TheLoop;

  /// List of accesses that need a further dependence check.
  MemAccessInfoList CheckDeps;

  /// Set of pointers that are read only.
  SmallPtrSet<Value*, 16> ReadOnlyPtr;

  /// An alias set tracker to partition the access set by underlying object and
  //intrinsic property (such as TBAA metadata).
  AliasSetTracker AST;

  LoopInfo *LI;

  /// Sets of potentially dependent accesses - members of one set share an
  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
  /// dependence check.
  MemoryDepChecker::DepCandidates &DepCands;

  /// Initial processing of memory accesses determined that we may need
  /// to add memchecks.  Perform the analysis to determine the necessary checks.
  ///
  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
  /// memcheck analysis without dependency checking
  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
  /// cleared while this remains set if we have potentially dependent accesses.
  bool IsRTCheckAnalysisNeeded;

  /// The SCEV predicate containing all the SCEV-related assumptions.
  PredicatedScalarEvolution &PSE;
};

} // end anonymous namespace

/// Check whether a pointer can participate in a runtime bounds check.
/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
/// by adding run-time checks (overflow checks) if necessary.
static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
                                const ValueToValueMap &Strides, Value *Ptr,
                                Loop *L, bool Assume) {
  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);

  // The bounds for loop-invariant pointer is trivial.
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);

  if (!AR && Assume)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR)
    return false;

  return AR->isAffine();
}

/// Check whether a pointer address cannot wrap.
static bool isNoWrap(PredicatedScalarEvolution &PSE,
                     const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
  const SCEV *PtrScev = PSE.getSCEV(Ptr);
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
    return true;

  return false;
}

bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
                                          MemAccessInfo Access,
                                          const ValueToValueMap &StridesMap,
                                          DenseMap<Value *, unsigned> &DepSetId,
                                          Loop *TheLoop, unsigned &RunningDepId,
                                          unsigned ASId, bool ShouldCheckWrap,
                                          bool Assume) {
  Value *Ptr = Access.getPointer();

  if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
    return false;

  // When we run after a failing dependency check we have to make sure
  // we don't have wrapping pointers.
  if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
    auto *Expr = PSE.getSCEV(Ptr);
    if (!Assume || !isa<SCEVAddRecExpr>(Expr))
      return false;
    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
  }

  // The id of the dependence set.
  unsigned DepId;

  if (isDependencyCheckNeeded()) {
    Value *Leader = DepCands.getLeaderValue(Access).getPointer();
    unsigned &LeaderId = DepSetId[Leader];
    if (!LeaderId)
      LeaderId = RunningDepId++;
    DepId = LeaderId;
  } else
    // Each access has its own dependence set.
    DepId = RunningDepId++;

  bool IsWrite = Access.getInt();
  RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
  LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');

  return true;
 }

bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
                                     ScalarEvolution *SE, Loop *TheLoop,
                                     const ValueToValueMap &StridesMap,
                                     bool ShouldCheckWrap) {
  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRT = true;

  bool NeedRTCheck = false;
  if (!IsRTCheckAnalysisNeeded) return true;

  bool IsDepCheckNeeded = isDependencyCheckNeeded();

  // We assign a consecutive id to access from different alias sets.
  // Accesses between different groups doesn't need to be checked.
  unsigned ASId = 1;
  for (auto &AS : AST) {
    int NumReadPtrChecks = 0;
    int NumWritePtrChecks = 0;
    bool CanDoAliasSetRT = true;

    // We assign consecutive id to access from different dependence sets.
    // Accesses within the same set don't need a runtime check.
    unsigned RunningDepId = 1;
    DenseMap<Value *, unsigned> DepSetId;

    SmallVector<MemAccessInfo, 4> Retries;

    for (auto A : AS) {
      Value *Ptr = A.getValue();
      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
      MemAccessInfo Access(Ptr, IsWrite);

      if (IsWrite)
        ++NumWritePtrChecks;
      else
        ++NumReadPtrChecks;

      if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
                                RunningDepId, ASId, ShouldCheckWrap, false)) {
        LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
        Retries.push_back(Access);
        CanDoAliasSetRT = false;
      }
    }

    // If we have at least two writes or one write and a read then we need to
    // check them.  But there is no need to checks if there is only one
    // dependence set for this alias set.
    //
    // Note that this function computes CanDoRT and NeedRTCheck independently.
    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
    // for which we couldn't find the bounds but we don't actually need to emit
    // any checks so it does not matter.
    bool NeedsAliasSetRTCheck = false;
    if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
      NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
                             (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));

    // We need to perform run-time alias checks, but some pointers had bounds
    // that couldn't be checked.
    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
      // Reset the CanDoSetRt flag and retry all accesses that have failed.
      // We know that we need these checks, so we can now be more aggressive
      // and add further checks if required (overflow checks).
      CanDoAliasSetRT = true;
      for (auto Access : Retries)
        if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
                                  TheLoop, RunningDepId, ASId,
                                  ShouldCheckWrap, /*Assume=*/true)) {
          CanDoAliasSetRT = false;
          break;
        }
    }

    CanDoRT &= CanDoAliasSetRT;
    NeedRTCheck |= NeedsAliasSetRTCheck;
    ++ASId;
  }

  // If the pointers that we would use for the bounds comparison have different
  // address spaces, assume the values aren't directly comparable, so we can't
  // use them for the runtime check. We also have to assume they could
  // overlap. In the future there should be metadata for whether address spaces
  // are disjoint.
  unsigned NumPointers = RtCheck.Pointers.size();
  for (unsigned i = 0; i < NumPointers; ++i) {
    for (unsigned j = i + 1; j < NumPointers; ++j) {
      // Only need to check pointers between two different dependency sets.
      if (RtCheck.Pointers[i].DependencySetId ==
          RtCheck.Pointers[j].DependencySetId)
       continue;
      // Only need to check pointers in the same alias set.
      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
        continue;

      Value *PtrI = RtCheck.Pointers[i].PointerValue;
      Value *PtrJ = RtCheck.Pointers[j].PointerValue;

      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
      if (ASi != ASj) {
        LLVM_DEBUG(
            dbgs() << "LAA: Runtime check would require comparison between"
                      " different address spaces\n");
        return false;
      }
    }
  }

  if (NeedRTCheck && CanDoRT)
    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);

  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
                    << " pointer comparisons.\n");

  RtCheck.Need = NeedRTCheck;

  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
  if (!CanDoRTIfNeeded)
    RtCheck.reset();
  return CanDoRTIfNeeded;
}

void AccessAnalysis::processMemAccesses() {
  // We process the set twice: first we process read-write pointers, last we
  // process read-only pointers. This allows us to skip dependence tests for
  // read-only pointers.

