1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
| //===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM specific DAG Nodes.
//
// Type profiles.
def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
def SDT_ARMStructByVal : SDTypeProfile<0, 4,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
def SDT_ARMCMov : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisVT<3, i32>]>;
def SDT_ARMBrcond : SDTypeProfile<0, 2,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDT_ARMBrJT : SDTypeProfile<0, 2,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def SDT_ARMBr2JT : SDTypeProfile<0, 3,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
[SDTCisVT<0, i32>,
SDTCisVT<1, i32>, SDTCisVT<2, i32>,
SDTCisVT<3, i32>, SDTCisVT<4, i32>,
SDTCisVT<5, OtherVT>]>;
def SDT_ARMAnd : SDTypeProfile<1, 2,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
SDTCisInt<2>]>;
def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
SDTCisInt<1>]>;
def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def SDT_ARMMEMCPY : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>,
SDTCisVT<4, i32>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
def SDT_LongMac : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameAs<0, 4>,
SDTCisSameAs<0, 5>]>;
// ARMlsll, ARMlsrl, ARMasrl
def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisInt<4>]>;
// TODO Add another operand for 'Size' so that we can re-use this node when we
// start supporting *TP versions.
def SDT_ARMLoLoop : SDTypeProfile<0, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, OtherVT>]>;
def ARMSmlald : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
def ARMSmlaldx : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
def ARMSmlsld : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
def ARMSmlsldx : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
def SDT_ARMCSel : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisInt<3>,
SDTCisVT<3, i32>]>;
def ARMcsinv : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
def ARMcsneg : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
def ARMcsinc : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
def SDT_MulHSR : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>]>;
def ARMsmmlar : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
def ARMsmmlsr : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
// Node definitions.
def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>;
def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntUnaryOp>;
def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
[SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
[SDNPHasChain, SDNPSideEffect,
SDNPOptInGlue, SDNPOutGlue]>;
def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
SDT_ARMStructByVal,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue,
SDNPMayStore, SDNPMayLoad]>;
def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
[SDNPInGlue]>;
def ARMsubs : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
def ARMssatnoshift : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
def ARMusatnoshift : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
[SDNPHasChain]>;
def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
[SDNPHasChain]>;
def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
[SDNPHasChain]>;
def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
[SDNPOutGlue]>;
def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp,
[SDNPOutGlue]>;
def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
[SDNPOutGlue, SDNPCommutative]>;
def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
def ARMasrl : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
def ARMlsrl : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
def ARMlsll : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>;
def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>;
def ARMlsls : SDNode<"ARMISD::LSLS", SDTBinaryArithWithFlags>;
def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>;
def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>;
def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
SDT_ARMEH_SJLJ_Setjmp,
[SDNPHasChain, SDNPSideEffect]>;
def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
SDT_ARMEH_SJLJ_Longjmp,
[SDNPHasChain, SDNPSideEffect]>;
def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
SDT_ARMEH_SJLJ_SetupDispatch,
[SDNPHasChain, SDNPSideEffect]>;
def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
[SDNPHasChain, SDNPSideEffect]>;
def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue,
SDNPMayStore, SDNPMayLoad]>;
def ARMsmulwb : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
def ARMsmulwt : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
def ARMsmlalbb : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
def ARMsmlalbt : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
def ARMsmlaltb : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
def ARMsmlaltt : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
def ARMqadd8b : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>;
def ARMqsub8b : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>;
def ARMqadd16b : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>;
def ARMqsub16b : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>;
// Vector operations shared between NEON and MVE
def ARMvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
// VDUPLANE can produce a quad-register result from a double-register source,
// so the result is not constrained to match the source.
def ARMvduplane : SDNode<"ARMISD::VDUPLANE",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisVT<2, i32>]>>;
def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
def ARMvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
def ARMvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
def ARMvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisVT<2, i32>]>;
def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
def ARMvmovImm : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
def ARMvmvnImm : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>]>;
def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,]>;
def ARMvshlImm : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
def ARMvshrsImm : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
def ARMvshruImm : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
def ARMvshls : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
def ARMvshlu : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
def SDTARMVCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
SDTCisInt<3>]>;
def SDTARMVCMPZ : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
def ARMvcmp : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
def ARMvcmpz : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
def ARMWLS : SDNode<"ARMISD::WLS", SDT_ARMLoLoop, [SDNPHasChain]>;
def ARMLE : SDNode<"ARMISD::LE", SDT_ARMLoLoop, [SDNPHasChain]>;
def ARMLoopDec : SDNode<"ARMISD::LOOP_DEC", SDTIntBinOp, [SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// ARM Flag Definitions.
class RegConstraint<string C> {
string Constraints = C;
}
//===----------------------------------------------------------------------===//
// ARM specific transformation functions and pattern fragments.
//
// imm_neg_XFORM - Return the negation of an i32 immediate value.
def imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
// imm_not_XFORM - Return the complement of a i32 immediate value.
def imm_not_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
def imm16_31 : ImmLeaf<i32, [{
return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
}]>;
// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
}]>;
def sext_bottom_16 : PatFrag<(ops node:$a),
(sext_inreg node:$a, i16)>;
def sext_top_16 : PatFrag<(ops node:$a),
(i32 (sra node:$a, (i32 16)))>;
def bb_mul : PatFrag<(ops node:$a, node:$b),
(mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
def bt_mul : PatFrag<(ops node:$a, node:$b),
(mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
def tb_mul : PatFrag<(ops node:$a, node:$b),
(mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
def tt_mul : PatFrag<(ops node:$a, node:$b),
(mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
/// Split a 32-bit immediate into two 16 bit parts.
def hi16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
MVT::i32);
}]>;
def lo16AllZero : PatLeaf<(i32 imm), [{
// Returns true if all low 16-bits are 0.
return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
}], hi16>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'xor' node with a single use.
def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'fmul' node with a single use.
def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
return N->hasOneUse();
}]>;
// An 'fadd' node which checks for single non-hazardous use.
def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
// An 'fsub' node which checks for single non-hazardous use.
def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// Immediate operands with a shared generic asm render method.
class ImmAsmOperand<int Low, int High> : AsmOperandClass {
let RenderMethod = "addImmOperands";
let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
}
class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
let DiagnosticType = "ImmRange" # Low # "_" # High;
let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
}
// Operands that are part of a memory addressing mode.
class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
// Branch target.
// FIXME: rename brtarget to t2_brtarget
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
let DecoderMethod = "DecodeT2BROperand";
}
// Branches targeting ARM-mode must be divisible by 4 if they're a raw
// immediate.
def ARMBranchTarget : AsmOperandClass {
let Name = "ARMBranchTarget";
}
// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
// immediate.
def ThumbBranchTarget : AsmOperandClass {
let Name = "ThumbBranchTarget";
}
def arm_br_target : Operand<OtherVT> {
let ParserMatchClass = ARMBranchTarget;
let EncoderMethod = "getARMBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// Call target for ARM. Handles conditional/unconditional
// FIXME: rename bl_target to t2_bltarget?
def arm_bl_target : Operand<i32> {
let ParserMatchClass = ARMBranchTarget;
let EncoderMethod = "getARMBLTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// Target for BLX *from* ARM mode.
def arm_blx_target : Operand<i32> {
let ParserMatchClass = ThumbBranchTarget;
let EncoderMethod = "getARMBLXTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// A list of registers separated by comma. Used by load/store multiple.
def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
def reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = RegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeRegListOperand";
}
// A list of general purpose registers and APSR separated by comma.
// Used by CLRM
def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
def reglist_with_apsr : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = RegListWithAPSRAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeRegListOperand";
}
def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
def DPRRegListAsmOperand : AsmOperandClass {
let Name = "DPRRegList";
let DiagnosticType = "DPR_RegList";
}
def dpr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = DPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeDPRRegListOperand";
}
def SPRRegListAsmOperand : AsmOperandClass {
let Name = "SPRRegList";
let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
}
def spr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = SPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeSPRRegListOperand";
}
def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
"FPSRegListWithVPR"; }
def fp_sreglist_with_vpr : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = FPSRegListWithVPRAsmOperand;
let PrintMethod = "printRegisterList";
}
def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
"FPDRegListWithVPR"; }
def fp_dreglist_with_vpr : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = FPDRegListWithVPRAsmOperand;
let PrintMethod = "printRegisterList";
}
// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
def cpinst_operand : Operand<i32> {
let PrintMethod = "printCPInstOperand";
}
// Local PC labels.
def pclabel : Operand<i32> {
let PrintMethod = "printPCLabel";
}
// ADR instruction labels.
def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
def adrlabel : Operand<i32> {
let EncoderMethod = "getAdrLabelOpValue";
let ParserMatchClass = AdrLabelAsmOperand;
let PrintMethod = "printAdrLabelOperand<0>";
}
def neon_vcvt_imm32 : Operand<i32> {
let EncoderMethod = "getNEONVcvtImm32OpValue";
let DecoderMethod = "DecodeVCVTImmOperand";
}
// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
def rot_imm_XFORM: SDNodeXForm<imm, [{
switch (N->getZExtValue()){
default: llvm_unreachable(nullptr);
case 0: return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
case 8: return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
}
}]>;
def RotImmAsmOperand : AsmOperandClass {
let Name = "RotImm";
let ParserMethod = "parseRotImm";
}
def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
int32_t v = N->getZExtValue();
return v == 8 || v == 16 || v == 24; }],
rot_imm_XFORM> {
let PrintMethod = "printRotImmOperand";
let ParserMatchClass = RotImmAsmOperand;
}
// Power-of-two operand for MVE VIDUP and friends, which encode
// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
let Name = "VIDUP_imm";
let PredicateMethod = "isPowerTwoInRange<1,8>";
let RenderMethod = "addPowerTwoOperands";
let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
}
def MVE_VIDUP_imm : Operand<i32> {
let EncoderMethod = "getPowerTwoOpValue";
let DecoderMethod = "DecodePowerTwoOperand<0,3>";
let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
}
// Pair vector indexing
class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
let Name = "MVEPairVectorIndex"#start;
let RenderMethod = "addMVEPairVectorIndexOperands";
let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
}
class MVEPairVectorIndex<string opval> : Operand<i32> {
let PrintMethod = "printVectorIndex";
let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
let MIOperandInfo = (ops i32imm);
}
def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
}
def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
}
// Vector indexing
class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
let Name = "MVEVectorIndex"#NumLanes;
let RenderMethod = "addMVEVectorIndexOperands";
let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
}
class MVEVectorIndex<int NumLanes> : Operand<i32> {
let PrintMethod = "printVectorIndex";
let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
let MIOperandInfo = (ops i32imm);
}
// shift_imm: An integer that encodes a shift amount and the type of shift
// (asr or lsl). The 6-bit immediate encodes as:
// {5} 0 ==> lsl
// 1 asr
// {4-0} imm5 shift amount.
