reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
//===- LanaiInstrFormats.td - Lanai Instruction Formats ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

class InstLanai<dag outs, dag ins, string asmstr, list<dag> pattern>
    : Instruction {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;
  let Size = 4;

  let Namespace = "Lanai";
  let DecoderNamespace = "Lanai";

  bits<4> Opcode;
  let Inst{31 - 28} = Opcode;

  dag OutOperandList = outs;
  dag InOperandList = ins;
  let AsmString = asmstr;
  let Pattern = pattern;
}

//------------------------------------------------------------------------------
// Register Immediate (RI)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |0.A.A.A| . . . . | . . . . |F.H| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1                constant (16)
//
// Action:
//           Rd <- Rs1 op constant
//
// Except for shift instructions, `H' determines whether the constant
// is in the high (1) or low (0) word.  The other halfword is 0x0000,
// except for the `AND' instruction (`AAA' = 100), for which the other
// halfword is 0xFFFF, and shifts (`AAA' = 111), for which the constant is
// sign extended.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `AAA' specifies the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or `shift'
// (111).  For the shift, `H' specifies a logical (0) or arithmetic (1)
// shift.  The amount and direction of the shift are determined by the
// sign extended constant interpreted as a two's complement number.  The
// shift operation is defined only for the range of:
//      31 ... 0 -1 ... -31
//      \      / \        /
//        left     right
//        shift    shift
//
// If and only if the `F' bit is 1, RI instructions modify the
// condition bits, `Z' (Zero), `N' (Negative), `V' (oVerflow), and `C'
// (Carry), according to the result.  If the flags are updated, they are
// updated as follows:
// `Z'
//      is set if the result is zero and cleared otherwise.
//
// `N'
//      is set to the most significant bit of the result.
//
// `V'
//      For arithmetic instructions (`add', `addc', `sub', `subb') `V' is
//      set if the sign (most significant) bits of the input operands are
//      the same but different from the sign bit of the result and cleared
//      otherwise.  For other RI instructions, `V' is cleared.
//
// `C'
//      For arithmetic instructions, `C' is set/cleared if there is/is_not
//      a carry generated out of the most significant when performing the
//      twos-complement addition (`sub(a,b) == a + ~b + 1', `subb(a,b) ==
//      a + ~b + `C'').  For left shifts, `C' is set to the least
//      significant bit discarded by the shift operation.  For all other
//      operations, `C' is cleared.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
//
// The all-0s word is the instruction `R0 <- R0 + 0', which is a no-op.
class InstRI<bits<3> op, dag outs, dag ins, string asmstr,
             list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bits<5> Rd;
  bits<5> Rs1;
  bit F;
  bit H;
  bits<16> imm16;

  let Opcode{3} = 0;
  let Opcode{2 - 0} = op;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16} = H;
  let Inst{15 - 0} = imm16;
}

//------------------------------------------------------------------------------
// Register Register (RR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.0.0| . . . . | . . . . |F.I| . . . . |B.B.B|J.J.J.J.J|D.D.D|
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1           Rs2   \       operation     /
//
// Action:
//           `Rd <- Rs1 op Rs2' iff condition DDDI is true.
//
// `DDDI' is as described for the BR instruction.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `BBB' determines the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or "special"
// (111).  The `JJJJJ' field is irrelevant except for special.
//
// `JJJJJ' determines which special operation is performed.  `10---'
// is a logical shift, and `11---' is an arithmetic shift, and ‘00000` is
// the SELECT operation.  The amount and direction of the shift are
// determined by the contents of `Rs2' interpreted as a two's complement
// number (in the same way as shifts in the Register-Immediate
// instructions in *Note RI::).  For the SELECT operation, Rd gets Rs1 if
// condition DDDI is true, Rs2 otherwise. All other `JJJJJ' combinations
// are reserved for instructions that may be defined in the future.
//
// If the `F' bit is 1, RR instructions modify the condition bits, `Z'
// (Zero), `N' (Negative), `V' (oVerflow), and `C' (Carry), according to
// the result.  All RR instructions modify the `Z', `N', and `V' flags.
// Except for arithmetic instructions (`add', `addc', `sub', `subb'), `V'
// is cleared.  Only arithmetic instructions and shifts modify `C'. Right
// shifts clear C.
//
// DDDI is as described in the table for the BR instruction and only used for
// the select instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
class InstRR<bits<3> op, dag outs, dag ins, string asmstr,
             list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> Rs2;
  bit F;
  bits<4> DDDI;
  bits<5> JJJJJ;