  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
  LLVM_DEBUG({
    for (auto A : Accesses)
      dbgs() << "\t" << *A.getPointer() << " (" <<
                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
                                         "read-only" : "read")) << ")\n";
  });

  // The AliasSetTracker has nicely partitioned our pointers by metadata
  // compatibility and potential for underlying-object overlap. As a result, we
  // only need to check for potential pointer dependencies within each alias
  // set.
  for (auto &AS : AST) {
    // Note that both the alias-set tracker and the alias sets themselves used
    // linked lists internally and so the iteration order here is deterministic
    // (matching the original instruction order within each set).

    bool SetHasWrite = false;

    // Map of pointers to last access encountered.
    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
    UnderlyingObjToAccessMap ObjToLastAccess;

    // Set of access to check after all writes have been processed.
    PtrAccessSet DeferredAccesses;

    // Iterate over each alias set twice, once to process read/write pointers,
    // and then to process read-only pointers.
    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
      bool UseDeferred = SetIteration > 0;
      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;

      for (auto AV : AS) {
        Value *Ptr = AV.getValue();

        // For a single memory access in AliasSetTracker, Accesses may contain
        // both read and write, and they both need to be handled for CheckDeps.
        for (auto AC : S) {
          if (AC.getPointer() != Ptr)
            continue;

          bool IsWrite = AC.getInt();

          // If we're using the deferred access set, then it contains only
          // reads.
          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
          if (UseDeferred && !IsReadOnlyPtr)
            continue;
          // Otherwise, the pointer must be in the PtrAccessSet, either as a
          // read or a write.
          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
                  S.count(MemAccessInfo(Ptr, false))) &&
                 "Alias-set pointer not in the access set?");

          MemAccessInfo Access(Ptr, IsWrite);
          DepCands.insert(Access);

          // Memorize read-only pointers for later processing and skip them in
          // the first round (they need to be checked after we have seen all
          // write pointers). Note: we also mark pointer that are not
          // consecutive as "read-only" pointers (so that we check
          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
          if (!UseDeferred && IsReadOnlyPtr) {
            DeferredAccesses.insert(Access);
            continue;
          }

          // If this is a write - check other reads and writes for conflicts. If
          // this is a read only check other writes for conflicts (but only if
          // there is no other write to the ptr - this is an optimization to
          // catch "a[i] = a[i] + " without having to do a dependence check).
          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
            CheckDeps.push_back(Access);
            IsRTCheckAnalysisNeeded = true;
          }

          if (IsWrite)
            SetHasWrite = true;

          // Create sets of pointers connected by a shared alias set and
          // underlying object.
          typedef SmallVector<const Value *, 16> ValueVector;
          ValueVector TempObjects;

          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
          LLVM_DEBUG(dbgs()
                     << "Underlying objects for pointer " << *Ptr << "\n");
          for (const Value *UnderlyingObj : TempObjects) {
            // nullptr never alias, don't join sets for pointer that have "null"
            // in their UnderlyingObjects list.
            if (isa<ConstantPointerNull>(UnderlyingObj) &&
                !NullPointerIsDefined(
                    TheLoop->getHeader()->getParent(),
                    UnderlyingObj->getType()->getPointerAddressSpace()))
              continue;

            UnderlyingObjToAccessMap::iterator Prev =
                ObjToLastAccess.find(UnderlyingObj);
            if (Prev != ObjToLastAccess.end())
              DepCands.unionSets(Access, Prev->second);

            ObjToLastAccess[UnderlyingObj] = Access;
            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
          }
        }
      }
    }
  }
}

static bool isInBoundsGep(Value *Ptr) {
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
    return GEP->isInBounds();
  return false;
}

/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
/// i.e. monotonically increasing/decreasing.
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
                           PredicatedScalarEvolution &PSE, const Loop *L) {
  // FIXME: This should probably only return true for NUW.
  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
    return true;

  // Scalar evolution does not propagate the non-wrapping flags to values that
  // are derived from a non-wrapping induction variable because non-wrapping
  // could be flow-sensitive.
  //
  // Look through the potentially overflowing instruction to try to prove
  // non-wrapping for the *specific* value of Ptr.

  // The arithmetic implied by an inbounds GEP can't overflow.
  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP || !GEP->isInBounds())
    return false;

  // Make sure there is only one non-const index and analyze that.
  Value *NonConstIndex = nullptr;
  for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
    if (!isa<ConstantInt>(Index)) {
      if (NonConstIndex)
        return false;
      NonConstIndex = Index;
    }
  if (!NonConstIndex)
    // The recurrence is on the pointer, ignore for now.
    return false;

  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
  // AddRec using a NSW operation.
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
    if (OBO->hasNoSignedWrap() &&
        // Assume constant for other the operand so that the AddRec can be
        // easily found.
        isa<ConstantInt>(OBO->getOperand(1))) {
      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));

      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
    }

  return false;
}

/// Check whether the access through \p Ptr has a constant stride.
int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
                           const Loop *Lp, const ValueToValueMap &StridesMap,
                           bool Assume, bool ShouldCheckWrap) {
  Type *Ty = Ptr->getType();
  assert(Ty->isPointerTy() && "Unexpected non-ptr");