// asr #32 encoded as imm5 == 0.
def ShifterImmAsmOperand : AsmOperandClass {
let Name = "ShifterImm";
let ParserMethod = "parseShifterImm";
}
def shift_imm : Operand<i32> {
let PrintMethod = "printShiftImmOperand";
let ParserMatchClass = ShifterImmAsmOperand;
}
// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
def so_reg_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectRegShifterOperand",
[shl, srl, sra, rotr]> {
let EncoderMethod = "getSORegRegOpValue";
let PrintMethod = "printSORegRegOperand";
let DecoderMethod = "DecodeSORegRegOperand";
let ParserMatchClass = ShiftedRegAsmOperand;
let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
}
def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
def so_reg_imm : Operand<i32>, // reg imm
ComplexPattern<i32, 2, "SelectImmShifterOperand",
[shl, srl, sra, rotr]> {
let EncoderMethod = "getSORegImmOpValue";
let PrintMethod = "printSORegImmOperand";
let DecoderMethod = "DecodeSORegImmOperand";
let ParserMatchClass = ShiftedImmAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// FIXME: Does this need to be distinct from so_reg?
def shift_so_reg_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegRegOpValue";
let PrintMethod = "printSORegRegOperand";
let DecoderMethod = "DecodeSORegRegOperand";
let ParserMatchClass = ShiftedRegAsmOperand;
let MIOperandInfo = (ops GPR, GPR, i32imm);
}
// FIXME: Does this need to be distinct from so_reg?
def shift_so_reg_imm : Operand<i32>, // reg reg imm
ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegImmOpValue";
let PrintMethod = "printSORegImmOperand";
let DecoderMethod = "DecodeSORegImmOperand";
let ParserMatchClass = ShiftedImmAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// mod_imm: match a 32-bit immediate operand, which can be encoded into
// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
// - "Modified Immediate Constants"). Within the MC layer we keep this
// immediate in its encoded form.
def ModImmAsmOperand: AsmOperandClass {
let Name = "ModImm";
let ParserMethod = "parseModImm";
}
def mod_imm : Operand<i32>, ImmLeaf<i32, [{
return ARM_AM::getSOImmVal(Imm) != -1;
}]> {
let EncoderMethod = "getModImmOpValue";
let PrintMethod = "printModImmOperand";
let ParserMatchClass = ModImmAsmOperand;
}
// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
// The actual parsing, encoding, decoding are handled by the destination
// instructions, which use mod_imm.
def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
}], imm_not_XFORM> {
let ParserMatchClass = ModImmNotAsmOperand;
}
def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
unsigned Value = -(unsigned)N->getZExtValue();
return Value && ARM_AM::getSOImmVal(Value) != -1;
}], imm_neg_XFORM> {
let ParserMatchClass = ModImmNegAsmOperand;
}
/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
def arm_i32imm : IntImmLeaf<i32, [{
if (Subtarget->useMovt())
return true;
return ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue());
}]>;
/// imm0_1 predicate - Immediate in the range [0,1].
def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
/// imm0_3 predicate - Immediate in the range [0,3].
def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
/// imm0_7 predicate - Immediate in the range [0,7].
def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
let Name = "Imm0_7";
}
def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 8;
}]> {
let ParserMatchClass = Imm0_7AsmOperand;
}
/// imm8_255 predicate - Immediate in the range [8,255].
def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 8 && Imm < 256;
}]> {
let ParserMatchClass = Imm8_255AsmOperand;
}
/// imm8 predicate - Immediate is exactly 8.
def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
let ParserMatchClass = Imm8AsmOperand;
}
/// imm16 predicate - Immediate is exactly 16.
def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
let ParserMatchClass = Imm16AsmOperand;
}
/// imm32 predicate - Immediate is exactly 32.
def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
let ParserMatchClass = Imm32AsmOperand;
}
def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
/// imm1_7 predicate - Immediate in the range [1,7].
def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
let ParserMatchClass = Imm1_7AsmOperand;
}
/// imm1_15 predicate - Immediate in the range [1,15].
def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
let ParserMatchClass = Imm1_15AsmOperand;
}
/// imm1_31 predicate - Immediate in the range [1,31].
def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
let ParserMatchClass = Imm1_31AsmOperand;
}
/// imm0_15 predicate - Immediate in the range [0,15].
def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
let Name = "Imm0_15";
}
def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 16;
}]> {
let ParserMatchClass = Imm0_15AsmOperand;
}
/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 32;
}]> {
let ParserMatchClass = Imm0_31AsmOperand;
}
/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 33;
}]> {
let ParserMatchClass = Imm0_32AsmOperand;
}
/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 64;
}]> {
let ParserMatchClass = Imm0_63AsmOperand;
}
/// imm0_239 predicate - Immediate in the range [0,239].
def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
let Name = "Imm0_239";
}
def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
let ParserMatchClass = Imm0_239AsmOperand;
}
/// imm0_255 predicate - Immediate in the range [0,255].
def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
let ParserMatchClass = Imm0_255AsmOperand;
}
/// imm0_65535 - An immediate is in the range [0,65535].
def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 65536;
}]> {
let ParserMatchClass = Imm0_65535AsmOperand;
}
// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
return -Imm >= 0 && -Imm < 65536;
}]>;
// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
// a relocatable expression.
//
// FIXME: This really needs a Thumb version separate from the ARM version.
// While the range is the same, and can thus use the same match class,
// the encoding is different so it should have a different encoder method.
def Imm0_65535ExprAsmOperand: AsmOperandClass {
let Name = "Imm0_65535Expr";
let RenderMethod = "addImmOperands";
let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
}
def imm0_65535_expr : Operand<i32> {
let EncoderMethod = "getHiLo16ImmOpValue";
let ParserMatchClass = Imm0_65535ExprAsmOperand;
}
def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
def imm256_65535_expr : Operand<i32> {
let ParserMatchClass = Imm256_65535ExprAsmOperand;
}
/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
let Name = "Imm24bit";
let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
}
def imm24b : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm <= 0xffffff;
}]> {
let ParserMatchClass = Imm24bitAsmOperand;
}
/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
/// e.g., 0xf000ffff
def BitfieldAsmOperand : AsmOperandClass {
let Name = "Bitfield";
let ParserMethod = "parseBitfield";
}
def bf_inv_mask_imm : Operand<i32>,
PatLeaf<(imm), [{
return ARM::isBitFieldInvertedMask(N->getZExtValue());
}] > {
let EncoderMethod = "getBitfieldInvertedMaskOpValue";
let PrintMethod = "printBitfieldInvMaskImmOperand";
let DecoderMethod = "DecodeBitfieldMaskOperand";
let ParserMatchClass = BitfieldAsmOperand;
let GISelPredicateCode = [{
// There's better methods of implementing this check. IntImmLeaf<> would be
// equivalent and have less boilerplate but we need a test for C++
// predicates and this one causes new rules to be imported into GlobalISel
// without requiring additional features first.
const auto &MO = MI.getOperand(1);
if (!MO.isCImm())
return false;
return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
}];
}
def imm1_32_XFORM: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
MVT::i32);
}]>;
def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
let Name = "Imm1_32";
}
def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
uint64_t Imm = N->getZExtValue();
return Imm > 0 && Imm <= 32;
}],
imm1_32_XFORM> {
let PrintMethod = "printImmPlusOneOperand";
let ParserMatchClass = Imm1_32AsmOperand;
}
def imm1_16_XFORM: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
MVT::i32);
}]>;
def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
return Imm > 0 && Imm <= 16;
}],
imm1_16_XFORM> {
let PrintMethod = "printImmPlusOneOperand";
let ParserMatchClass = Imm1_16AsmOperand;
}
def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
let Name = "MVEShiftImm1_7";
// Reason we're doing this is because instruction vshll.s8 t1 encoding
// accepts 1,7 but the t2 encoding accepts 8. By doing this we can get a
// better diagnostic message if someone uses bigger immediate than the t1/t2
// encodings allow.
let DiagnosticString = "operand must be an immediate in the range [1,8]";
}
def mve_shift_imm1_7 : Operand<i32> {
let ParserMatchClass = MVEShiftImm1_7AsmOperand;
let EncoderMethod = "getMVEShiftImmOpValue";
}
def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
let Name = "MVEShiftImm1_15";
// Reason we're doing this is because instruction vshll.s16 t1 encoding
// accepts 1,15 but the t2 encoding accepts 16. By doing this we can get a
// better diagnostic message if someone uses bigger immediate than the t1/t2
// encodings allow.
let DiagnosticString = "operand must be an immediate in the range [1,16]";
}
def mve_shift_imm1_15 : Operand<i32> {
let ParserMatchClass = MVEShiftImm1_15AsmOperand;
let EncoderMethod = "getMVEShiftImmOpValue";
}
// Define ARM specific addressing modes.
// addrmode_imm12 := reg +/- imm12
//
def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
class AddrMode_Imm12 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
// 12-bit immediate operand. Note that instructions using this encode
// #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
// immediate values are as normal.
let EncoderMethod = "getAddrModeImm12OpValue";
let DecoderMethod = "DecodeAddrModeImm12Operand";
let ParserMatchClass = MemImm12OffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
def addrmode_imm12 : AddrMode_Imm12 {
let PrintMethod = "printAddrModeImm12Operand<false>";
}
def addrmode_imm12_pre : AddrMode_Imm12 {
let PrintMethod = "printAddrModeImm12Operand<true>";
}
// ldst_so_reg := reg +/- reg shop imm
//
def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
def ldst_so_reg : MemOperand,
ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
let EncoderMethod = "getLdStSORegOpValue";
// FIXME: Simplify the printer
let PrintMethod = "printAddrMode2Operand";
let DecoderMethod = "DecodeSORegMemOperand";
let ParserMatchClass = MemRegOffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
}
// postidx_imm8 := +/- [0,255]
//
// 9 bit value:
// {8} 1 is imm8 is non-negative. 0 otherwise.
// {7-0} [0,255] imm8 value.
def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
def postidx_imm8 : MemOperand {
let PrintMethod = "printPostIdxImm8Operand";
let ParserMatchClass = PostIdxImm8AsmOperand;
let MIOperandInfo = (ops i32imm);
}
// postidx_imm8s4 := +/- [0,1020]
//
// 9 bit value:
// {8} 1 is imm8 is non-negative. 0 otherwise.
// {7-0} [0,255] imm8 value, scaled by 4.
def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
def postidx_imm8s4 : MemOperand {
let PrintMethod = "printPostIdxImm8s4Operand";
let ParserMatchClass = PostIdxImm8s4AsmOperand;
let MIOperandInfo = (ops i32imm);
}
// postidx_reg := +/- reg
//
def PostIdxRegAsmOperand : AsmOperandClass {
let Name = "PostIdxReg";
let ParserMethod = "parsePostIdxReg";
}
def postidx_reg : MemOperand {
let EncoderMethod = "getPostIdxRegOpValue";
let DecoderMethod = "DecodePostIdxReg";
let PrintMethod = "printPostIdxRegOperand";
let ParserMatchClass = PostIdxRegAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
def PostIdxRegShiftedAsmOperand : AsmOperandClass {
let Name = "PostIdxRegShifted";
let ParserMethod = "parsePostIdxReg";
}
def am2offset_reg : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode2OffsetOpValue";
let PrintMethod = "printAddrMode2OffsetOperand";
// When using this for assembly, it's always as a post-index offset.
let ParserMatchClass = PostIdxRegShiftedAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
// the GPR is purely vestigal at this point.
def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
def am2offset_imm : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode2OffsetOpValue";
let PrintMethod = "printAddrMode2OffsetOperand";
let ParserMatchClass = AM2OffsetImmAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
// addrmode3 := reg +/- reg
// addrmode3 := reg +/- imm8
//
// FIXME: split into imm vs. reg versions.
def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
class AddrMode3 : MemOperand,
ComplexPattern<i32, 3, "SelectAddrMode3", []> {
let EncoderMethod = "getAddrMode3OpValue";
let ParserMatchClass = AddrMode3AsmOperand;
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def addrmode3 : AddrMode3
{
let PrintMethod = "printAddrMode3Operand<false>";
}
def addrmode3_pre : AddrMode3
{
let PrintMethod = "printAddrMode3Operand<true>";
}
// FIXME: split into imm vs. reg versions.
// FIXME: parser method to handle +/- register.
def AM3OffsetAsmOperand : AsmOperandClass {
let Name = "AM3Offset";
let ParserMethod = "parseAM3Offset";
}
def am3offset : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode3Offset",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode3OffsetOpValue";
let PrintMethod = "printAddrMode3OffsetOperand";
let ParserMatchClass = AM3OffsetAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// ldstm_mode := {ia, ib, da, db}
//
def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
let EncoderMethod = "getLdStmModeOpValue";
let PrintMethod = "printLdStmModeOperand";
}
// addrmode5 := reg +/- imm8*4
//
def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
class AddrMode5 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode5", []> {
let EncoderMethod = "getAddrMode5OpValue";
let DecoderMethod = "DecodeAddrMode5Operand";
let ParserMatchClass = AddrMode5AsmOperand;
let MIOperandInfo = (ops GPR:$base, i32imm);
}
def addrmode5 : AddrMode5 {
let PrintMethod = "printAddrMode5Operand<false>";
}
def addrmode5_pre : AddrMode5 {
let PrintMethod = "printAddrMode5Operand<true>";
}
// addrmode5fp16 := reg +/- imm8*2
//
def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
class AddrMode5FP16 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
let EncoderMethod = "getAddrMode5FP16OpValue";
let DecoderMethod = "DecodeAddrMode5FP16Operand";
let ParserMatchClass = AddrMode5FP16AsmOperand;
let MIOperandInfo = (ops GPR:$base, i32imm);
}
def addrmode5fp16 : AddrMode5FP16 {
let PrintMethod = "printAddrMode5FP16Operand<false>";
}
// addrmode6 := reg with optional alignment
//
def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
def addrmode6 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
let EncoderMethod = "getAddrMode6AddressOpValue";
let DecoderMethod = "DecodeAddrMode6Operand";
let ParserMatchClass = AddrMode6AsmOperand;
}
def am6offset : MemOperand,
ComplexPattern<i32, 1, "SelectAddrMode6Offset",
[], [SDNPWantRoot]> {
let PrintMethod = "printAddrMode6OffsetOperand";
let MIOperandInfo = (ops GPR);
let EncoderMethod = "getAddrMode6OffsetOpValue";
let DecoderMethod = "DecodeGPRRegisterClass";
}
// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
// (single element from one lane) for size 32.