  let Opcode = 0b1100;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16} = DDDI{0};
  let Inst{15 - 11} = Rs2;
  let Inst{10 - 8} = op;
  let Inst{7 - 3} = JJJJJ;
  let Inst{2 - 0} = DDDI{3 - 1};
}

//------------------------------------------------------------------------------
// Register Memory (RM)
//------------------------------------------------------------------------------
// Encoding:
//          -----------------------------------------------------------------
//          |1.0.0.S| . . . . | . . . . |P.Q| . . . . . . . . . . . . . . . |
//          -----------------------------------------------------------------
//           opcode     Rd        Rs1                 constant (16)
//
// Action:
//        Rd <- Memory(ea)      (Load)    see below for the
//        Memory(ea) <- Rd      (Store)   definition of ea.
//
// `S' determines whether the instruction is a Load (0) or a Store (1).
// Loads appear in Rd one cycle after this instruction executes.  If the
// following instruction reads Rd, that instruction will be delayed by 1
// clock cycle.
//
//   PQ      operation
//   --      ------------------------------------------
//   00      ea = Rs1
//   01      ea = Rs1,             Rs1 <- Rs1 + constant
//   10      ea = Rs1 + constant
//   11      ea = Rs1 + constant,  Rs1 <- Rs1 + constant
//
// The constant is sign-extended for this instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRM<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bit P;
  bit Q;
  bits<16> imm16;
  // Dummy variables to allow multiclass definition of RM and RRM
  bits<2> YL;
  bit E;

  let Opcode{3 - 1} = 0b100;
  let Opcode{0} = S;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = P;
  let Inst{16} = Q;
  let Inst{15 - 0} = imm16;

  let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}

//------------------------------------------------------------------------------
// Register Register Memory (RRM)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.0.1.S| . . . . | . . . . |P.Q| . . . . |B.B.B|J.J.J.J.J|Y.L.E|
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1           Rs2   \       operation     /
//
// Action:
//           Rd <- Memory(ea)      (Load)    see below for the
//           Memory(ea) <- Rd      (Store)   definition of ea.
//
// The RRM instruction is identical to the RM (*note RM::.) instruction
// except that:
//
// 1. `Rs1 + constant' is replaced with `Rs1 op Rs2', where `op' is
//    determined in the same way as in the RR instruction (*note RR::.)
//    and
//
// 2. part-word memory accesses are allowed as specified below.
//
//    If `BBB' != 111 (i.e.: For all but shift operations):
//        If `YLE' = 01- => fuLl-word memory access
//        If `YLE' = 00- => half-word memory access
//        If `YLE' = 10- => bYte memory access
//        If `YLE' = --1 => loads are zEro extended
//        If `YLE' = --0 => loads are sign extended
//
//    If `BBB' = 111 (For shift operations):
//        fullword memory access are performed.
//
// All part-word loads write the least significant part of the
// destination register with the higher-order bits zero- or sign-extended.
// All part-word stores store the least significant part-word of the
// source register in the destination memory location.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRRM<bit S, dag outs, dag ins, string asmstr,
              list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> Rs2;
  bit P;
  bit Q;
  bits<3> BBB;
  bits<5> JJJJJ;
  bits<2> YL;
  bit E;

  let Opcode{3 - 1} = 0b101;
  let Opcode{0} = S;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = P;
  let Inst{16} = Q;
  let Inst{15 - 11} = Rs2;
  let Inst{10 - 8} = BBB;
  let Inst{7 - 3} = JJJJJ;
  let Inst{2 - 1} = YL;
  let Inst{0} = E;