  // Make sure that the pointer does not point to aggregate types.
  auto *PtrTy = cast<PointerType>(Ty);
  if (PtrTy->getElementType()->isAggregateType()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
                      << *Ptr << "\n");
    return 0;
  }

  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
                      << " SCEV: " << *PtrScev << "\n");
    return 0;
  }

  // The access function must stride over the innermost loop.
  if (Lp != AR->getLoop()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
                      << *Ptr << " SCEV: " << *AR << "\n");
    return 0;
  }

  // The address calculation must not wrap. Otherwise, a dependence could be
  // inverted.
  // An inbounds getelementptr that is a AddRec with a unit stride
  // cannot wrap per definition. The unit stride requirement is checked later.
  // An getelementptr without an inbounds attribute and unit stride would have
  // to access the pointer value "0" which is undefined behavior in address
  // space 0, therefore we can also vectorize this case.
  bool IsInBoundsGEP = isInBoundsGep(Ptr);
  bool IsNoWrapAddRec = !ShouldCheckWrap ||
    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
    isNoWrapAddRec(Ptr, AR, PSE, Lp);
  if (!IsNoWrapAddRec && !IsInBoundsGEP &&
      NullPointerIsDefined(Lp->getHeader()->getParent(),
                           PtrTy->getAddressSpace())) {
    if (Assume) {
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
      IsNoWrapAddRec = true;
      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
    } else {
      LLVM_DEBUG(
          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
                 << *Ptr << " SCEV: " << *AR << "\n");
      return 0;
    }
  }

  // Check the step is constant.
  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());

  // Calculate the pointer stride and check if it is constant.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
                      << " SCEV: " << *AR << "\n");
    return 0;
  }

  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
  const APInt &APStepVal = C->getAPInt();

  // Huge step value - give up.
  if (APStepVal.getBitWidth() > 64)
    return 0;

  int64_t StepVal = APStepVal.getSExtValue();

  // Strided access.
  int64_t Stride = StepVal / Size;
  int64_t Rem = StepVal % Size;
  if (Rem)
    return 0;

  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
  // know we can't "wrap around the address space". In case of address space
  // zero we know that this won't happen without triggering undefined behavior.
  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
                                              PtrTy->getAddressSpace()))) {
    if (Assume) {
      // We can avoid this case by adding a run-time check.
      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
                        << "inbounds or in address space 0 may wrap:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    } else
      return 0;
  }

  return Stride;
}

bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
                           ScalarEvolution &SE,
                           SmallVectorImpl<unsigned> &SortedIndices) {
  assert(llvm::all_of(
             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
         "Expected list of pointer operands.");
  SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
  OffValPairs.reserve(VL.size());

  // Walk over the pointers, and map each of them to an offset relative to
  // first pointer in the array.
  Value *Ptr0 = VL[0];
  const SCEV *Scev0 = SE.getSCEV(Ptr0);
  Value *Obj0 = GetUnderlyingObject(Ptr0, DL);

  llvm::SmallSet<int64_t, 4> Offsets;
  for (auto *Ptr : VL) {
    // TODO: Outline this code as a special, more time consuming, version of
    // computeConstantDifference() function.
    if (Ptr->getType()->getPointerAddressSpace() !=
        Ptr0->getType()->getPointerAddressSpace())
      return false;
    // If a pointer refers to a different underlying object, bail - the
    // pointers are by definition incomparable.
    Value *CurrObj = GetUnderlyingObject(Ptr, DL);
    if (CurrObj != Obj0)
      return false;

    const SCEV *Scev = SE.getSCEV(Ptr);
    const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
    // The pointers may not have a constant offset from each other, or SCEV
    // may just not be smart enough to figure out they do. Regardless,
    // there's nothing we can do.
    if (!Diff)
      return false;

    // Check if the pointer with the same offset is found.
    int64_t Offset = Diff->getAPInt().getSExtValue();
    if (!Offsets.insert(Offset).second)
      return false;
    OffValPairs.emplace_back(Offset, Ptr);
  }
  SortedIndices.clear();
  SortedIndices.resize(VL.size());
  std::iota(SortedIndices.begin(), SortedIndices.end(), 0);

  // Sort the memory accesses and keep the order of their uses in UseOrder.
  llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
    return OffValPairs[Left].first < OffValPairs[Right].first;
  });

  // Check if the order is consecutive already.
  if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
        return I == SortedIndices[I];
      }))
    SortedIndices.clear();

  return true;
}

/// Take the address space operand from the Load/Store instruction.
/// Returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I) {
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    return L->getPointerAddressSpace();
  if (StoreInst *S = dyn_cast<StoreInst>(I))
    return S->getPointerAddressSpace();
  return -1;
}

/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                               ScalarEvolution &SE, bool CheckType) {
  Value *PtrA = getLoadStorePointerOperand(A);
  Value *PtrB = getLoadStorePointerOperand(B);
  unsigned ASA = getAddressSpaceOperand(A);
  unsigned ASB = getAddressSpaceOperand(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB))
    return false;

  // Make sure that A and B are different pointers.
  if (PtrA == PtrB)
    return false;

  // Make sure that A and B have the same type if required.
  if (CheckType && PtrA->getType() != PtrB->getType())
    return false;

  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();

  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);

  // Retrieve the address space again as pointer stripping now tracks through
  // `addrspacecast`.
  ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
  ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
  // Check that the address spaces match and that the pointers are valid.
  if (ASA != ASB)
    return false;

  IdxWidth = DL.getIndexSizeInBits(ASA);
  OffsetA = OffsetA.sextOrTrunc(IdxWidth);
  OffsetB = OffsetB.sextOrTrunc(IdxWidth);

  APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));

  //  OffsetDelta = OffsetB - OffsetA;
  const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
  const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
  const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
  const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();

  // Check if they are based on the same pointer. That makes the offsets
  // sufficient.
  if (PtrA == PtrB)
    return OffsetDelta == Size;