def addrmode6oneL32 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
}
// Base class for addrmode6 with specific alignment restrictions.
class AddrMode6Align : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
let EncoderMethod = "getAddrMode6AddressOpValue";
let DecoderMethod = "DecodeAddrMode6Operand";
}
// Special version of addrmode6 to handle no allowed alignment encoding for
// VLD/VST instructions and checking the alignment is not specified.
def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
let Name = "AlignedMemoryNone";
let DiagnosticString = "alignment must be omitted";
}
def addrmode6alignNone : AddrMode6Align {
// The alignment specifier can only be omitted.
let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
}
// Special version of addrmode6 to handle 16-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align16AsmOperand : AsmOperandClass {
let Name = "AlignedMemory16";
let DiagnosticString = "alignment must be 16 or omitted";
}
def addrmode6align16 : AddrMode6Align {
// The alignment specifier can only be 16 or omitted.
let ParserMatchClass = AddrMode6Align16AsmOperand;
}
// Special version of addrmode6 to handle 32-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align32AsmOperand : AsmOperandClass {
let Name = "AlignedMemory32";
let DiagnosticString = "alignment must be 32 or omitted";
}
def addrmode6align32 : AddrMode6Align {
// The alignment specifier can only be 32 or omitted.
let ParserMatchClass = AddrMode6Align32AsmOperand;
}
// Special version of addrmode6 to handle 64-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align64AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64";
let DiagnosticString = "alignment must be 64 or omitted";
}
def addrmode6align64 : AddrMode6Align {
// The alignment specifier can only be 64 or omitted.
let ParserMatchClass = AddrMode6Align64AsmOperand;
}
// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
// for VLD/VST instructions and checking the alignment value.
def AddrMode6Align64or128AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64or128";
let DiagnosticString = "alignment must be 64, 128 or omitted";
}
def addrmode6align64or128 : AddrMode6Align {
// The alignment specifier can only be 64, 128 or omitted.
let ParserMatchClass = AddrMode6Align64or128AsmOperand;
}
// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
// encoding for VLD/VST instructions and checking the alignment value.
def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64or128or256";
let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
}
def addrmode6align64or128or256 : AddrMode6Align {
// The alignment specifier can only be 64, 128, 256 or omitted.
let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
}
// Special version of addrmode6 to handle alignment encoding for VLD-dup
// instructions, specifically VLD4-dup.
def addrmode6dup : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6DupAddressOpValue";
// FIXME: This is close, but not quite right. The alignment specifier is
// different.
let ParserMatchClass = AddrMode6AsmOperand;
}
// Base class for addrmode6dup with specific alignment restrictions.
class AddrMode6DupAlign : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6DupAddressOpValue";
}
// Special version of addrmode6 to handle no allowed alignment encoding for
// VLD-dup instruction and checking the alignment is not specified.
def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
let Name = "DupAlignedMemoryNone";
let DiagnosticString = "alignment must be omitted";
}
def addrmode6dupalignNone : AddrMode6DupAlign {
// The alignment specifier can only be omitted.
let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
}
// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
// instruction and checking the alignment value.
def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory16";
let DiagnosticString = "alignment must be 16 or omitted";
}
def addrmode6dupalign16 : AddrMode6DupAlign {
// The alignment specifier can only be 16 or omitted.
let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
}
// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
// instruction and checking the alignment value.
def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory32";
let DiagnosticString = "alignment must be 32 or omitted";
}
def addrmode6dupalign32 : AddrMode6DupAlign {
// The alignment specifier can only be 32 or omitted.
let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
}
// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
// instructions and checking the alignment value.
def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory64";
let DiagnosticString = "alignment must be 64 or omitted";
}
def addrmode6dupalign64 : AddrMode6DupAlign {
// The alignment specifier can only be 64 or omitted.
let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
}
// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
// for VLD instructions and checking the alignment value.
def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory64or128";
let DiagnosticString = "alignment must be 64, 128 or omitted";
}
def addrmode6dupalign64or128 : AddrMode6DupAlign {
// The alignment specifier can only be 64, 128 or omitted.
let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
}
// addrmodepc := pc + reg
//
def addrmodepc : MemOperand,
ComplexPattern<i32, 2, "SelectAddrModePC", []> {
let PrintMethod = "printAddrModePCOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addr_offset_none := reg
//
def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
def addr_offset_none : MemOperand,
ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
let PrintMethod = "printAddrMode7Operand";
let DecoderMethod = "DecodeAddrMode7Operand";
let ParserMatchClass = MemNoOffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base);
}
// t_addr_offset_none := reg [r0-r7]
def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
def t_addr_offset_none : MemOperand {
let PrintMethod = "printAddrMode7Operand";
let DecoderMethod = "DecodetGPRRegisterClass";
let ParserMatchClass = MemNoOffsetTAsmOperand;
let MIOperandInfo = (ops tGPR:$base);
}
def nohash_imm : Operand<i32> {
let PrintMethod = "printNoHashImmediate";
}
def CoprocNumAsmOperand : AsmOperandClass {
let Name = "CoprocNum";
let ParserMethod = "parseCoprocNumOperand";
}
def p_imm : Operand<i32> {
let PrintMethod = "printPImmediate";
let ParserMatchClass = CoprocNumAsmOperand;
let DecoderMethod = "DecodeCoprocessor";
}
def CoprocRegAsmOperand : AsmOperandClass {
let Name = "CoprocReg";
let ParserMethod = "parseCoprocRegOperand";
}
def c_imm : Operand<i32> {
let PrintMethod = "printCImmediate";
let ParserMatchClass = CoprocRegAsmOperand;
}
def CoprocOptionAsmOperand : AsmOperandClass {
let Name = "CoprocOption";
let ParserMethod = "parseCoprocOptionOperand";
}
def coproc_option_imm : Operand<i32> {
let PrintMethod = "printCoprocOptionImm";
let ParserMatchClass = CoprocOptionAsmOperand;
}
//===----------------------------------------------------------------------===//
include "ARMInstrFormats.td"
//===----------------------------------------------------------------------===//
// Multiclass helpers...
//
/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
/// binop that produces a value.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AsI1_bin_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
SDPatternOperator opnode, bit Commutable = 0> {
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
/// reversed. The 'rr' form is only defined for the disassembler; for codegen
/// it is equivalent to the AsI1_bin_irs counterpart.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
SDNode opnode, bit Commutable = 0> {
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[/* pattern left blank */]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
///
/// These opcodes will be converted to the real non-S opcodes by
/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, SDNode opnode,
bit Commutable = 0> {
def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]>;
def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
4, iir,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
let isCommutable = Commutable;
}
def rsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
so_reg_imm:$shift))]>,
Sched<[WriteALUsi, ReadALU]>;
def rsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
so_reg_reg:$shift))]>,
Sched<[WriteALUSsr, ReadALUsr]>;
}
}
/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
/// operands are reversed.
let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, SDNode opnode,
bit Commutable = 0> {
def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
[(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]>;
def rsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
GPR:$Rn))]>,
Sched<[WriteALUsi, ReadALU]>;
def rsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
GPR:$Rn))]>,
Sched<[WriteALUSsr, ReadALUsr]>;
}
}
/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let isCompare = 1, Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
SDPatternOperator opnode, bit Commutable = 0,
string rrDecoderMethod = ""> {
def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
opc, "\t$Rn, $imm",
[(opnode GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = imm;
let Unpredictable{15-12} = 0b1111;
}
def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
opc, "\t$Rn, $Rm",
[(opnode GPR:$Rn, GPR:$Rm)]>,
Sched<[WriteCMP, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rm;
let isCommutable = Commutable;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
let DecoderMethod = rrDecoderMethod;
let Unpredictable{15-12} = 0b1111;
}
def rsi : AI1<opcod, (outs),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
opc, "\t$Rn, $shift",
[(opnode GPR:$Rn, so_reg_imm:$shift)]>,
Sched<[WriteCMPsi, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
def rsr : AI1<opcod, (outs),
(ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
opc, "\t$Rn, $shift",
[(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
Sched<[WriteCMPsr, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
}
}
/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
[(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
bits<4> Rd;
bits<4> Rm;
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{3-0} = Rm;
}
class AI_ext_rrot_np<bits<8> opcod, string opc>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{11-10} = rot;
}
/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
[(set GPRnopc:$Rd, (opnode GPR:$Rn,
(rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{9-4} = 0b000111;
let Inst{3-0} = Rm;
}
class AI_exta_rrot_np<bits<8> opcod, string opc>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{11-10} = rot;
}
/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
bit Commutable = 0> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPRnopc:$Rd, CPSR,
(opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
}
/// AI1_rsc_irs - Define instructions and patterns for rsc
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
[/* pattern left blank */]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
[(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
[(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
(ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
[(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
(ins ldst_so_reg:$shift),
AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
[(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
}
multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12 : AI2ldst<0b010, 0, isByte, (outs),
(ins GPR:$Rt, addrmode_imm12:$addr),
AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
[(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
[(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12 : AI2ldst<0b010, 0, isByte, (outs),
(ins GPRnopc:$Rt, addrmode_imm12:$addr),
AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
[(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 0, isByte, (outs),
(ins GPRnopc:$Rt, ldst_so_reg:$shift),
AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
[(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of direct 32-bit addresses of the destination basic
/// blocks (either absolute, or relative to the start of the jump-table in PIC
/// mode). Used mostly in ARM and Thumb-1 modes.
def JUMPTABLE_ADDRS :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
/// that cannot be optimised to use TBB or TBH.
def JUMPTABLE_INSTS :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 8-bit unsigned integers representing offsets from
/// a TBB instruction.
def JUMPTABLE_TBB :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 16-bit unsigned integers representing offsets from
/// a TBH instruction.
def JUMPTABLE_TBH :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
[(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
[(ARMcallseq_start timm:$amt, timm:$amt2)]>;
}
def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
"hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
Requires<[IsARM, HasV6]> {
bits<8> imm;
let Inst{27-8} = 0b00110010000011110000;
let Inst{7-0} = imm;
let DecoderMethod = "DecodeHINTInstruction";
}
def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
"\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{27-20} = 0b01101000;
let Inst{7-4} = 0b1011;
let Inst{11-8} = 0b1111;
let Unpredictable{11-8} = 0b1111;
}
// The 16-bit operand $val can be used by a debugger to store more information
// about the breakpoint.
def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
"bkpt", "\t$val", []>, Requires<[IsARM]> {
bits<16> val;
let Inst{3-0} = val{3-0};
let Inst{19-8} = val{15-4};
let Inst{27-20} = 0b00010010;
let Inst{31-28} = 0xe; // AL
let Inst{7-4} = 0b0111;
}
// default immediate for breakpoint mnemonic
def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
"hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
bits<16> val;
let Inst{3-0} = val{3-0};
let Inst{19-8} = val{15-4};
let Inst{27-20} = 0b00010000;
let Inst{31-28} = 0xe; // AL
let Inst{7-4} = 0b0111;
}
// Change Processor State
// FIXME: We should use InstAlias to handle the optional operands.
class CPS<dag iops, string asm_ops>
: AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
[]>, Requires<[IsARM]> {
bits<2> imod;
bits<3> iflags;
bits<5> mode;
bit M;
let Inst{31-28} = 0b1111;
let Inst{27-20} = 0b00010000;
let Inst{19-18} = imod;
let Inst{17} = M; // Enabled if mode is set;
let Inst{16-9} = 0b00000000;
let Inst{8-6} = iflags;
let Inst{5} = 0;
let Inst{4-0} = mode;
}
let DecoderMethod = "DecodeCPSInstruction" in {
let M = 1 in
def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
"$imod\t$iflags, $mode">;
let mode = 0, M = 0 in
def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
let imod = 0, iflags = 0, M = 1 in
def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
}
// Preload signals the memory system of possible future data/instruction access.
multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
IIC_Preload, !strconcat(opc, "\t$addr"),
[(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
Sched<[WritePreLd]> {
bits<4> Rt;
bits<17> addr;
let Inst{31-26} = 0b111101;
let Inst{25} = 0; // 0 for immediate form
let Inst{24} = data;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = 0b1111;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
!strconcat(opc, "\t$shift"),
[(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
Sched<[WritePreLd]> {
bits<17> shift;
let Inst{31-26} = 0b111101;
let Inst{25} = 1; // 1 for register form
let Inst{24} = data;
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = 0b1111;
let Inst{11-0} = shift{11-0};
let Inst{4} = 0;
}
}
defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>;
defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>;
def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
"setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
bits<1> end;
let Inst{31-10} = 0b1111000100000001000000;
let Inst{9} = end;
let Inst{8-0} = 0;
}
def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
[(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
bits<4> opt;
let Inst{27-4} = 0b001100100000111100001111;
let Inst{3-0} = opt;
}
// A8.8.247 UDF - Undefined (Encoding A1)
def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
"udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
bits<16> imm16;
let Inst{31-28} = 0b1110; // AL
let Inst{27-25} = 0b011;
let Inst{24-20} = 0b11111;
let Inst{19-8} = imm16{15-4};
let Inst{7-4} = 0b1111;
let Inst{3-0} = imm16{3-0};
}
/*
* A5.4 Permanently UNDEFINED instructions.
