1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
| //=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for AArch64 architecture.
//
//===----------------------------------------------------------------------===//
/// CCIfAlign - Match of the original alignment of the arg
class CCIfAlign<string Align, CCAction A> :
CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
/// CCIfBigEndian - Match only if we're in big endian mode.
class CCIfBigEndian<CCAction A> :
CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
class CCIfILP32<CCAction A> :
CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
//===----------------------------------------------------------------------===//
// ARM AAPCS64 Calling Convention
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_AArch64_AAPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
// Big endian vectors must be passed as if they were 1-element vectors so that
// their lanes are in a consistent order.
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
CCBitConvertToType<f64>>>,
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
CCBitConvertToType<f128>>>,
// In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
// However, on windows, in some circumstances, the SRet is passed in X0 or X1
// instead. The presence of the inreg attribute indicates that SRet is
// passed in the alternative register (X0 or X1), not X8:
// - X0 for non-instance methods.
// - X1 for instance methods.
// The "sret" attribute identifies indirect returns.
// The "inreg" attribute identifies non-aggregate types.
// The position of the "sret" attribute identifies instance/non-instance
// methods.
// "sret" on argument 0 means non-instance methods.
// "sret" on argument 1 means instance methods.
CCIfInReg<CCIfType<[i64],
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1], [W0, W1]>>>>>,
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
// The 'nest' parameter, if any, is passed in X18.
// Darwin uses X18 as the platform register and hence 'nest' isn't currently
// supported there.
CCIfNest<CCAssignToReg<[X18]>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
// A SwiftError is passed in X21.
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv1f32, nxv2f32, nxv4f32, nxv1f64, nxv2f64],
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv1f32, nxv2f32, nxv4f32, nxv1f64, nxv2f64],
CCPassIndirect<i64>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCAssignToReg<[P0, P1, P2, P3]>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCPassIndirect<i64>>,
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
// i128 is split to two i64s, we can't fit half to register X7.
CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
[X0, X1, X3, X5]>>>,
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIfType<[i1, i8, i16, f16], CCAssignToStack<8, 8>>,
CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
CCAssignToStack<8, 8>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def RetCC_AArch64_AAPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
// Big endian vectors must be passed as if they were 1-element vectors so that
// their lanes are in a consistent order.
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
CCBitConvertToType<f64>>>,
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
CCBitConvertToType<f128>>>,
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv1f32, nxv2f32, nxv4f32, nxv1f64, nxv2f64],
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCAssignToReg<[P0, P1, P2, P3]>>
]>;
// Vararg functions on windows pass floats in integer registers
let Entry = 1 in
def CC_AArch64_Win64_VarArg : CallingConv<[
CCIfType<[f16, f32], CCPromoteToType<f64>>,
CCIfType<[f64], CCBitConvertToType<i64>>,
CCDelegateTo<CC_AArch64_AAPCS>
]>;
// Windows Control Flow Guard checks take a single argument (the target function
// address) and have no return value.
let Entry = 1 in
def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
CCIfType<[i64], CCAssignToReg<[X15]>>
]>;
// Darwin uses a calling convention which differs in only two ways
// from the standard one at this level:
// + i128s (i.e. split i64s) don't need even registers.
// + Stack slots are sized as needed rather than being at least 64-bit.
let Entry = 1 in
def CC_AArch64_DarwinPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
// An SRet is passed in X8, not X0 like a normal pointer parameter.
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
// A SwiftError is passed in X21.
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
// i128 is split to two i64s, we can't fit half to register X7.
CCIfType<[i64],
CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
[W0, W1, W2, W3, W4, W5, W6]>>>,
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16", CCAssignToStack<2, 2>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Re-demote pointers to 32-bits so we don't end up storing 64-bit
// values and clobbering neighbouring stack locations. Not very pretty.
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
// Handle all scalar types as either i64 or f64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
CCIfType<[f16, f32], CCPromoteToType<f64>>,
// Everything is on the stack.
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToStack<16, 16>>
]>;
// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
// same as the normal Darwin VarArgs handling.
let Entry = 1 in
def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
// Handle all scalar types as either i32 or f32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
CCIfType<[f16], CCPromoteToType<f32>>,
// Everything is on the stack.
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToStack<16, 16>>
]>;
// The WebKit_JS calling convention only passes the first argument (the callee)
// in register and the remaining arguments on stack. We allow 32bit stack slots,
// so that WebKit can write partial values in the stack and define the other
// 32bit quantity as undef.
let Entry = 1 in
def CC_AArch64_WebKit_JS : CallingConv<[
// Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
// Pass the remaining arguments on the stack instead.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
let Entry = 1 in
def RetCC_AArch64_WebKit_JS : CallingConv<[
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
]>;
//===----------------------------------------------------------------------===//
// ARM64 Calling Convention for GHC
//===----------------------------------------------------------------------===//
// This calling convention is specific to the Glasgow Haskell Compiler.