  // Compute the necessary base pointer delta to have the necessary final delta
  // equal to the size.
  // BaseDelta = Size - OffsetDelta;
  const SCEV *SizeSCEV = SE.getConstant(Size);
  const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);

  // Otherwise compute the distance with SCEV between the base pointers.
  const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
  const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
  return X == PtrSCEVB;
}

MemoryDepChecker::VectorizationSafetyStatus
MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
  switch (Type) {
  case NoDep:
  case Forward:
  case BackwardVectorizable:
    return VectorizationSafetyStatus::Safe;

  case Unknown:
    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
  case ForwardButPreventsForwarding:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return VectorizationSafetyStatus::Unsafe;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isBackward() const {
  switch (Type) {
  case NoDep:
  case Forward:
  case ForwardButPreventsForwarding:
  case Unknown:
    return false;

  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return true;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
  return isBackward() || Type == Unknown;
}

bool MemoryDepChecker::Dependence::isForward() const {
  switch (Type) {
  case Forward:
  case ForwardButPreventsForwarding:
    return true;

  case NoDep:
  case Unknown:
  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return false;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
                                                    uint64_t TypeByteSize) {
  // If loads occur at a distance that is not a multiple of a feasible vector
  // factor store-load forwarding does not take place.
  // Positive dependences might cause troubles because vectorizing them might
  // prevent store-load forwarding making vectorized code run a lot slower.
  //   a[i] = a[i-3] ^ a[i-8];
  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
  //   hence on your typical architecture store-load forwarding does not take
  //   place. Vectorizing in such cases does not make sense.
  // Store-load forwarding distance.

  // After this many iterations store-to-load forwarding conflicts should not
  // cause any slowdowns.
  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
  // Maximum vector factor.
  uint64_t MaxVFWithoutSLForwardIssues = std::min(
      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);

  // Compute the smallest VF at which the store and load would be misaligned.
  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
       VF *= 2) {
    // If the number of vector iteration between the store and the load are
    // small we could incur conflicts.
    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
      MaxVFWithoutSLForwardIssues = (VF >>= 1);
      break;
    }
  }

  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
    LLVM_DEBUG(
        dbgs() << "LAA: Distance " << Distance
               << " that could cause a store-load forwarding conflict\n");
    return true;
  }

  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
      MaxVFWithoutSLForwardIssues !=
          VectorizerParams::MaxVectorWidth * TypeByteSize)
    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
  return false;
}

void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
  if (Status < S)
    Status = S;
}

/// Given a non-constant (unknown) dependence-distance \p Dist between two
/// memory accesses, that have the same stride whose absolute value is given
/// in \p Stride, and that have the same type size \p TypeByteSize,
/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
/// possible to prove statically that the dependence distance is larger
/// than the range that the accesses will travel through the execution of
/// the loop. If so, return true; false otherwise. This is useful for
/// example in loops such as the following (PR31098):
///     for (i = 0; i < D; ++i) {
///                = out[i];
///       out[i+D] =
///     }
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
                                     const SCEV &BackedgeTakenCount,
                                     const SCEV &Dist, uint64_t Stride,
                                     uint64_t TypeByteSize) {

  // If we can prove that
  //      (**) |Dist| > BackedgeTakenCount * Step
  // where Step is the absolute stride of the memory accesses in bytes,
  // then there is no dependence.
  //
  // Rationale:
  // We basically want to check if the absolute distance (|Dist/Step|)
  // is >= the loop iteration count (or > BackedgeTakenCount).
  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
  // that the dependence distance is >= VF; This is checked elsewhere.
  // But in some cases we can prune unknown dependence distances early, and
  // even before selecting the VF, and without a runtime test, by comparing
  // the distance against the loop iteration count. Since the vectorized code
  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
  // also guarantees that distance >= VF.
  //
  const uint64_t ByteStride = Stride * TypeByteSize;
  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);

  const SCEV *CastedDist = &Dist;
  const SCEV *CastedProduct = Product;
  uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
  uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());

  // The dependence distance can be positive/negative, so we sign extend Dist;
  // The multiplication of the absolute stride in bytes and the
  // backedgeTakenCount is non-negative, so we zero extend Product.
  if (DistTypeSize > ProductTypeSize)
    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
  else
    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());

  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= Dist)
  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  return false;
}

/// Check the dependence for two accesses with the same stride \p Stride.
/// \p Distance is the positive distance and \p TypeByteSize is type size in
/// bytes.
///
/// \returns true if they are independent.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
                                          uint64_t TypeByteSize) {
  assert(Stride > 1 && "The stride must be greater than 1");
  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
  assert(Distance > 0 && "The distance must be non-zero");

  // Skip if the distance is not multiple of type byte size.
  if (Distance % TypeByteSize)
    return false;

  uint64_t ScaledDist = Distance / TypeByteSize;

  // No dependence if the scaled distance is not multiple of the stride.
  // E.g.
  //      for (i = 0; i < 1024 ; i += 4)
  //        A[i+2] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 2, stride is 4):
  //     | A[0] |      |      |      | A[4] |      |      |      |
  //     |      |      | A[2] |      |      |      | A[6] |      |
  //
  // E.g.
  //      for (i = 0; i < 1024 ; i += 3)
  //        A[i+4] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 4, stride is 3):
  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
  //     |      |      |      |      | A[4] |      |      | A[7] |      |
  return ScaledDist % Stride;
}

MemoryDepChecker::Dependence::DepType
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
                              const MemAccessInfo &B, unsigned BIdx,
                              const ValueToValueMap &Strides) {
  assert (AIdx < BIdx && "Must pass arguments in program order");

  Value *APtr = A.getPointer();
  Value *BPtr = B.getPointer();
  bool AIsWrite = A.getInt();
  bool BIsWrite = B.getInt();

  // Two reads are independent.
  if (!AIsWrite && !BIsWrite)
    return Dependence::NoDep;