*
* For most targets use UDF #65006, for which the OS will generate SIGTRAP.
* Other UDF encodings generate SIGILL.
*
* NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
* Encoding A1:
* 1110 0111 1111 iiii iiii iiii 1111 iiii
* Encoding T1:
* 1101 1110 iiii iiii
* It uses the following encoding:
* 1110 0111 1111 1110 1101 1110 1111 0000
* - In ARM: UDF #60896;
* - In Thumb: UDF #254 followed by a branch-to-self.
*/
let isBarrier = 1, isTerminator = 1 in
def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
"trap", [(trap)]>,
Requires<[IsARM,UseNaClTrap]> {
let Inst = 0xe7fedef0;
}
let isBarrier = 1, isTerminator = 1 in
def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
"trap", [(trap)]>,
Requires<[IsARM,DontUseNaClTrap]> {
let Inst = 0xe7ffdefe;
}
def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1 in {
def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
4, IIC_iALUr,
[(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
Sched<[WriteALU, ReadALU]>;
let AddedComplexity = 10 in {
def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_r,
[(set GPR:$dst, (load addrmodepc:$addr))]>;
def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
}
let AddedComplexity = 10 in {
def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
addrmodepc:$addr)]>;
def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
}
} // isNotDuplicable = 1
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
let hasSideEffects = 0, isReMaterializable = 1 in
// The 'adr' mnemonic encodes differently if the label is before or after
// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
// know until then which form of the instruction will be used.
def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<14> label;
let Inst{27-25} = 0b001;
let Inst{24} = 0;
let Inst{23-22} = label{13-12};
let Inst{21} = 0;
let Inst{20} = 0;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-0} = label{11-0};
}
let hasSideEffects = 1 in {
def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
(ins i32imm:$label, pred:$p),
4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
// ARMV4T and above
def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"bx", "\tlr", [(ARMretflag)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
let Inst{27-0} = 0b0001001011111111111100011110;
}
// ARMV4 only
def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"mov", "\tpc, lr", [(ARMretflag)]>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
let Inst{27-0} = 0b0001101000001111000000001110;
}
// Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
// the user-space one).
def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
4, IIC_Br,
[(ARMintretflag imm:$offset)]>;
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
// ARMV4T and above
def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
[(brind GPR:$dst)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
bits<4> dst;
let Inst{31-4} = 0b1110000100101111111111110001;
let Inst{3-0} = dst;
}
def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
"bx", "\t$dst", [/* pattern left blank */]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
bits<4> dst;
let Inst{27-4} = 0b000100101111111111110001;
let Inst{3-0} = dst;
}
}
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
let isCall = 1,
// FIXME: Do we really need a non-predicated version? If so, it should
// at least be a pseudo instruction expanding to the predicated version
// at MC lowering time.
Defs = [LR], Uses = [SP] in {
def BL : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
IIC_Br, "bl\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBrL]> {
let Inst{31-28} = 0b1110;
bits<24> func;
let Inst{23-0} = func;
let DecoderMethod = "DecodeBranchImmInstruction";
}
def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
IIC_Br, "bl", "\t$func",
[(ARMcall_pred tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBrL]> {
bits<24> func;
let Inst{23-0} = func;
let DecoderMethod = "DecodeBranchImmInstruction";
}
// ARMv5T and above
def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
IIC_Br, "blx\t$func",
[(ARMcall GPR:$func)]>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
bits<4> func;
let Inst{31-4} = 0b1110000100101111111111110011;
let Inst{3-0} = func;
}
def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
IIC_Br, "blx", "\t$func",
[(ARMcall_pred GPR:$func)]>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
bits<4> func;
let Inst{27-4} = 0b000100101111111111110011;
let Inst{3-0} = func;
}
// ARMv4T
// Note: Restrict $func to the tGPR regclass to prevent it being in LR.
def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
// ARMv4
def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
// mov lr, pc; b if callee is marked noreturn to avoid confusing the
// return stack predictor.
def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBr]>;
// push lr before the call
def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
4, IIC_Br,
[]>,
Requires<[IsARM]>, Sched<[WriteBr]>;
}
let isBranch = 1, isTerminator = 1 in {
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
IIC_Br, "b", "\t$target",
[/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
Sched<[WriteBr]> {
bits<24> target;
let Inst{23-0} = target;
let DecoderMethod = "DecodeBranchImmInstruction";
}
let isBarrier = 1 in {
// B is "predicable" since it's just a Bcc with an 'always' condition.
let isPredicable = 1 in
// FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
// should be sufficient.
// FIXME: Is B really a Barrier? That doesn't seem right.
def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
[(br bb:$target)], (Bcc arm_br_target:$target,
(ops 14, zero_reg))>,
Sched<[WriteBr]>;
let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
def BR_JTr : ARMPseudoInst<(outs),
(ins GPR:$target, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt GPR:$target, tjumptable:$jt)]>,
Sched<[WriteBr]>;
def BR_JTm_i12 : ARMPseudoInst<(outs),
(ins addrmode_imm12:$target, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt (i32 (load addrmode_imm12:$target)),
tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
def BR_JTm_rs : ARMPseudoInst<(outs),
(ins ldst_so_reg:$target, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt (i32 (load ldst_so_reg:$target)),
tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
def BR_JTadd : ARMPseudoInst<(outs),
(ins GPR:$target, GPR:$idx, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
Sched<[WriteBrTbl]>;
} // isNotDuplicable = 1, isIndirectBranch = 1
} // isBarrier = 1
}
// BLX (immediate)
def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
"blx\t$target", []>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
let Inst{31-25} = 0b1111101;
bits<25> target;
let Inst{23-0} = target{24-1};
let Inst{24} = target{0};
let isCall = 1;
}
// Branch and Exchange Jazelle
def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
[/* pattern left blank */]>, Sched<[WriteBr]> {
bits<4> func;
let Inst{23-20} = 0b0010;
let Inst{19-8} = 0xfff;
let Inst{7-4} = 0b0010;
let Inst{3-0} = func;
let isBranch = 1;
}
// Tail calls.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
Sched<[WriteBr]>;
def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
Sched<[WriteBr]>;
def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
4, IIC_Br, [],
(Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
Requires<[IsARM]>, Sched<[WriteBr]>;
def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
4, IIC_Br, [],
(BX GPR:$dst)>, Sched<[WriteBr]>,
Requires<[IsARM, HasV4T]>;
}
// Secure Monitor Call is a system instruction.
def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
[]>, Requires<[IsARM, HasTrustZone]> {
bits<4> opt;
let Inst{23-4} = 0b01100000000000000111;
let Inst{3-0} = opt;
}
def : MnemonicAlias<"smi", "smc">;
// Supervisor Call (Software Interrupt)
let isCall = 1, Uses = [SP] in {
def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
Sched<[WriteBr]> {
bits<24> svc;
let Inst{23-0} = svc;
}
}
// Store Return State
class SRSI<bit wb, string asm>
: XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
NoItinerary, asm, "", []> {
bits<5> mode;
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b100;
let Inst{22} = 1;
let Inst{21} = wb;
let Inst{20} = 0;
let Inst{19-16} = 0b1101; // SP
let Inst{15-5} = 0b00000101000;
let Inst{4-0} = mode;
}
def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
let Inst{24-23} = 0;
}
def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
let Inst{24-23} = 0;
}
def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
let Inst{24-23} = 0b10;
}
def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
let Inst{24-23} = 0b10;
}
def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
let Inst{24-23} = 0b01;
}
def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
let Inst{24-23} = 0b01;
}
def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
let Inst{24-23} = 0b11;
}
def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
let Inst{24-23} = 0b11;
}
def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
// Return From Exception
class RFEI<bit wb, string asm>
: XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
NoItinerary, asm, "", []> {
bits<4> Rn;
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b100;
let Inst{22} = 0;
let Inst{21} = wb;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-0} = 0xa00;
}
def RFEDA : RFEI<0, "rfeda\t$Rn"> {
let Inst{24-23} = 0;
}
def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
let Inst{24-23} = 0;
}
def RFEDB : RFEI<0, "rfedb\t$Rn"> {
let Inst{24-23} = 0b10;
}
def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
let Inst{24-23} = 0b10;
}
def RFEIA : RFEI<0, "rfeia\t$Rn"> {
let Inst{24-23} = 0b01;
}
def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
let Inst{24-23} = 0b01;
}
def RFEIB : RFEI<0, "rfeib\t$Rn"> {
let Inst{24-23} = 0b11;
}
def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
let Inst{24-23} = 0b11;
}
// Hypervisor Call is a system instruction
let isCall = 1 in {
def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
"hvc", "\t$imm", []>,
Requires<[IsARM, HasVirtualization]> {
bits<16> imm;
// Even though HVC isn't predicable, it's encoding includes a condition field.
// The instruction is undefined if the condition field is 0xf otherwise it is
// unpredictable if it isn't condition AL (0xe).
let Inst{31-28} = 0b1110;
let Unpredictable{31-28} = 0b1111;
let Inst{27-24} = 0b0001;
let Inst{23-20} = 0b0100;
let Inst{19-8} = imm{15-4};
let Inst{7-4} = 0b0111;
let Inst{3-0} = imm{3-0};
}
}
// Return from exception in Hypervisor mode.
let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
Requires<[IsARM, HasVirtualization]> {
let Inst{23-0} = 0b011000000000000001101110;
}
//===----------------------------------------------------------------------===//
// Load / Store Instructions.
//
// Load
defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
zextloadi8>;
defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
truncstorei8>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
isReMaterializable = 1, isCodeGenOnly = 1 in
def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
[]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
// Loads with zero extension
def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
[(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
// Loads with sign extension
def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
Requires<[IsARM, HasV5TE]>;
}
def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "lda", "\t$Rt, $addr", []>;
def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldab", "\t$Rt, $addr", []>;
def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldah", "\t$Rt, $addr", []>;
// Indexed loads
multiclass AI2_ldridx<bit isByte, string opc,
InstrItinClass iii, InstrItinClass iir> {
def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 0;
let Inst{23} = addr{12};
let Inst{19-16} = addr{16-13};
let Inst{11-0} = addr{11-0};
let DecoderMethod = "DecodeLDRPreImm";
}
def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 1;
let Inst{23} = addr{12};
let Inst{19-16} = addr{16-13};
let Inst{11-0} = addr{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeLDRPreReg";
}
def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, iir,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, iii,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
let mayLoad = 1, hasSideEffects = 0 in {
// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
// IIC_iLoad_siu depending on whether it the offset register is shifted.
defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
}
multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode3_pre:$addr), IndexModePre,
LdMiscFrm, itin,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am3offset:$offset),
IndexModePost, LdMiscFrm, itin,
opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
[]> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
}
let mayLoad = 1, hasSideEffects = 0 in {
defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
let hasExtraDefRegAllocReq = 1 in {
def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
(ins addrmode3_pre:$addr), IndexModePre,
LdMiscFrm, IIC_iLoad_d_ru,
"ldrd", "\t$Rt, $Rt2, $addr!",
"$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am3offset:$offset),
IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
"ldrd", "\t$Rt, $Rt2, $addr, $offset",
"$addr.base = $Rn_wb", []> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
} // hasExtraDefRegAllocReq = 1
} // mayLoad = 1, hasSideEffects = 0
// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
let mayLoad = 1, hasSideEffects = 0 in {
def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, IIC_iLoad_ru,
"ldrt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRT_POST_IMM
: AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, IIC_iLoad_ru,
"ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, IIC_iLoad_bh_ru,
"ldrbt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRBT_POST_IMM
: AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, IIC_iLoad_bh_ru,
"ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
multiclass AI3ldrT<bits<4> op, string opc> {
def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
(ins addr_offset_none:$addr, postidx_imm8:$offset),
IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
"\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
bits<9> offset;
let Inst{23} = offset{8};
let Inst{22} = 1;
let Inst{11-8} = offset{7-4};
let Inst{3-0} = offset{3-0};
}
def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
(ins addr_offset_none:$addr, postidx_reg:$Rm),
IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
"\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
bits<5> Rm;
let Inst{23} = Rm{4};
let Inst{22} = 0;
let Inst{11-8} = 0;
let Unpredictable{11-8} = 0b1111;
let Inst{3-0} = Rm{3-0};
let DecoderMethod = "DecodeLDR";
}
}
defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
defm LDRHT : AI3ldrT<0b1011, "ldrht">;
defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
}
def LDRT_POST
: ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
(outs GPR:$Rt)>;
def LDRBT_POST
: ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
(outs GPR:$Rt)>;
// Pseudo instruction ldr Rt, =immediate
def LDRConstPool
: ARMAsmPseudo<"ldr${q} $Rt, $immediate",
(ins const_pool_asm_imm:$immediate, pred:$q),
(outs GPR:$Rt)>;
// Store
// Stores with truncate
def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
[(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
// Store doubleword
let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
Requires<[IsARM, HasV5TE]> {
let Inst{21} = 0;
}
}
// Indexed stores
multiclass AI2_stridx<bit isByte, string opc,
InstrItinClass iii, InstrItinClass iir> {
def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
StFrm, iii,
opc, "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 0;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{11-0} = addr{11-0}; // imm12
let DecoderMethod = "DecodeSTRPreImm";
}
def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, ldst_so_reg:$addr),
IndexModePre, StFrm, iir,
opc, "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 1;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{11-0} = addr{11-0};
let Inst{4} = 0; // Inst{4} = 0
let DecoderMethod = "DecodeSTRPreReg";
}
def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, iir,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, iii,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
let mayStore = 1, hasSideEffects = 0 in {
// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
// IIC_iStore_siu depending on whether it the offset register is shifted.
defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
}
def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset),
(STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset)>;
def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset),
(STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset)>;
def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset),
(STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset)>;
def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset),
(STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset)>;
// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
// put the patterns on the instruction definitions directly as ISel wants
// the address base and offset to be separate operands, not a single
// complex operand like we represent the instructions themselves. The
// pseudos map between the two.
let usesCustomInserter = 1,
Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
}
def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
StMiscFrm, IIC_iStore_bh_ru,
"strh", "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
"strh", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
[(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
addr_offset_none:$addr,
am3offset:$offset))]> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
IndexModePre, StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$Rt, $Rt2, $addr!",
"$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$Rt, $Rt2, $addr, $offset",
"$addr.base = $Rn_wb", []> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
// STRT, STRBT, and STRHT
def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, IIC_iStore_bh_ru,
"strbt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRBT_POST_IMM
: AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, IIC_iStore_bh_ru,
"strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRBT_POST
: ARMAsmPseudo<"strbt${q} $Rt, $addr",
(ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
let mayStore = 1, hasSideEffects = 0 in {
def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
"strt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRT_POST_IMM
: AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
"strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
def STRT_POST
: ARMAsmPseudo<"strt${q} $Rt, $addr",
(ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
multiclass AI3strT<bits<4> op, string opc> {
def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
(ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
"\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
bits<9> offset;
let Inst{23} = offset{8};
let Inst{22} = 1;
let Inst{11-8} = offset{7-4};
let Inst{3-0} = offset{3-0};
}
def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
(ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
"\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
bits<5> Rm;
let Inst{23} = Rm{4};
let Inst{22} = 0;
let Inst{11-8} = 0;
let Inst{3-0} = Rm{3-0};
}
}
defm STRHT : AI3strT<0b1011, "strht">;
def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stl", "\t$Rt, $addr", []>;
def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlb", "\t$Rt, $addr", []>;
def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlh", "\t$Rt, $addr", []>;
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
InstrItinClass itin, InstrItinClass itin_upd> {
// IA is the default, so no need for an explicit suffix on the
// mnemonic here. Without it is the canonical spelling.
def IA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def DA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def DB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def IB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
}
let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
IIC_iStore_mu>,
ComplexDeprecationPredicate<"ARMStore">;
} // hasSideEffects
// FIXME: remove when we have a way to marking a MI with these properties.
// FIXME: Should pc be an implicit operand like PICADD, etc?
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
reglist:$regs, variable_ops),
4, IIC_iLoad_mBr, [],
(LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
RegConstraint<"$Rn = $wb">;
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
IIC_iLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
IIC_iStore_mu>;
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let hasSideEffects = 0, isMoveReg = 1 in
def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
"mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{19-16} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
// A version for the smaller set of tail call registers.
let hasSideEffects = 0 in
def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
DPSoRegRegFrm, IIC_iMOVsr,
"mov", "\t$Rd, $src",
[(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> src;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-8} = src{11-8};
let Inst{7} = 0;
let Inst{6-5} = src{6-5};
let Inst{4} = 1;
let Inst{3-0} = src{3-0};
let Inst{25} = 0;
}
def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
DPSoRegImmFrm, IIC_iMOVsr,
"mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<12> src;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-5} = src{11-5};
let Inst{4} = 0;
let Inst{3-0} = src{3-0};
let Inst{25} = 0;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
"mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-0} = imm;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
DPFrm, IIC_iMOVi,
"movw", "\t$Rd, $imm",
[(set GPR:$Rd, imm0_65535:$imm)]>,
Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
let DecoderMethod = "DecodeArmMOVTWInstruction";
}
def : InstAlias<"mov${p} $Rd, $imm",
(MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
Requires<[IsARM, HasV6T2]>;
def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
(ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
Sched<[WriteALU]>;
let Constraints = "$src = $Rd" in {
def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
(ins GPR:$src, imm0_65535_expr:$imm),
DPFrm, IIC_iMOVi,
"movt", "\t$Rd, $imm",
[(set GPRnopc:$Rd,
(or (and GPR:$src, 0xffff),
lo16AllZero:$imm))]>, UnaryDP,
Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
let DecoderMethod = "DecodeArmMOVTWInstruction";
}
def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
(ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
Sched<[WriteALU]>;
} // Constraints
def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
Requires<[IsARM, HasV6T2]>;
let Uses = [CPSR] in
def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
[(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
Requires<[IsARM]>, Sched<[WriteALU]>;
// These aren't really mov instructions, but we have to define them this way
// due to flag operands.
let Defs = [CPSR] in {
def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
Sched<[WriteALU]>, Requires<[IsARM]>;
def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
Sched<[WriteALU]>, Requires<[IsARM]>;
}
//===----------------------------------------------------------------------===//
// Extend Instructions.
//
// Sign extenders
def SXTB : AI_ext_rrot<0b01101010,
"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
def SXTH : AI_ext_rrot<0b01101011,
"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
def SXTAB : AI_exta_rrot<0b01101010,
"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
def SXTAH : AI_exta_rrot<0b01101011,
"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
(SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
i16)),
(SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">;
def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
(SXTB16 GPR:$Src, 0)>;
def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
(SXTB16 GPR:$Src, rot_imm:$rot)>;
def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
(SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
(SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
// Zero extenders
let AddedComplexity = 16 in {
def UXTB : AI_ext_rrot<0b01101110,
"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
def UXTH : AI_ext_rrot<0b01101111,
"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
def UXTB16 : AI_ext_rrot<0b01101100,
"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
// The transformation should probably be done as a combiner action
// instead so we can include a check for masking back in the upper
// eight bits of the source into the lower eight bits of the result.
//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
// (UXTB16r_rot GPR:$Src, 3)>;
def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
(UXTB16 GPR:$Src, 1)>;
def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
(UXTB16 GPR:$Src, 0)>;
def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
(UXTB16 GPR:$Src, rot_imm:$rot)>;
def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
(UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
(UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
}
// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
(UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
(UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
def SBFX : I<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111101;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
def UBFX : I<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111111;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
let isAdd = 1 in
defm ADD : AsI1_bin_irs<0b0100, "add",
IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
defm SUB : AsI1_bin_irs<0b0010, "sub",
IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
// ADD and SUB with 's' bit set.
//
// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
// selection DAG. They are "lowered" to real ADD/SUB opcodes by
// AdjustInstrPostInstrSelection where we determine whether or not to
// set the "s" bit based on CPSR liveness.
//
// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
// support for an optional CPSR definition that corresponds to the DAG
// node's second value. We can then eliminate the implicit def of CPSR.
let isAdd = 1 in
defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
(SUBSrsi $Rn, so_reg_imm:$shift)>;
def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
(SUBSrsr $Rn, so_reg_reg:$shift)>;
let isAdd = 1 in
defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
defm RSB : AsI1_rbin_irs<0b0011, "rsb",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
sub>;
// FIXME: Eliminate them if we can write def : Pat patterns which defines
// CPSR and the implicit def of CPSR is not needed.
defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
// The assume-no-carry-in form uses the negation of the input since add/sub
// assume opposite meanings of the carry flag (i.e., carry == !borrow).
// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
// details.
def : ARMPat<(add GPR:$src, mod_imm_neg:$imm),
(SUBri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
(SUBSri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm),
(SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
(SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
// The with-carry-in form matches bitwise not instead of the negation.
// Effectively, the inverse interpretation of the carry flag already accounts
// for part of the negation.
def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
(SBCri GPR:$src, mod_imm_not:$imm)>;
def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
(SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
// Note: These are implemented in C++ code, because they have to generate
// ADD/SUBrs instructions, which use a complex pattern that a xform function
// cannot produce.
// (mul X, 2^n+1) -> (add (X << n), X)
// (mul X, 2^n-1) -> (rsb X, (X << n))
// ARM Arithmetic Instruction
// GPR:$dst = GPR:$a op GPR:$b
class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
list<dag> pattern = [],
dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
string asm = "\t$Rd, $Rn, $Rm">
: AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rd;
bits<4> Rm;
let Inst{27-20} = op27_20;
let Inst{11-4} = op11_4;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
let Unpredictable{11-8} = 0b1111;
}
// Wrappers around the AAI class
class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
list<dag> pattern = []>
: AAI<op27_20, op11_4, opc,
pattern,
(ins GPRnopc:$Rm, GPRnopc:$Rn),
"\t$Rd, $Rm, $Rn">;
class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
Intrinsic intrinsic>
: AAI<op27_20, op11_4, opc,
[(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
// Saturating add/subtract
let hasSideEffects = 1 in {
def QADD8 : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
def QADD16 : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
def QSUB16 : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
def QSUB8 : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
def QDADD : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
[(set GPRnopc:$Rd, (int_arm_qadd (int_arm_qadd GPRnopc:$Rm,
GPRnopc:$Rm),
GPRnopc:$Rn))]>;
def QDSUB : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
[(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
(int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
def QSUB : AAIRevOpr<0b00010010, 0b00000101, "qsub",
[(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
let DecoderMethod = "DecodeQADDInstruction" in
def QADD : AAIRevOpr<0b00010000, 0b00000101, "qadd",
[(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
}
def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b),
(QADD GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b),
(QSUB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(saddsat(saddsat rGPR:$Rm, rGPR:$Rm), rGPR:$Rn),
(QDADD rGPR:$Rm, rGPR:$Rn)>;
def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
(QDSUB rGPR:$Rm, rGPR:$Rn)>;
def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn),
(QADD8 rGPR:$Rm, rGPR:$Rn)>;
def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn),
(QSUB8 rGPR:$Rm, rGPR:$Rn)>;
def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn),
(QADD16 rGPR:$Rm, rGPR:$Rn)>;
def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn),
(QSUB16 rGPR:$Rm, rGPR:$Rn)>;
def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
def UQADD8 : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
def UQSUB8 : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
def QASX : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
def QSAX : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
def UQASX : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
def UQSAX : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
// Signed/Unsigned add/subtract
def SASX : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
def SADD8 : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
def SSAX : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
def SSUB8 : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
def UASX : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
def UADD8 : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
def USAX : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
def USUB8 : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
// Signed/Unsigned halving add/subtract
def SHASX : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
def SHADD8 : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
def SHSAX : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
def SHSUB8 : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
def UHASX : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
def UHADD8 : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
def UHSAX : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
def UHSUB8 : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
// Unsigned Sum of Absolute Differences [and Accumulate].