  let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}

//------------------------------------------------------------------------------
// Conditional Branch (BR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D| . . . . . . . . . . . . . . . . . . . . . . |0.I|
//           -----------------------------------------------------------------
//            opcode condition                   constant (23)
//
// Action:
//            if (condition) { `pc' <- 4*(zero-extended constant) }
//
// The BR instruction is an absolute branch.
// The constant is scaled as shown by its position in the instruction word such
// that it specifies word-aligned addresses in the range [0,2^25-4]
//
// The `DDDI' field selects the condition that causes the branch to be taken.
// (the `I' (Invert sense) bit inverts the sense of the condition):
//
//   DDDI  logical function                        [code, used for...]
//   ----  --------------------------------------  ------------------------
//   0000  1                                       [T, true]
//   0001  0                                       [F, false]
//   0010  C AND Z'                                [HI, high]
//   0011  C' OR Z                                 [LS, low or same]
//   0100  C'                                      [CC, carry cleared]
//   0101  C                                       [CS, carry set]
//   0110  Z'                                      [NE, not equal]
//   0111  Z                                       [EQ, equal]
//   1000  V'                                      [VC, oVerflow cleared]
//   1001  V                                       [VS, oVerflow set]
//   1010  N'                                      [PL, plus]
//   1011  N                                       [MI, minus]
//   1100  (N AND V) OR (N' AND V')                [GE, greater than or equal]
//   1101  (N AND V') OR (N' AND V)                [LT, less than]
//   1110  (N AND V AND Z') OR (N' AND V' AND Z')  [GT, greater than]
//   1111  (Z) OR (N AND V') OR (N' AND V)         [LE, less than or equal]
//
// If the branch is not taken, the BR instruction is a no-op.  If the branch is
// taken, the processor starts executing instructions at the branch target
// address *after* the processor has executed one more instruction.  That is,
// the branch has one “branch delay slot”.  Be very careful if you find yourself
// wanting to put a branch in a branch delays slot!
class InstBR<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Itinerary = IIC_ALU;
  bits<25> addr;
  bits<4> DDDI;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24 - 0} = addr;
  // These instructions overwrite the last two address bits (which are assumed
  // and ensured to be 0).
  let Inst{1} = 0;
  let Inst{0} = DDDI{0};
}

//------------------------------------------------------------------------------
// Conditional Branch Relative (BRR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D|1|-| . . . . |-.-| . . . . . . . . . . . . . |1.I|
//           -----------------------------------------------------------------
//            opcode condition     Rs1           constant (14)
// Action:
//           if (condition) { ‘pc’ <- Rs1 + 4*sign-extended constant) }
//
// BRR behaves like BR, except the branch target address is a 16-bit PC relative
// offset.
class InstBRR<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<4> DDDI;
  bits<5> Rs1;
  bits<16> imm16;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24} = 1;
  let Inst{22 - 18} = Rs1;
  let Inst{17 - 16} = 0;
  let Inst{15 - 0} = imm16;
  // Overwrite last two bits which have to be zero
  let Inst{1} = 1;
  let Inst{0} = DDDI{0};

  // Set don't cares to zero
  let Inst{23} = 0;
}

//------------------------------------------------------------------------------
// Conditional Set (SCC)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D|0.-| . . . . |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I|
//           -----------------------------------------------------------------
//            opcode condition     Rs1
//
// Action:
//       Rs1 <- logical function result
//
// SCC sets dst_reg to the boolean result of computing the logical function
// specified by DDDI, as described in the table for the BR instruction.
class InstSCC<dag outs, dag ins, string asmstr,
              list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Itinerary = IIC_ALU;
  bits<5> Rs1; // dst_reg in documentation
  bits<4> DDDI;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24} = 0;
  let Inst{22 - 18} = Rs1;
  let Inst{1} = 1;
  let Inst{0} = DDDI{0};