  // We cannot check pointers in different address spaces.
  if (APtr->getType()->getPointerAddressSpace() !=
      BPtr->getType()->getPointerAddressSpace())
    return Dependence::Unknown;

  int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
  int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);

  const SCEV *Src = PSE.getSCEV(APtr);
  const SCEV *Sink = PSE.getSCEV(BPtr);

  // If the induction step is negative we have to invert source and sink of the
  // dependence.
  if (StrideAPtr < 0) {
    std::swap(APtr, BPtr);
    std::swap(Src, Sink);
    std::swap(AIsWrite, BIsWrite);
    std::swap(AIdx, BIdx);
    std::swap(StrideAPtr, StrideBPtr);
  }

  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);

  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
                    << "(Induction step: " << StrideAPtr << ")\n");
  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
                    << *InstMap[BIdx] << ": " << *Dist << "\n");

  // Need accesses with constant stride. We don't want to vectorize
  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
  // the address space.
  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
    return Dependence::Unknown;
  }

  Type *ATy = APtr->getType()->getPointerElementType();
  Type *BTy = BPtr->getType()->getPointerElementType();
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
  uint64_t Stride = std::abs(StrideAPtr);
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
  if (!C) {
    if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
        isSafeDependenceDistance(DL, *(PSE.getSE()),
                                 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
                                 TypeByteSize))
      return Dependence::NoDep;

    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
    FoundNonConstantDistanceDependence = true;
    return Dependence::Unknown;
  }

  const APInt &Val = C->getAPInt();
  int64_t Distance = Val.getSExtValue();

  // Attempt to prove strided accesses independent.
  if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
    return Dependence::NoDep;
  }

  // Negative distances are not plausible dependencies.
  if (Val.isNegative()) {
    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
         ATy != BTy)) {
      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
      return Dependence::ForwardButPreventsForwarding;
    }

    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
    return Dependence::Forward;
  }

  // Write to the same location with the same size.
  // Could be improved to assert type sizes are the same (i32 == float, etc).
  if (Val == 0) {
    if (ATy == BTy)
      return Dependence::Forward;
    LLVM_DEBUG(
        dbgs() << "LAA: Zero dependence difference but different types\n");
    return Dependence::Unknown;
  }

  assert(Val.isStrictlyPositive() && "Expect a positive value");

  if (ATy != BTy) {
    LLVM_DEBUG(
        dbgs()
        << "LAA: ReadWrite-Write positive dependency with different types\n");
    return Dependence::Unknown;
  }

  // Bail out early if passed-in parameters make vectorization not feasible.
  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
                           VectorizerParams::VectorizationFactor : 1);
  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
                           VectorizerParams::VectorizationInterleave : 1);
  // The minimum number of iterations for a vectorized/unrolled version.
  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);

  // It's not vectorizable if the distance is smaller than the minimum distance
  // needed for a vectroized/unrolled version. Vectorizing one iteration in
  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
  // TypeByteSize (No need to plus the last gap distance).
  //
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      foo(int *A) {
  //        int *B = (int *)((char *)A + 14);
  //        for (i = 0 ; i < 1024 ; i += 2)
  //          B[i] = A[i] + 1;
  //      }
  //
  // Two accesses in memory (stride is 2):
  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
  //                              | B[0] |      | B[2] |      | B[4] |
  //
  // Distance needs for vectorizing iterations except the last iteration:
  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
  //
  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
  // 12, which is less than distance.
  //
  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
  // the minimum distance needed is 28, which is greater than distance. It is
  // not safe to do vectorization.
  uint64_t MinDistanceNeeded =
      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
                      << Distance << '\n');
    return Dependence::Backward;
  }

  // Unsafe if the minimum distance needed is greater than max safe distance.
  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
                      << MinDistanceNeeded << " size in bytes");
    return Dependence::Backward;
  }

  // Positive distance bigger than max vectorization factor.
  // FIXME: Should use max factor instead of max distance in bytes, which could
  // not handle different types.
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      void foo (int *A, char *B) {
  //        for (unsigned i = 0; i < 1024; i++) {
  //          A[i+2] = A[i] + 1;
  //          B[i+2] = B[i] + 1;
  //        }
  //      }
  //
  // This case is currently unsafe according to the max safe distance. If we
  // analyze the two accesses on array B, the max safe dependence distance
  // is 2. Then we analyze the accesses on array A, the minimum distance needed
  // is 8, which is less than 2 and forbidden vectorization, But actually
  // both A and B could be vectorized by 2 iterations.
  MaxSafeDepDistBytes =
      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);

  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
      couldPreventStoreLoadForward(Distance, TypeByteSize))
    return Dependence::BackwardVectorizableButPreventsForwarding;

  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
                    << " with max VF = " << MaxVF << '\n');
  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
  MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
  return Dependence::BackwardVectorizable;
}

bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
                                   MemAccessInfoList &CheckDeps,
                                   const ValueToValueMap &Strides) {

  MaxSafeDepDistBytes = -1;
  SmallPtrSet<MemAccessInfo, 8> Visited;
  for (MemAccessInfo CurAccess : CheckDeps) {
    if (Visited.count(CurAccess))
      continue;

    // Get the relevant memory access set.
    EquivalenceClasses<MemAccessInfo>::iterator I =
      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));

    // Check accesses within this set.
    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
        AccessSets.member_begin(I);
    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
        AccessSets.member_end();

    // Check every access pair.
    while (AI != AE) {
      Visited.insert(*AI);
      bool AIIsWrite = AI->getInt();
      // Check loads only against next equivalent class, but stores also against
      // other stores in the same equivalence class - to the same address.
      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
          (AIIsWrite ? AI : std::next(AI));
      while (OI != AE) {
        // Check every accessing instruction pair in program order.
        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
          // Scan all accesses of another equivalence class, but only the next
          // accesses of the same equivalent class.
          for (std::vector<unsigned>::iterator
                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
               I2 != I2E; ++I2) {
            auto A = std::make_pair(&*AI, *I1);
            auto B = std::make_pair(&*OI, *I2);

            assert(*I1 != *I2);
            if (*I1 > *I2)
              std::swap(A, B);