def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
MulFrm /* for convenience */, NoItinerary, "usad8",
"\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{27-20} = 0b01111000;
let Inst{15-12} = 0b1111;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
MulFrm /* for convenience */, NoItinerary, "usada8",
"\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
bits<4> Ra;
let Inst{27-20} = 0b01111000;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Signed/Unsigned saturate
def SSAT : AI<(outs GPRnopc:$Rd),
(ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
Requires<[IsARM,HasV6]>{
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110101;
let Inst{5-4} = 0b01;
let Inst{20-16} = sat_imm;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{4-0};
let Inst{6} = sh{5};
let Inst{3-0} = Rn;
}
def SSAT16 : AI<(outs GPRnopc:$Rd),
(ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
Requires<[IsARM,HasV6]>{
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101010;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT : AI<(outs GPRnopc:$Rd),
(ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
Requires<[IsARM,HasV6]> {
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110111;
let Inst{5-4} = 0b01;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{4-0};
let Inst{6} = sh{5};
let Inst{20-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT16 : AI<(outs GPRnopc:$Rd),
(ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
Requires<[IsARM,HasV6]>{
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101110;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
(SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
(USAT imm0_31:$pos, GPRnopc:$a, 0)>;
def : ARMPat<(ARMssatnoshift GPRnopc:$Rn, imm0_31:$imm),
(SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
def : ARMPat<(ARMusatnoshift GPRnopc:$Rn, imm0_31:$imm),
(USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
(SSAT16 imm1_16:$pos, GPRnopc:$a)>;
def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
(USAT16 imm0_15:$pos, GPRnopc:$a)>;
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
defm AND : AsI1_bin_irs<0b0000, "and",
IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
defm ORR : AsI1_bin_irs<0b1100, "orr",
IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
defm EOR : AsI1_bin_irs<0b0001, "eor",
IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
defm BIC : AsI1_bin_irs<0b1110, "bic",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
// like in the actual instruction encoding. The complexity of mapping the mask
// to the lsb/msb pair should be handled by ISel, not encapsulated in the
// instruction description.
def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfc", "\t$Rd, $imm", "$src = $Rd",
[(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<10> imm;
let Inst{27-21} = 0b0111110;
let Inst{6-0} = 0b0011111;
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // msb
}
// A8.6.18 BFI - Bitfield insert (Encoding A1)
def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
[(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
bf_inv_mask_imm:$imm))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<10> imm;
let Inst{27-21} = 0b0111110;
let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // width
let Inst{3-0} = Rn;
}
def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
"mvn", "\t$Rd, $Rm",
[(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
let Unpredictable{19-16} = 0b1111;
}
def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
[(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
let Unpredictable{19-16} = 0b1111;
}
def MVNsr : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
[(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
let Unpredictable{19-16} = 0b1111;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
IIC_iMVNi, "mvn", "\t$Rd, $imm",
[(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
let AddedComplexity = 1 in
def : ARMPat<(and GPR:$src, mod_imm_not:$imm),
(BICri GPR:$src, mod_imm_not:$imm)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// FIXME: The v5 pseudos are only necessary for the additional Constraint
// property. Remove them when it's possible to add those properties
// on an individual MachineInstr, not just an instruction description.
let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
[(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
let Inst{15-12} = 0b0000;
let Unpredictable{15-12} = 0b1111;
}
let Constraints = "@earlyclobber $Rd" in
def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
pred:$p, cc_out:$s),
4, IIC_iMUL32,
[(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
(MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6, UseMulOps]>,
Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
}
def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
Requires<[IsARM, HasV6, UseMulOps]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
bits<4> Ra;
let Inst{15-12} = Ra;
}
let Constraints = "@earlyclobber $Rd" in
def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
pred:$p, cc_out:$s), 4, IIC_iMAC32,
[(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
(MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
Requires<[IsARM, HasV6T2, UseMulOps]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<4> Ra;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Extra precision multiplies with low / high results
let hasSideEffects = 0 in {
let isCommutable = 1 in {
def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"smull", "\t$RdLo, $RdHi, $Rn, $Rm",
[(set GPR:$RdLo, GPR:$RdHi,
(smullohi GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"umull", "\t$RdLo, $RdHi, $Rn, $Rm",
[(set GPR:$RdLo, GPR:$RdHi,
(umullohi GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4, IIC_iMUL64,
[(set GPR:$RdLo, GPR:$RdHi,
(smullohi GPR:$Rn, GPR:$Rm))],
(SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>,
Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4, IIC_iMUL64,
[(set GPR:$RdLo, GPR:$RdHi,
(umullohi GPR:$Rn, GPR:$Rm))],
(UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>,
Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
}
}
// Multiply + accumulate
def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
"smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
"umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
IIC_iMAC64,
"umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
let Constraints =
"@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4, IIC_iMAC64, [],
(SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4, IIC_iMAC64, [],
(UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
}
} // hasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
let Inst{15-12} = 0b1111;
}
def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
let Inst{15-12} = 0b1111;
}
def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
Requires<[IsARM, HasV6, UseMulOps]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6, UseMulOps]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
multiclass AI_smul<string opc> {
def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
}
multiclass AI_smla<string opc> {
let DecoderMethod = "DecodeSMLAInstruction" in {
def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add GPR:$Ra,
(bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add GPR:$Ra,
(bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add GPR:$Ra,
(tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add GPR:$Ra,
(tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd,
(add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd,
(add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>,
Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
}
}
defm SMUL : AI_smul<"smul">;
defm SMLA : AI_smla<"smla">;
// Halfword multiply accumulate long: SMLAL<x><y>.
class SMLAL<bits<2> opc1, string asm>
: AMulxyI64<0b0001010, opc1,
(outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
Requires<[IsARM, HasV5TE]>,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
def SMLALBB : SMLAL<0b00, "smlalbb">;
def SMLALBT : SMLAL<0b10, "smlalbt">;
def SMLALTB : SMLAL<0b01, "smlaltb">;
def SMLALTT : SMLAL<0b11, "smlaltt">;
def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
(SMLALBB $Rn, $Rm, $RLo, $RHi)>;
def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
(SMLALBT $Rn, $Rm, $RLo, $RHi)>;
def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
(SMLALTB $Rn, $Rm, $RLo, $RHi)>;
def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
(SMLALTT $Rn, $Rm, $RLo, $RHi)>;
// Helper class for AI_smld.
class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AI<oops, iops, MulFrm, itin, opc, asm, []>,
Requires<[IsARM, HasV6]> {
bits<4> Rn;
bits<4> Rm;
let Inst{27-23} = 0b01110;
let Inst{22} = long;
let Inst{21-20} = 0b00;
let Inst{11-8} = Rm;
let Inst{7} = 0;
let Inst{6} = sub;
let Inst{5} = swap;
let Inst{4} = 1;
let Inst{3-0} = Rn;
}
class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Rd;
let Inst{15-12} = 0b1111;
let Inst{19-16} = Rd;
}
class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Ra;
bits<4> Rd;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
}
class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> RdLo;
bits<4> RdHi;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
}
multiclass AI_smld<bit sub, string opc> {
def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
NoItinerary,
!strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
NoItinerary,
!strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
}
defm SMLA : AI_smld<0, "smla">;
defm SMLS : AI_smld<1, "smls">;
def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
(SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
(SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
(SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
(SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
(SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
(SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
(SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
(SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
multiclass AI_sdml<bit sub, string opc> {
def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
}
defm SMUA : AI_sdml<0, "smua">;
defm SMUS : AI_sdml<1, "smus">;
def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
(SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
(SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
(SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
(SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
//===----------------------------------------------------------------------===//
// Division Instructions (ARMv7-A with virtualization extension)
//
def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
"sdiv", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasDivideInARM]>,
Sched<[WriteDIV]>;
def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
"udiv", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasDivideInARM]>,
Sched<[WriteDIV]>;
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "clz", "\t$Rd, $Rm",
[(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
Sched<[WriteALU]>;
def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rbit", "\t$Rd, $Rm",
[(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
Requires<[IsARM, HasV6T2]>,
Sched<[WriteALU]>;
def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev", "\t$Rd, $Rm",
[(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
let AddedComplexity = 5 in
def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev16", "\t$Rd, $Rm",
[(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
(REV16 (LDRH addrmode3:$addr))>;
def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
(STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
let AddedComplexity = 5 in
def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "revsh", "\t$Rd, $Rm",
[(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
(and (srl GPR:$Rm, (i32 8)), 0xFF)),
(REVSH GPR:$Rm)>;
def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
[(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
(and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
0xFFFF0000)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALUsi, ReadALU]>;
// Alternate cases for PKHBT where identities eliminate some nodes.
def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
(PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
(PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
// will match the pattern below.
def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
[(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
(and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
0xFFFF)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALUsi, ReadALU]>;
// Alternate cases for PKHTB where identities eliminate some nodes. Note that
// a shift amount of 0 is *not legal* here, it is PKHBT instead.
// We also can not replace a srl (17..31) by an arithmetic shift we would use in
// pkhtb src1, src2, asr (17..31).
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(srl GPRnopc:$src2, imm16:$sh)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(sra GPRnopc:$src2, imm16_31:$sh)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
//===----------------------------------------------------------------------===//
// CRC Instructions
//
// Polynomials:
// + CRC32{B,H,W} 0x04C11DB7
// + CRC32C{B,H,W} 0x1EDC6F41
//
class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
: AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
!strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
[(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
Requires<[IsARM, HasV8, HasCRC]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{31-28} = 0b1110;
let Inst{27-23} = 0b00010;
let Inst{22-21} = sz;
let Inst{20} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = 0b00;
let Inst{9} = C;
let Inst{8} = 0;
let Inst{7-4} = 0b0100;
let Inst{3-0} = Rm;
let Unpredictable{11-8} = 0b1101;
}
def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
//===----------------------------------------------------------------------===//
// ARMv8.1a Privilege Access Never extension
//
// SETPAN #imm1
def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
"\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
bits<1> imm;
let Inst{31-28} = 0b1111;
let Inst{27-20} = 0b00010001;
let Inst{19-16} = 0b0000;
let Inst{15-10} = 0b000000;
let Inst{9} = imm;
let Inst{8} = 0b0;
let Inst{7-4} = 0b0000;
let Inst{3-0} = 0b0000;
let Unpredictable{19-16} = 0b1111;
let Unpredictable{15-10} = 0b111111;
let Unpredictable{8} = 0b1;
let Unpredictable{3-0} = 0b1111;
}
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
defm CMP : AI1_cmp_irs<0b1010, "cmp",
IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
// ARMcmpZ can re-use the above instruction definitions.
def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
(CMPri GPR:$src, mod_imm:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
(CMPrr GPR:$src, GPR:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
(CMPrsi GPR:$src, so_reg_imm:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
(CMPrsr GPR:$src, so_reg_reg:$rhs)>;
// CMN register-integer
let isCompare = 1, Defs = [CPSR] in {
def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
"cmn", "\t$Rn, $imm",
[(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = imm;
let Unpredictable{15-12} = 0b1111;
}
// CMN register-register/shift
def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
"cmn", "\t$Rn, $Rm",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rm;
let isCommutable = 1;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
let Unpredictable{15-12} = 0b1111;
}
def CMNzrsi : AI1<0b1011, (outs),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
"cmn", "\t$Rn, $shift",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPR:$Rn, so_reg_imm:$shift)]>,
Sched<[WriteCMPsi, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
def CMNzrsr : AI1<0b1011, (outs),
(ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
"cmn", "\t$Rn, $shift",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPRnopc:$Rn, so_reg_reg:$shift)]>,
Sched<[WriteCMPsr, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
}
def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm),
(CMNri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
(CMNri GPR:$src, mod_imm_neg:$imm)>;
// Note that TST/TEQ don't set all the same flags that CMP does!
defm TST : AI1_cmp_irs<0b1000, "tst",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
"DecodeTSTInstruction">;
defm TEQ : AI1_cmp_irs<0b1001, "teq",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
// Pseudo i64 compares for some floating point compares.
let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
Defs = [CPSR] in {
def BCCi64 : PseudoInst<(outs),
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
Sched<[WriteBr]>;
def BCCZi64 : PseudoInst<(outs),
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
Sched<[WriteBr]>;
} // usesCustomInserter
// Conditional moves
let hasSideEffects = 0 in {
let isCommutable = 1, isSelect = 1 in
def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, GPR:$Rm, cmovpred:$p),
4, IIC_iCMOVr,
[(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4, IIC_iCMOVsr,
[(set GPR:$Rd,
(ARMcmov GPR:$false, so_reg_imm:$shift,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4, IIC_iCMOVsr,
[(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
let isMoveImm = 1 in
def MOVCCi16
: ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4, IIC_iMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
Sched<[WriteALU]>;
let isMoveImm = 1 in
def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
// Two instruction predicate mov immediate.