// The only documentation is the GHC source code, specifically the C header
// file:
//
// https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
//
// which defines the registers for the Spineless Tagless G-Machine (STG) that
// GHC uses to implement lazy evaluation. The generic STG machine has a set of
// registers which are mapped to appropriate set of architecture specific
// registers for each CPU architecture.
//
// The STG Machine is documented here:
//
// https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
//
// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
// register mapping".
let Entry = 1 in
def CC_AArch64_GHC : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
]>;
// The order of the callee-saves in this file is important, because the
// FrameLowering code will use this order to determine the layout the
// callee-save area in the stack frame. As can be observed below, Darwin
// requires the frame-record (LR, FP) to be at the top the callee-save area,
// whereas for other platforms they are at the bottom.
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
// presumably a callee to someone. External functions may not do so, but this
// is currently safe since BL has LR as an implicit-def and what happens after a
// tail call doesn't matter.
//
// It would be better to model its preservation semantics properly (create a
// vreg on entry, use it in RET & tail call generation; make that vreg def if we
// end up saving LR as part of a call frame). Watch this space...
def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
// Darwin puts the frame-record at the top of the callee-save area.
def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
X23, X24, X25, X26, X27, X28,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
// and not (LR,FP) pairs.
def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, FP, LR,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
// The Control Flow Guard check call uses a custom calling convention that also
// preserves X0-X8 and Q0-Q7.
def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
(sequence "X%u", 0, 8),
(sequence "Q%u", 0, 7))>;
// AArch64 PCS for vector functions (VPCS)
// must (additionally) preserve full Q8-Q23 registers
def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP,
(sequence "Q%u", 8, 23))>;
// Functions taking SVE arguments or returning an SVE type
// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP,
(sequence "Z%u", 8, 23),
(sequence "P%u", 4, 15))>;
// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
// 'this' and the pointer return value are both passed in X0 in these cases,
// this can be partially modelled by treating X0 as a callee-saved register;
// only the resulting RegMask is used; the SaveList is ignored
//
// (For generic ARM 64-bit ABI code, clang will not generate constructors or
// destructors with 'this' returns, so this RegMask will not be used in that
// case)
def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
def CSR_AArch64_AAPCS_SwiftError
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
// The function used by Darwin to obtain the address of a thread-local variable
// guarantees more than a normal AAPCS function. x16 and x17 are used on the
// fast path for calculation, but other registers except X0 (argument/return)
// and LR (it is a call, after all) are preserved.
def CSR_AArch64_TLS_Darwin
: CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
FP,
(sequence "Q%u", 0, 31))>;
// We can only handle a register pair with adjacent registers, the register pair
// should belong to the same class as well. Since the access function on the
// fast path calls a function that follows CSR_AArch64_TLS_Darwin,
// CSR_AArch64_CXX_TLS_Darwin should be a subset of CSR_AArch64_TLS_Darwin.
def CSR_AArch64_CXX_TLS_Darwin
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
(sub (sequence "X%u", 1, 28), X15, X16, X17, X18),
(sequence "D%u", 0, 31))>;
// CSRs that are handled by prologue, epilogue.
def CSR_AArch64_CXX_TLS_Darwin_PE
: CalleeSavedRegs<(add LR, FP)>;
// CSRs that are handled explicitly via copies.
def CSR_AArch64_CXX_TLS_Darwin_ViaCopy
: CalleeSavedRegs<(sub CSR_AArch64_CXX_TLS_Darwin, LR, FP)>;
// The ELF stub used for TLS-descriptor access saves every feasible
// register. Only X0 and LR are clobbered.
def CSR_AArch64_TLS_ELF
: CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
(sequence "Q%u", 0, 31))>;
def CSR_AArch64_AllRegs
: CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
(sequence "X%u", 0, 28), FP, LR, SP,
(sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
(sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
(sequence "Q%u", 0, 31))>;
def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS,
(sequence "X%u", 9, 15))>;
def CSR_AArch64_StackProbe_Windows
: CalleeSavedRegs<(add (sequence "X%u", 0, 15),
(sequence "X%u", 18, 28), FP, SP,
(sequence "Q%u", 0, 31))>;
// Variants of the standard calling conventions for shadow call stack.
// These all preserve x18 in addition to any other registers.
def CSR_AArch64_NoRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
def CSR_AArch64_AllRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
def CSR_AArch64_CXX_TLS_Darwin_SCS
: CalleeSavedRegs<(add CSR_AArch64_CXX_TLS_Darwin, X18)>;
def CSR_AArch64_AAPCS_SwiftError_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
def CSR_AArch64_RT_MostRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
def CSR_AArch64_AAVPCS_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
def CSR_AArch64_AAPCS_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
|