            Dependence::DepType Type =
                isDependent(*A.first, A.second, *B.first, B.second, Strides);
            mergeInStatus(Dependence::isSafeForVectorization(Type));

            // Gather dependences unless we accumulated MaxDependences
            // dependences.  In that case return as soon as we find the first
            // unsafe dependence.  This puts a limit on this quadratic
            // algorithm.
            if (RecordDependences) {
              if (Type != Dependence::NoDep)
                Dependences.push_back(Dependence(A.second, B.second, Type));

              if (Dependences.size() >= MaxDependences) {
                RecordDependences = false;
                Dependences.clear();
                LLVM_DEBUG(dbgs()
                           << "Too many dependences, stopped recording\n");
              }
            }
            if (!RecordDependences && !isSafeForVectorization())
              return false;
          }
        ++OI;
      }
      AI++;
    }
  }

  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
  return isSafeForVectorization();
}

SmallVector<Instruction *, 4>
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
  MemAccessInfo Access(Ptr, isWrite);
  auto &IndexVector = Accesses.find(Access)->second;

  SmallVector<Instruction *, 4> Insts;
  transform(IndexVector,
                 std::back_inserter(Insts),
                 [&](unsigned Idx) { return this->InstMap[Idx]; });
  return Insts;
}

const char *MemoryDepChecker::Dependence::DepName[] = {
    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};

void MemoryDepChecker::Dependence::print(
    raw_ostream &OS, unsigned Depth,
    const SmallVectorImpl<Instruction *> &Instrs) const {
  OS.indent(Depth) << DepName[Type] << ":\n";
  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
}

bool LoopAccessInfo::canAnalyzeLoop() {
  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
                    << TheLoop->getHeader()->getParent()->getName() << ": "
                    << TheLoop->getHeader()->getName() << '\n');

  // We can only analyze innermost loops.
  if (!TheLoop->empty()) {
    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
    return false;
  }

  // We must have a single backedge.
  if (TheLoop->getNumBackEdges() != 1) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // We must have a single exiting block.
  if (!TheLoop->getExitingBlock()) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // We only handle bottom-tested loops, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
  if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
    recordAnalysis("CantComputeNumberOfIterations")
        << "could not determine number of loop iterations";
    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
    return false;
  }

  return true;
}

void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
                                 const TargetLibraryInfo *TLI,
                                 DominatorTree *DT) {
  typedef SmallPtrSet<Value*, 16> ValueSet;

  // Holds the Load and Store instructions.
  SmallVector<LoadInst *, 16> Loads;
  SmallVector<StoreInst *, 16> Stores;

  // Holds all the different accesses in the loop.
  unsigned NumReads = 0;
  unsigned NumReadWrites = 0;

  bool HasComplexMemInst = false;

  // A runtime check is only legal to insert if there are no convergent calls.
  HasConvergentOp = false;

  PtrRtChecking->Pointers.clear();
  PtrRtChecking->Need = false;

  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the BB and collect legal loads and stores. Also detect any
    // convergent instructions.
    for (Instruction &I : *BB) {
      if (auto *Call = dyn_cast<CallBase>(&I)) {
        if (Call->isConvergent())
          HasConvergentOp = true;
      }

      // With both a non-vectorizable memory instruction and a convergent
      // operation, found in this loop, no reason to continue the search.
      if (HasComplexMemInst && HasConvergentOp) {
        CanVecMem = false;
        return;
      }

      // Avoid hitting recordAnalysis multiple times.
      if (HasComplexMemInst)
        continue;

      // If this is a load, save it. If this instruction can read from memory
      // but is not a load, then we quit. Notice that we don't handle function
      // calls that read or write.
      if (I.mayReadFromMemory()) {
        // Many math library functions read the rounding mode. We will only
        // vectorize a loop if it contains known function calls that don't set
        // the flag. Therefore, it is safe to ignore this read from memory.
        auto *Call = dyn_cast<CallInst>(&I);
        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
          continue;

        // If the function has an explicit vectorized counterpart, we can safely
        // assume that it can be vectorized.
        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
          continue;

        auto *Ld = dyn_cast<LoadInst>(&I);
        if (!Ld) {
          recordAnalysis("CantVectorizeInstruction", Ld)
            << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!Ld->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleLoad", Ld)
              << "read with atomic ordering or volatile read";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumLoads++;
        Loads.push_back(Ld);
        DepChecker->addAccess(Ld);
        if (EnableMemAccessVersioning)
          collectStridedAccess(Ld);
        continue;
      }

      // Save 'store' instructions. Abort if other instructions write to memory.
      if (I.mayWriteToMemory()) {
        auto *St = dyn_cast<StoreInst>(&I);
        if (!St) {
          recordAnalysis("CantVectorizeInstruction", St)
              << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!St->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleStore", St)
              << "write with atomic ordering or volatile write";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumStores++;
        Stores.push_back(St);
        DepChecker->addAccess(St);
        if (EnableMemAccessVersioning)
          collectStridedAccess(St);
      }
    } // Next instr.
  } // Next block.

  if (HasComplexMemInst) {
    CanVecMem = false;
    return;
  }

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
    CanVecMem = true;
    return;
  }

  MemoryDepChecker::DepCandidates DependentAccesses;
  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
                          TheLoop, AA, LI, DependentAccesses, *PSE);

  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  ValueSet Seen;

  // Record uniform store addresses to identify if we have multiple stores
  // to the same address.
  ValueSet UniformStores;

  for (StoreInst *ST : Stores) {
    Value *Ptr = ST->getPointerOperand();

    if (isUniform(Ptr))
      HasDependenceInvolvingLoopInvariantAddress |=
          !UniformStores.insert(Ptr).second;