let isMoveImm = 1 in
def MOVCCi32imm
: ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, i32imm:$src, cmovpred:$p),
8, IIC_iCMOVix2,
[(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
let isMoveImm = 1 in
def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
} // hasSideEffects
//===----------------------------------------------------------------------===//
// Atomic operations intrinsics
//
def MemBarrierOptOperand : AsmOperandClass {
let Name = "MemBarrierOpt";
let ParserMethod = "parseMemBarrierOptOperand";
}
def memb_opt : Operand<i32> {
let PrintMethod = "printMemBOption";
let ParserMatchClass = MemBarrierOptOperand;
let DecoderMethod = "DecodeMemBarrierOption";
}
def InstSyncBarrierOptOperand : AsmOperandClass {
let Name = "InstSyncBarrierOpt";
let ParserMethod = "parseInstSyncBarrierOptOperand";
}
def instsyncb_opt : Operand<i32> {
let PrintMethod = "printInstSyncBOption";
let ParserMatchClass = InstSyncBarrierOptOperand;
let DecoderMethod = "DecodeInstSyncBarrierOption";
}
def TraceSyncBarrierOptOperand : AsmOperandClass {
let Name = "TraceSyncBarrierOpt";
let ParserMethod = "parseTraceSyncBarrierOptOperand";
}
def tsb_opt : Operand<i32> {
let PrintMethod = "printTraceSyncBOption";
let ParserMatchClass = TraceSyncBarrierOptOperand;
}
// Memory barriers protect the atomic sequences
let hasSideEffects = 1 in {
def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff05;
let Inst{3-0} = opt;
}
def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff04;
let Inst{3-0} = opt;
}
// ISB has only full system option
def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
"isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff06;
let Inst{3-0} = opt;
}
let hasNoSchedulingInfo = 1 in
def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
"tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
let Inst{31-0} = 0xe320f012;
}
}
// Armv8.5-A speculation barrier
def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
Requires<[IsARM, HasSB]>, Sched<[]> {
let Inst{31-0} = 0xf57ff070;
let Unpredictable = 0x000fff0f;
let hasSideEffects = 1;
}
let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
// Pseudo instruction that combines movs + predicated rsbmi
// to implement integer ABS
def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
}
let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
def COPY_STRUCT_BYVAL_I32 : PseudoInst<
(outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
NoItinerary,
[(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
}
let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
// %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
// Copies N registers worth of memory from address %src to address %dst
// and returns the incremented addresses. N scratch register will
// be attached for the copy to use.
def MEMCPY : PseudoInst<
(outs GPR:$newdst, GPR:$newsrc),
(ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
NoItinerary,
[(set GPR:$newdst, GPR:$newsrc,
(ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
}
def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def strex_1 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def strex_2 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def strex_4 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
let mayLoad = 1 in {
def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrexb", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrexh", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrex", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
let hasExtraDefRegAllocReq = 1 in
def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegLoad";
}
def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaexb", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaexh", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaex", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
let hasExtraDefRegAllocReq = 1 in
def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegLoad";
}
}
let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_1 GPR:$Rt,
addr_offset_none:$addr))]>;
def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_2 GPR:$Rt,
addr_offset_none:$addr))]>;
def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strex", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_4 GPR:$Rt,
addr_offset_none:$addr))]>;
let hasExtraSrcRegAllocReq = 1 in
def STREXD : AIstrex<0b01, (outs GPR:$Rd),
(ins GPRPairOp:$Rt, addr_offset_none:$addr),
NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegStore";
}
def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
let hasExtraSrcRegAllocReq = 1 in
def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
(ins GPRPairOp:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegStore";
}
}
def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
[(int_arm_clrex)]>,
Requires<[IsARM, HasV6K]> {
let Inst{31-0} = 0b11110101011111111111000000011111;
}
def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
(STREXB GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
(STREXH GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
(STLEXB GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
(STLEXH GPR:$Rt, addr_offset_none:$addr)>;
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return isAcquireOrStronger(Ordering);
}]>;
def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return isReleaseOrStronger(Ordering);
}]>;
def atomic_store_release_8 : releasing_store<atomic_store_8>;
def atomic_store_release_16 : releasing_store<atomic_store_16>;
def atomic_store_release_32 : releasing_store<atomic_store_32>;
let AddedComplexity = 8 in {
def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>;
def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>;
}
// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
let mayLoad = 1, mayStore = 1 in {
def SWP : AIswp<0, (outs GPRnopc:$Rt),
(ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
Requires<[IsARM,PreV8]>;
def SWPB: AIswp<1, (outs GPRnopc:$Rt),
(ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
Requires<[IsARM,PreV8]>;
}
//===----------------------------------------------------------------------===//
// Coprocessor Instructions.
//
def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
[(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
timm:$CRm, timm:$opc2)]>,
Requires<[IsARM,PreV8]> {
bits<4> opc1;
bits<4> CRn;
bits<4> CRd;
bits<4> cop;
bits<3> opc2;
bits<4> CRm;
let Inst{3-0} = CRm;
let Inst{4} = 0;
let Inst{7-5} = opc2;
let Inst{11-8} = cop;
let Inst{15-12} = CRd;
let Inst{19-16} = CRn;
let Inst{23-20} = opc1;
let DecoderNamespace = "CoProc";
}
def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
[(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
timm:$CRm, timm:$opc2)]>,
Requires<[IsARM,PreV8]> {
let Inst{31-28} = 0b1111;
bits<4> opc1;
bits<4> CRn;
bits<4> CRd;
bits<4> cop;
bits<3> opc2;
bits<4> CRm;
let Inst{3-0} = CRm;
let Inst{4} = 0;
let Inst{7-5} = opc2;
let Inst{11-8} = cop;
let Inst{15-12} = CRd;
let Inst{19-16} = CRn;
let Inst{23-20} = opc1;
let DecoderNamespace = "CoProc";
}
class ACI<dag oops, dag iops, string opc, string asm,
list<dag> pattern, IndexMode im = IndexModeNone>
: I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
opc, asm, "", pattern> {
let Inst{27-25} = 0b110;
}
class ACInoP<dag oops, dag iops, string opc, string asm,
list<dag> pattern, IndexMode im = IndexModeNone>
: InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
opc, asm, "", pattern> {
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b110;
}
let DecoderNamespace = "CoProc" in {
multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
asm, "\t$cop, $CRd, $addr", pattern> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
postidx_imm8s4:$offset),
asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
bits<9> offset;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = offset{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = offset{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _OPTION : ACI<(outs),
(ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
coproc_option_imm:$option),
asm, "\t$cop, $CRd, $addr, $option", []> {
bits<8> option;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = option;
let DecoderMethod = "DecodeCopMemInstruction";
}
}
multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
asm, "\t$cop, $CRd, $addr", pattern> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
postidx_imm8s4:$offset),
asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
bits<9> offset;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = offset{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = offset{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _OPTION : ACInoP<(outs),
(ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
coproc_option_imm:$option),
asm, "\t$cop, $CRd, $addr, $option", []> {
bits<8> option;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = option;
let DecoderMethod = "DecodeCopMemInstruction";
}
}
defm LDC : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
defm LDCL : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
defm LDC2 : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
defm STC : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
defm STCL : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
defm STC2 : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
} // DecoderNamespace = "CoProc"
//===----------------------------------------------------------------------===//
// Move between coprocessor and ARM core register.
//
class MovRCopro<string opc, bit direction, dag oops, dag iops,
list<dag> pattern>
: ABI<0b1110, oops, iops, NoItinerary, opc,
"\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
let Inst{20} = direction;
let Inst{4} = 1;
bits<4> Rt;
bits<4> cop;
bits<3> opc1;
bits<3> opc2;
bits<4> CRm;
bits<4> CRn;
let Inst{15-12} = Rt;
let Inst{11-8} = cop;
let Inst{23-21} = opc1;
let Inst{7-5} = opc2;
let Inst{3-0} = CRm;
let Inst{19-16} = CRn;
let DecoderNamespace = "CoProc";
}
def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
(outs),
(ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, imm0_7:$opc2),
[(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
timm:$CRm, timm:$opc2)]>,
ComplexDeprecationPredicate<"MCR">;
def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
(MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, 0, pred:$p)>;
def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
(outs GPRwithAPSR:$Rt),
(ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
imm0_7:$opc2), []>;
def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
(MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
c_imm:$CRm, 0, pred:$p)>;
def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
(MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
class MovRCopro2<string opc, bit direction, dag oops, dag iops,
list<dag> pattern>
: ABXI<0b1110, oops, iops, NoItinerary,
!strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
let Inst{31-24} = 0b11111110;
let Inst{20} = direction;
let Inst{4} = 1;
bits<4> Rt;
bits<4> cop;
bits<3> opc1;
bits<3> opc2;
bits<4> CRm;
bits<4> CRn;
let Inst{15-12} = Rt;
let Inst{11-8} = cop;
let Inst{23-21} = opc1;
let Inst{7-5} = opc2;
let Inst{3-0} = CRm;
let Inst{19-16} = CRn;
let DecoderNamespace = "CoProc";
}
def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
(outs),
(ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, imm0_7:$opc2),
[(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
timm:$CRm, timm:$opc2)]>,
Requires<[IsARM,PreV8]>;
def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
(MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, 0)>;
def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
(outs GPRwithAPSR:$Rt),
(ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
imm0_7:$opc2), []>,
Requires<[IsARM,PreV8]>;
def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
(MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
c_imm:$CRm, 0)>;
def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
timm:$CRm, timm:$opc2),
(MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
pattern = []>
: ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
pattern> {
let Inst{23-21} = 0b010;
let Inst{20} = direction;
bits<4> Rt;
bits<4> Rt2;
bits<4> cop;
bits<4> opc1;
bits<4> CRm;
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{11-8} = cop;
let Inst{7-4} = opc1;
let Inst{3-0} = CRm;
}
def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
(outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, c_imm:$CRm),
[(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, timm:$CRm)]>;
def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
(outs GPRnopc:$Rt, GPRnopc:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
list<dag> pattern = []>
: ABXI<0b1100, oops, iops, NoItinerary,
!strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
Requires<[IsARM,PreV8]> {
let Inst{31-28} = 0b1111;
let Inst{23-21} = 0b010;
let Inst{20} = direction;
bits<4> Rt;
bits<4> Rt2;
bits<4> cop;
bits<4> opc1;
bits<4> CRm;
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{11-8} = cop;
let Inst{7-4} = opc1;
let Inst{3-0} = CRm;
let DecoderMethod = "DecoderForMRRC2AndMCRR2";
}
def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
(outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, c_imm:$CRm),
[(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, timm:$CRm)]>;
def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
(outs GPRnopc:$Rt, GPRnopc:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
//===----------------------------------------------------------------------===//
// Move between special register and ARM core register
//
// Move to ARM core register from Special Register
def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
"mrs", "\t$Rd, apsr", []> {
bits<4> Rd;
let Inst{23-16} = 0b00001111;
let Unpredictable{19-17} = 0b111;
let Inst{15-12} = Rd;
let Inst{11-0} = 0b000000000000;
let Unpredictable{11-0} = 0b110100001111;
}
def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
Requires<[IsARM]>;
// The MRSsys instruction is the MRS instruction from the ARM ARM,
// section B9.3.9, with the R bit set to 1.
def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
"mrs", "\t$Rd, spsr", []> {
bits<4> Rd;
let Inst{23-16} = 0b01001111;
let Unpredictable{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-0} = 0b000000000000;
let Unpredictable{11-0} = 0b110100001111;
}
// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
// separate encoding (distinguished by bit 5.
def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
NoItinerary, "mrs", "\t$Rd, $banked", []>,
Requires<[IsARM, HasVirtualization]> {
bits<6> banked;
bits<4> Rd;
let Inst{23} = 0;
let Inst{22} = banked{5}; // R bit
let Inst{21-20} = 0b00;
let Inst{19-16} = banked{3-0};
let Inst{15-12} = Rd;
let Inst{11-9} = 0b001;
let Inst{8} = banked{4};
let Inst{7-0} = 0b00000000;
}
// Move from ARM core register to Special Register
//
// No need to have both system and application versions of MSR (immediate) or
// MSR (register), the encodings are the same and the assembly parser has no way
// to distinguish between them. The mask operand contains the special register
// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
// accessed in the special register.
let Defs = [CPSR] in
def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
"msr", "\t$mask, $Rn", []> {
bits<5> mask;
bits<4> Rn;
let Inst{23} = 0;
let Inst{22} = mask{4}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = mask{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rn;
}
let Defs = [CPSR] in
def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary,
"msr", "\t$mask, $imm", []> {
bits<5> mask;
bits<12> imm;
let Inst{23} = 0;
let Inst{22} = mask{4}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = mask{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-0} = imm;
}
// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
// separate encoding (distinguished by bit 5.
def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
NoItinerary, "msr", "\t$banked, $Rn", []>,
Requires<[IsARM, HasVirtualization]> {
bits<6> banked;
bits<4> Rn;
let Inst{23} = 0;
let Inst{22} = banked{5}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = banked{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-9} = 0b001;
let Inst{8} = banked{4};
let Inst{7-4} = 0b0000;
let Inst{3-0} = Rn;
}
// Dynamic stack allocation yields a _chkstk for Windows targets. These calls
// are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.
def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
[SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
[(win__dbzchk tGPR:$divisor)]>;
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
// This is a pseudo inst so that we can get the encoding right,
// complete with fixup for the aeabi_read_tp function.
// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
// is defined in "ARMInstrThumb.td".
let isCall = 1,
Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
[(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
Requires<[IsARM, IsReadTPSoft]>;
}
// Reading thread pointer from coprocessor register
def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
Requires<[IsARM, IsReadTPHard]>;
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
// eh_sjlj_setjmp() is an instruction sequence to store the return
// address and save #0 in R0 for the non-longjmp case.
// Since by its nature we may be coming from some other function to get
// here, and we're using the stack frame for the containing function to
// save/restore registers, we can't keep anything live in regs across
// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
// when we get here from a longjmp(). We force everything out of registers
// except for our own input by listing the relevant registers in Defs. By
// doing so, we also cause the prologue/epilogue code to actively preserve
// all of the callee-saved resgisters, which is exactly what we want.
// A constant value is passed in $val, and we use the location as a scratch.
//
// These are pseudo-instructions and are lowered to individual MC-insts, so
// no encoding information is necessary.
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR,
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, HasVFP2]>;
}
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ],
hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, NoVFP]>;
}
// FIXME: Non-IOS version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
Defs = [ R7, LR, SP ] in {
def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
NoItinerary,
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsARM]>;
}
let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
[(ARMeh_sjlj_setup_dispatch)]>;
// eh.sjlj.dispatchsetup pseudo-instruction.
// This pseudo is used for both ARM and Thumb. Any differences are handled when
// the pseudo is expanded (which happens before any passes that need the
// instruction size).
let isBarrier = 1 in
def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// ARMv4 indirect branch using (MOVr PC, dst)
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
4, IIC_Br, [(brind GPR:$dst)],
(MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
4, IIC_Br, [],
(MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
// Large immediate handling.
// 32-bit immediate using two piece mod_imms or movw + movt.
// This is a single pseudo instruction, the benefit is that it can be remat'd
// as a single unit instead of having to handle reg inputs.
// FIXME: Remove this when we can do generalized remat.
let isReMaterializable = 1, isMoveImm = 1 in
def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
[(set GPR:$dst, (arm_i32imm:$src))]>,
Requires<[IsARM]>;
def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
[(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
Requires<[IsARM, DontUseMovt]>;
// Pseudo instruction that combines movw + movt + add pc (if PIC).
// It also makes it possible to rematerialize the instructions.
// FIXME: Remove this when we can do generalized remat and when machine licm
// can properly the instructions.
let isReMaterializable = 1 in {
def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iMOVix2addpc,
[(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsARM, UseMovtInPic]>;
def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iLoadiALU,
[(set GPR:$dst,
(ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsARM, DontUseMovtInPic]>;
let AddedComplexity = 10 in
def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
NoItinerary,
[(set GPR:$dst,
(load (ARMWrapperPIC tglobaladdr:$addr)))]>,
Requires<[IsARM, DontUseMovtInPic]>;
let AddedComplexity = 10 in
def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iMOVix2ld,
[(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
Requires<[IsARM, UseMovtInPic]>;
} // isReMaterializable
// The many different faces of TLS access.
def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
(MOVi32imm tglobaltlsaddr :$dst)>,
Requires<[IsARM, UseMovt]>;
def : Pat<(ARMWrapper tglobaltlsaddr:$src),
(LDRLIT_ga_abs tglobaltlsaddr:$src)>,
Requires<[IsARM, DontUseMovt]>;
def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
(MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
(LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
Requires<[IsARM, DontUseMovtInPic]>;
let AddedComplexity = 10 in
def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
(MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
Requires<[IsARM, UseMovtInPic]>;
// ConstantPool, GlobalAddress, and JumpTable
def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
Requires<[IsARM, UseMovt]>;
def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
Requires<[IsARM, UseMovt]>;
def : ARMPat<(ARMWrapperJT tjumptable:$dst),
(LEApcrelJT tjumptable:$dst)>;
// TODO: add,sub,and, 3-instr forms?
// Tail calls. These patterns also apply to Thumb mode.
def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
// Direct calls
def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
def : ARMPat<(ARMcall_nolink texternalsym:$func),
(BMOVPCB_CALL texternalsym:$func)>;
// zextload i1 -> zextload i8
def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
// extload -> zextload
def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
// smul* and smla*
def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
(SMULTT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
(SMULWB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
(SMULWT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
(SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
(SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
(SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
// Pre-v7 uses MCR for synchronization barriers.
def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
Requires<[IsARM, HasV6]>;
// SXT/UXT with no rotate
let AddedComplexity = 16 in {
def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
(UXTAB GPR:$Rn, GPR:$Rm, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
(UXTAH GPR:$Rn, GPR:$Rm, 0)>;
}
def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>;
def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
(SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
(SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
// Atomic load/store patterns
def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
(LDRBrs ldst_so_reg:$src)>;
def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
(LDRBi12 addrmode_imm12:$src)>;
def : ARMPat<(atomic_load_16 addrmode3:$src),
(LDRH addrmode3:$src)>;
def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
(LDRrs ldst_so_reg:$src)>;
def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
(LDRi12 addrmode_imm12:$src)>;
def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
(STRBrs GPR:$val, ldst_so_reg:$ptr)>;
def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
(STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
(STRH GPR:$val, addrmode3:$ptr)>;
def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
(STRrs GPR:$val, ldst_so_reg:$ptr)>;
def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
(STRi12 GPR:$val, addrmode_imm12:$ptr)>;
//===----------------------------------------------------------------------===//
// Thumb Support
//
include "ARMInstrThumb.td"
//===----------------------------------------------------------------------===//
// Thumb2 Support
//
include "ARMInstrThumb2.td"
//===----------------------------------------------------------------------===//
// Floating Point Support
//
include "ARMInstrVFP.td"
//===----------------------------------------------------------------------===//
// Advanced SIMD (NEON) Support
//
include "ARMInstrNEON.td"
//===----------------------------------------------------------------------===//
// MVE Support
//
include "ARMInstrMVE.td"
//===----------------------------------------------------------------------===//
// Assembler aliases
//
// Memory barriers
def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
// Armv8-R 'Data Full Barrier'
def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
// System instructions
def : MnemonicAlias<"swi", "svc">;
// Load / Store Multiple
def : MnemonicAlias<"ldmfd", "ldm">;
def : MnemonicAlias<"ldmia", "ldm">;
def : MnemonicAlias<"ldmea", "ldmdb">;
def : MnemonicAlias<"stmfd", "stmdb">;
def : MnemonicAlias<"stmia", "stm">;
def : MnemonicAlias<"stmea", "stm">;
// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
// input operands swapped when the shift amount is zero (i.e., unspecified).
def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
(PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
Requires<[IsARM, HasV6]>;
def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
(PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
Requires<[IsARM, HasV6]>;
// PUSH/POP aliases for STM/LDM
def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
// SSAT/USAT optional shift operand.
def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
(SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
(USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
// Extend instruction optional rotate operand.
def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
(SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
(SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
(SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
(SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
(SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxth${p} $Rd, $Rm",
(SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
(UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
(UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
(UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
(UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
(UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxth${p} $Rd, $Rm",
(UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
// RFE aliases
def : MnemonicAlias<"rfefa", "rfeda">;
def : MnemonicAlias<"rfeea", "rfedb">;
def : MnemonicAlias<"rfefd", "rfeia">;
def : MnemonicAlias<"rfeed", "rfeib">;
def : MnemonicAlias<"rfe", "rfeia">;
// SRS aliases
def : MnemonicAlias<"srsfa", "srsib">;
def : MnemonicAlias<"srsea", "srsia">;
def : MnemonicAlias<"srsfd", "srsdb">;
def : MnemonicAlias<"srsed", "srsda">;
def : MnemonicAlias<"srs", "srsia">;
// QSAX == QSUBADDX
def : MnemonicAlias<"qsubaddx", "qsax">;
// SASX == SADDSUBX
def : MnemonicAlias<"saddsubx", "sasx">;
// SHASX == SHADDSUBX
def : MnemonicAlias<"shaddsubx", "shasx">;
// SHSAX == SHSUBADDX
def : MnemonicAlias<"shsubaddx", "shsax">;
// SSAX == SSUBADDX
def : MnemonicAlias<"ssubaddx", "ssax">;
// UASX == UADDSUBX
def : MnemonicAlias<"uaddsubx", "uasx">;
// UHASX == UHADDSUBX
def : MnemonicAlias<"uhaddsubx", "uhasx">;
// UHSAX == UHSUBADDX
def : MnemonicAlias<"uhsubaddx", "uhsax">;
// UQASX == UQADDSUBX
def : MnemonicAlias<"uqaddsubx", "uqasx">;
// UQSAX == UQSUBADDX
def : MnemonicAlias<"uqsubaddx", "uqsax">;
// USAX == USUBADDX
def : MnemonicAlias<"usubaddx", "usax">;
// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
// for isel.
def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
(MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
(MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
// Same for AND <--> BIC
def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
(ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
(ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
(BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
(BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
// Likewise, "add Rd, mod_imm_neg" -> sub
def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
(SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"add${s}${p} $Rd, $imm",
(SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
// Likewise, "sub Rd, mod_imm_neg" -> add
def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
(ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
(ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
(SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
(SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
(ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
(ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
// Same for CMP <--> CMN via mod_imm_neg
def : ARMInstSubst<"cmp${p} $Rd, $imm",
(CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
def : ARMInstSubst<"cmn${p} $Rd, $imm",
(CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
// LSR, ROR, and RRX instructions.
// FIXME: We need C++ parser hooks to map the alias to the MOV
// encoding. It seems we should be able to do that sort of thing
// in tblgen, but it could get ugly.
let TwoOperandAliasConstraint = "$Rm = $Rd" in {
def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
cc_out:$s)>;
def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
cc_out:$s)>;
def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
cc_out:$s)>;
def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
cc_out:$s)>;
}
def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
(ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
let TwoOperandAliasConstraint = "$Rn = $Rd" in {
def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
}
// "neg" is and alias for "rsb rd, rn, #0"
def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
(RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
Requires<[IsARM, NoV6]>;
// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
// the instruction definitions need difference constraints pre-v6.
// Use these aliases for the assembly parsing on pre-v6.
def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
(MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
(MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
Requires<[IsARM, NoV6]>;
// 'it' blocks in ARM mode just validate the predicates. The IT itself
// is discarded.
def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
ComplexDeprecationPredicate<"IT">;
let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
NoItinerary,
[(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
//===----------------------------------
// Atomic cmpxchg for -O0
//===----------------------------------
// The fast register allocator used during -O0 inserts spills to cover any VRegs
// live across basic block boundaries. When this happens between an LDXR and an
// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
// fail.
// Unfortunately, this means we have to have an alternative (expanded
// post-regalloc) path for -O0 compilations. Fortunately this path can be
// significantly more naive than the standard expansion: we conservatively
// assume seq_cst, strong cmpxchg and omit clrex on failure.
let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
mayLoad = 1, mayStore = 1 in {
def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
(ins GPR:$addr, GPR:$desired, GPR:$new),
NoItinerary, []>, Sched<[]>;
def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
(ins GPR:$addr, GPR:$desired, GPR:$new),
NoItinerary, []>, Sched<[]>;
def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
(ins GPR:$addr, GPR:$desired, GPR:$new),
NoItinerary, []>, Sched<[]>;
def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
(ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
NoItinerary, []>, Sched<[]>;
}
def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
[(atomic_fence imm:$ordering, 0)]> {
let hasSideEffects = 1;
let Size = 0;
let AsmString = "@ COMPILER BARRIER";
let hasNoSchedulingInfo = 1;
}
|