  // Set don't cares to zero
  let Inst{23} = 0;
  let Inst{17 - 2} = 0;
}

//------------------------------------------------------------------------------
// Special Load/Store (SLS)
//------------------------------------------------------------------------------
//
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.1| . . . . | . . . . |0.S| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd    addr 5msb's            address 16 lsb's
//
// Action:
//           If S = 0 (LOAD):   Rd <- Memory(address);
//           If S = 1 (STORE):  Memory(address) <- Rd
//
// The timing is the same as for RM (*note RM::.) and RRM (*note
// RRM::.) instructions.  The two low-order bits of the 21-bit address are
// ignored.  The address is zero extended.  Fullword memory accesses are
// performed.
class InstSLS<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> msb;
  bits<16> lsb;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = msb;
  let Inst{17} = 0;
  let Inst{16} = S;
  let Inst{15 - 0} = lsb;
}

//------------------------------------------------------------------------------
// Special Load Immediate (SLI)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.1| . . . . | . . . . |1.0| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd    const 5msb's          constant 16 lsb's
//
// Action:
//           Rd <- constant
//
// The 21-bit constant is zero-extended.  The timing is the same as the
// RM instruction (*note RM::.).
class InstSLI<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> msb;
  bits<16> lsb;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = msb;
  let Inst{17} = 1;
  let Inst{16} = 0;
  let Inst{15 - 0} = lsb;
}

//------------------------------------------------------------------------------
// Special Part-Word Load/Store (SPLS)
//------------------------------------------------------------------------------
// Encoding:
//        -----------------------------------------------------------------
//        |1.1.1.1| . . . . | . . . . |1.1.0.Y.S.E.P.Q| . . . . . . . . . |
//        -----------------------------------------------------------------
//         opcode     Rd        Rs1                       constant (10)
//
// Action:
//        If `YS' = 11  (bYte     Store):
//             Memory(ea) <- (least significant byte of Rr)
//        If `YS' = 01  (halfword Store):
//             Memory(ea) <- (least significant half-word of Rr)
//        If `YS' = 10  (bYte     load):  Rr <- Memory(ea)
//        If `YS' = 00  (halfword load):  Rr <- Memory(ea)
//             [Note: here ea is determined as in the RM instruction. ]
//        If `SE' = 01 then the value is zEro extended
//             before being loaded into Rd.
//        If `SE' = 00 then the value is sign extended
//             before being loaded into Rd.
//
// `P' and `Q' are used to determine `ea' as in the RM instruction. The
// constant is sign extended.  The timing is the same as the RM and RRM
// instructions.  *Note RM:: and *Note RRM::.
//
// All part-word loads write the part-word into the least significant
// part of the destination register, with the higher-order bits zero- or
// sign-extended.  All part-word stores store the least significant
// part-word of the source register into the destination memory location.
class InstSPLS<dag outs, dag ins, string asmstr,
               list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> msb;
  bit Y;
  bit S;
  bit E;
  bit P;
  bit Q;
  bits<10> imm10;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17 - 15} = 0b110;
  let Inst{14} = Y;
  let Inst{13} = S;
  let Inst{12} = E;
  let Inst{11} = P;
  let Inst{10} = Q;
  let Inst{9 - 0} = imm10;

  let PostEncoderMethod = "adjustPqBitsSpls";
}

//------------------------------------------------------------------------------
// Special instructions (popc, leadz, trailz)
//------------------------------------------------------------------------------
// Encoding:
//         -----------------------------------------------------------------
//         |1.1.0.1|    Rd   |   Rs1   |F.-| . . . . | . . | . . . . | OP  |
//         -----------------------------------------------------------------
//          opcode      Rd       Rs1
// Action:
//         Rd <- Perform action encoded in OP on Rs1
//   OP is one of:
//      0b001 POPC   Population count;
//      0b010 LEADZ  Count number of leading zeros;
//      0b011 TRAILZ Count number of trailing zeros;
class InstSpecial<bits<3> op, dag outs, dag ins, string asmstr,
                  list<dag> pattern> : InstLanai<outs, ins, asmstr,
                  pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bit F;
  bits<5> Rd;
  bits<5> Rs1;

  let Opcode = 0b1101;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16 - 3} = 0;
  let Inst{2 - 0} = op;
}

// Pseudo instructions
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Inst{15 - 0} = 0;
  let isPseudo = 1;
}