    // If we did *not* see this pointer before, insert it to  the read-write
    // list. At this phase it is only a 'write' list.
    if (Seen.insert(Ptr).second) {
      ++NumReadWrites;

      MemoryLocation Loc = MemoryLocation::get(ST);
      // The TBAA metadata could have a control dependency on the predication
      // condition, so we cannot rely on it when determining whether or not we
      // need runtime pointer checks.
      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
        Loc.AATags.TBAA = nullptr;

      Accesses.addStore(Loc);
    }
  }

  if (IsAnnotatedParallel) {
    LLVM_DEBUG(
        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
               << "checks.\n");
    CanVecMem = true;
    return;
  }

  for (LoadInst *LD : Loads) {
    Value *Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    bool IsReadOnlyPtr = false;
    if (Seen.insert(Ptr).second ||
        !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
      ++NumReads;
      IsReadOnlyPtr = true;
    }

    // See if there is an unsafe dependency between a load to a uniform address and
    // store to the same uniform address.
    if (UniformStores.count(Ptr)) {
      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
                           "load and uniform store to the same address!\n");
      HasDependenceInvolvingLoopInvariantAddress = true;
    }

    MemoryLocation Loc = MemoryLocation::get(LD);
    // The TBAA metadata could have a control dependency on the predication
    // condition, so we cannot rely on it when determining whether or not we
    // need runtime pointer checks.
    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
      Loc.AATags.TBAA = nullptr;

    Accesses.addLoad(Loc, IsReadOnlyPtr);
  }

  // If we write (or read-write) to a single destination and there are no
  // other reads in this loop then is it safe to vectorize.
  if (NumReadWrites == 1 && NumReads == 0) {
    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
    CanVecMem = true;
    return;
  }

  // Build dependence sets and check whether we need a runtime pointer bounds
  // check.
  Accesses.buildDependenceSets();

  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
                                                  TheLoop, SymbolicStrides);
  if (!CanDoRTIfNeeded) {
    recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
                      << "the array bounds.\n");
    CanVecMem = false;
    return;
  }

  LLVM_DEBUG(
    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");

  CanVecMem = true;
  if (Accesses.isDependencyCheckNeeded()) {
    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
    CanVecMem = DepChecker->areDepsSafe(
        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();

    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");

      // Clear the dependency checks. We assume they are not needed.
      Accesses.resetDepChecks(*DepChecker);

      PtrRtChecking->reset();
      PtrRtChecking->Need = true;

      auto *SE = PSE->getSE();
      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
                                                 SymbolicStrides, true);

      // Check that we found the bounds for the pointer.
      if (!CanDoRTIfNeeded) {
        recordAnalysis("CantCheckMemDepsAtRunTime")
            << "cannot check memory dependencies at runtime";
        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
        CanVecMem = false;
        return;
      }

      CanVecMem = true;
    }
  }

  if (HasConvergentOp) {
    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
      << "cannot add control dependency to convergent operation";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
                         "would be needed with a convergent operation\n");
    CanVecMem = false;
    return;
  }

  if (CanVecMem)
    LLVM_DEBUG(
        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
               << (PtrRtChecking->Need ? "" : " don't")
               << " need runtime memory checks.\n");
  else {
    recordAnalysis("UnsafeMemDep")
        << "unsafe dependent memory operations in loop. Use "
           "#pragma loop distribute(enable) to allow loop distribution "
           "to attempt to isolate the offending operations into a separate "
           "loop";
    LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
  }
}

bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
                                           DominatorTree *DT)  {
  assert(TheLoop->contains(BB) && "Unknown block used");

  // Blocks that do not dominate the latch need predication.
  BasicBlock* Latch = TheLoop->getLoopLatch();
  return !DT->dominates(BB, Latch);
}

OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
                                                           Instruction *I) {
  assert(!Report && "Multiple reports generated");

  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
                                                   CodeRegion);
  return *Report;
}

bool LoopAccessInfo::isUniform(Value *V) const {
  auto *SE = PSE->getSE();
  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
  // never considered uniform.
  // TODO: Is this really what we want? Even without FP SCEV, we may want some
  // trivially loop-invariant FP values to be considered uniform.
  if (!SE->isSCEVable(V->getType()))
    return false;
  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}

// FIXME: this function is currently a duplicate of the one in
// LoopVectorize.cpp.
static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
                                 Instruction *Loc) {
  if (FirstInst)
    return FirstInst;
  if (Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() == Loc->getParent() ? I : nullptr;
  return nullptr;
}

namespace {

/// IR Values for the lower and upper bounds of a pointer evolution.  We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
  TrackingVH<Value> Start;
  TrackingVH<Value> End;
};

} // end anonymous namespace

/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop.  \return the values for the bounds.
static PointerBounds
expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
             const RuntimePointerChecking &PtrRtChecking) {
  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
  const SCEV *Sc = SE->getSCEV(Ptr);

  unsigned AS = Ptr->getType()->getPointerAddressSpace();
  LLVMContext &Ctx = Loc->getContext();

  // Use this type for pointer arithmetic.
  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);

  if (SE->isLoopInvariant(Sc, TheLoop)) {
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
                      << *Ptr << "\n");
    // Ptr could be in the loop body. If so, expand a new one at the correct
    // location.
    Instruction *Inst = dyn_cast<Instruction>(Ptr);
    Value *NewPtr = (Inst && TheLoop->contains(Inst))
                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
                        : Ptr;
    // We must return a half-open range, which means incrementing Sc.
    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
    return {NewPtr, NewPtrPlusOne};
  } else {
    Value *Start = nullptr, *End = nullptr;
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
                      << "\n");
    return {Start, End};
  }
}

/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
    const RuntimePointerChecking &PtrRtChecking) {
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;

  // Here we're relying on the SCEV Expander's cache to only emit code for the
  // same bounds once.
  transform(
      PointerChecks, std::back_inserter(ChecksWithBounds),
      [&](const RuntimePointerChecking::PointerCheck &Check) {
        PointerBounds
          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
        return std::make_pair(First, Second);
      });

  return ChecksWithBounds;
}

std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
    Instruction *Loc,
    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
    const {
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  auto *SE = PSE->getSE();
  SCEVExpander Exp(*SE, DL, "induction");
  auto ExpandedChecks =
      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);

  LLVMContext &Ctx = Loc->getContext();
  Instruction *FirstInst = nullptr;
  IRBuilder<> ChkBuilder(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  for (const auto &Check : ExpandedChecks) {
    const PointerBounds &A = Check.first, &B = Check.second;
    // Check if two pointers (A and B) conflict where conflict is computed as:
    // start(A) <= end(B) && start(B) <= end(A)
    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();

    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
           "Trying to bounds check pointers with different address spaces");

    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);

    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");

    // [A|B].Start points to the first accessed byte under base [A|B].
    // [A|B].End points to the last accessed byte, plus one.
    // There is no conflict when the intervals are disjoint:
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
    //
    // bound0 = (B.Start < A.End)
    // bound1 = (A.Start < B.End)
    //  IsConflict = bound0 & bound1
    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
    FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
    FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
    FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
    }
    MemoryRuntimeCheck = IsConflict;
  }

  if (!MemoryRuntimeCheck)
    return std::make_pair(nullptr, nullptr);

  // We have to do this trickery because the IRBuilder might fold the check to a
  // constant expression in which case there is no Instruction anchored in a
  // the block.
  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
                                                 ConstantInt::getTrue(Ctx));
  ChkBuilder.Insert(Check, "memcheck.conflict");
  FirstInst = getFirstInst(FirstInst, Check, Loc);
  return std::make_pair(FirstInst, Check);
}

std::pair<Instruction *, Instruction *>
LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
  if (!PtrRtChecking->Need)
    return std::make_pair(nullptr, nullptr);

  return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
}

void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
  Value *Ptr = nullptr;
  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
    Ptr = LI->getPointerOperand();
  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
    Ptr = SI->getPointerOperand();
  else
    return;

  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
  if (!Stride)
    return;

  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
                       "versioning:");
  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");

  // Avoid adding the "Stride == 1" predicate when we know that
  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
  // or zero iteration loop, as Trip-Count <= Stride == 1.
  //
  // TODO: We are currently not making a very informed decision on when it is
  // beneficial to apply stride versioning. It might make more sense that the
  // users of this analysis (such as the vectorizer) will trigger it, based on
  // their specific cost considerations; For example, in cases where stride
  // versioning does  not help resolving memory accesses/dependences, the
  // vectorizer should evaluate the cost of the runtime test, and the benefit
  // of various possible stride specializations, considering the alternatives
  // of using gather/scatters (if available).

  const SCEV *StrideExpr = PSE->getSCEV(Stride);
  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();

  // Match the types so we can compare the stride and the BETakenCount.
  // The Stride can be positive/negative, so we sign extend Stride;
  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
  uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
  const SCEV *CastedStride = StrideExpr;
  const SCEV *CastedBECount = BETakenCount;
  ScalarEvolution *SE = PSE->getSE();
  if (BETypeSize >= StrideTypeSize)
    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
  else
    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
  // Since TripCount == BackEdgeTakenCount + 1, checking:
  // "Stride >= TripCount" is equivalent to checking:
  // Stride - BETakenCount > 0
  if (SE->isKnownPositive(StrideMinusBETaken)) {
    LLVM_DEBUG(
        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
                  "Stride==1 predicate will imply that the loop executes "
                  "at most once.\n");
    return;
  }
  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");

  SymbolicStrides[Ptr] = Stride;
  StrideSet.insert(Stride);
}

LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
                               DominatorTree *DT, LoopInfo *LI)
    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
      PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
      HasConvergentOp(false),
      HasDependenceInvolvingLoopInvariantAddress(false) {
  if (canAnalyzeLoop())
    analyzeLoop(AA, LI, TLI, DT);
}

void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
  if (CanVecMem) {
    OS.indent(Depth) << "Memory dependences are safe";
    if (MaxSafeDepDistBytes != -1ULL)
      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
         << " bytes";
    if (PtrRtChecking->Need)
      OS << " with run-time checks";
    OS << "\n";
  }

  if (HasConvergentOp)
    OS.indent(Depth) << "Has convergent operation in loop\n";

  if (Report)
    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";

  if (auto *Dependences = DepChecker->getDependences()) {
    OS.indent(Depth) << "Dependences:\n";
    for (auto &Dep : *Dependences) {
      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
      OS << "\n";
    }
  } else
    OS.indent(Depth) << "Too many dependences, not recorded\n";

  // List the pair of accesses need run-time checks to prove independence.
  PtrRtChecking->print(OS, Depth);
  OS << "\n";

  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
                   << "found in loop.\n";

  OS.indent(Depth) << "SCEV assumptions:\n";
  PSE->getUnionPredicate().print(OS, Depth);

  OS << "\n";

  OS.indent(Depth) << "Expressions re-written:\n";
  PSE->print(OS, Depth);
}

const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
  auto &LAI = LoopAccessInfoMap[L];

  if (!LAI)
    LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);

  return *LAI.get();
}

void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
  LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop)) {
      OS.indent(2) << L->getHeader()->getName() << ":\n";
      auto &LAI = LAA.getInfo(L);
      LAI.print(OS, 4);
    }
}

bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
  TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  return false;
}

void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();

    AU.setPreservesAll();
}

char LoopAccessLegacyAnalysis::ID = 0;
static const char laa_name[] = "Loop Access Analysis";
#define LAA_NAME "loop-accesses"

INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)

AnalysisKey LoopAccessAnalysis::Key;

LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
                                       LoopStandardAnalysisResults &AR) {
  return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
}

namespace llvm {

  Pass *createLAAPass() {
    return new LoopAccessLegacyAnalysis();
  }

} // end namespace llvm