reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for Mips architecture.
//===----------------------------------------------------------------------===//

/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A, string Invert = "">
    : CCIf<!strconcat(Invert,
                      "static_cast<const MipsSubtarget&>"
			"(State.getMachineFunction().getSubtarget()).",
                      F),
           A>;

// The inverse of CCIfSubtarget
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;

/// Match if the original argument (before lowering) was a float.
/// For example, this is true for i32's that were lowered from soft-float.
class CCIfOrigArgWasNotFloat<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
           A>;

/// Match if the original argument (before lowering) was a 128-bit float (i.e.
/// long double).
class CCIfOrigArgWasF128<CCAction A>
    : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;

/// Match if this specific argument is a vararg.
/// This is slightly different fro CCIfIsVarArg which matches if any argument is
/// a vararg.
class CCIfArgIsVarArg<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;

/// Match if the return was a floating point vector.
class CCIfOrigArgWasNotVectorFloat<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)"
                "->WasOriginalRetVectorFloat(ValNo)", A>;

/// Match if the special calling conv is the specified value.
class CCIfSpecialCallingConv<string CC, CCAction A>
    : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
               "MipsCCState::" # CC, A>;

// For soft-float, f128 values are returned in A0_64 rather than V1_64.
def RetCC_F128SoftFloat : CallingConv<[
  CCAssignToReg<[V0_64, A0_64]>
]>;

// For hard-float, f128 values are returned as a pair of f64's rather than a
// pair of i64's.
def RetCC_F128HardFloat : CallingConv<[
  CCBitConvertToType<f64>,

  // Contrary to the ABI documentation, a struct containing a long double is
  // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
  // match the de facto ABI as implemented by GCC.
  CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,

  CCAssignToReg<[D0_64, D2_64]>
]>;

// Handle F128 specially since we can't identify the original type during the
// tablegen-erated code.
def RetCC_F128 : CallingConv<[
  CCIfSubtarget<"useSoftFloat()",
      CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
  CCIfSubtargetNot<"useSoftFloat()",
      CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
]>;

//===----------------------------------------------------------------------===//
// Mips O32 Calling Convention
//===----------------------------------------------------------------------===//

def CC_MipsO32 : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,

  // Integer values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,

  // Integer values get stored in stack slots that are 8 bytes in
  // size and 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>
]>;

// Only the return rules are defined here for O32. The rules for argument
// passing are defined in MipsISelLowering.cpp.
def RetCC_MipsO32 : CallingConv<[
  // Promote i1/i8/i16 return values to i32.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,

  // i32 are returned in registers V0, V1, A0, A1, unless the original return
  // type was a vector of floats.
  CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
                                        CCAssignToReg<[V0, V1, A0, A1]>>>,

  // f32 are returned in registers F0, F2
  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,

  // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
  // in D0 and D1 in FP32bit mode.
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
]>;

def CC_MipsO32_FP32 : CustomCallingConv;
def CC_MipsO32_FP64 : CustomCallingConv;

def CC_MipsO32_FP : CallingConv<[
  CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
  CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
]>;

//===----------------------------------------------------------------------===//
// Mips N32/64 Calling Convention
//===----------------------------------------------------------------------===//

def CC_MipsN_SoftFloat : CallingConv<[
  CCAssignToRegWithShadow<[A0, A1, A2, A3,
                           T0, T1, T2, T3],
                          [D12_64, D13_64, D14_64, D15_64,
                           D16_64, D17_64, D18_64, D19_64]>,
  CCAssignToStack<4, 8>
]>;

def CC_MipsN : CallingConv<[
  CCIfType<[i8, i16, i32, i64],
      CCIfSubtargetNot<"isLittle()",
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // All integers (except soft-float integers) are promoted to 64-bit.
  CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,

  // The only i32's we have left are soft-float arguments.
  CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,

  // Integer arguments are passed in integer registers.
  CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64],
                                          [D12_64, D13_64, D14_64, D15_64,
                                           D16_64, D17_64, D18_64, D19_64]>>,

  // f32 arguments are passed in single precision FP registers.
  CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
                                           F16, F17, F18, F19],
                                          [A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64]>>,

  // f64 arguments are passed in double precision FP registers.
  CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
                                           D16_64, D17_64, D18_64, D19_64],
                                          [A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64]>>,

  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
  CCIfType<[f32], CCAssignToStack<4, 8>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

// N32/64 variable arguments.
// All arguments are passed in integer registers.
def CC_MipsN_VarArg : CallingConv<[
  CCIfType<[i8, i16, i32, i64],
      CCIfSubtargetNot<"isLittle()",
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // All integers are promoted to 64-bit.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,

  CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
                                      T0_64, T1_64, T2_64, T3_64]>>,

  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
  CCIfType<[f32], CCAssignToStack<4, 8>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

def RetCC_MipsN : CallingConv<[
  // f128 needs to be handled similarly to f32 and f64. However, f128 is not
  // legal and is lowered to i128 which is further lowered to a pair of i64's.
  // This presents us with a problem for the calling convention since hard-float
  // still needs to pass them in FPU registers, and soft-float needs to use $v0,
  // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
  // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
  // whether the result was originally an f128 into the tablegen-erated code.
  //
  // f128 should only occur for the N64 ABI where long double is 128-bit. On
  // N32, long double is equivalent to double.
  CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,

  // Aggregate returns are positioned at the lowest address in the slot for
  // both little and big-endian targets. When passing in registers, this
  // requires that big-endian targets shift the value into the upper bits.
  CCIfSubtarget<"isLittle()",
      CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
  CCIfSubtargetNot<"isLittle()",
      CCIfType<[i8, i16, i32, i64],
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // i64 are returned in registers V0_64, V1_64
  CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,

  // f32 are returned in registers F0, F2
  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,

  // f64 are returned in registers D0, D2
  CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
]>;

//===----------------------------------------------------------------------===//
// Mips FastCC Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32_FastCC : CallingConv<[
  // f64 arguments are passed in double-precision floating pointer registers.
  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
                                   CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
                                                  D7, D8, D9]>>>,
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
                                CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
                                               D4_64, D5_64, D6_64, D7_64,
                                               D8_64, D9_64, D10_64, D11_64,
                                               D12_64, D13_64, D14_64, D15_64,
                                               D16_64, D17_64, D18_64,
                                               D19_64]>>>>,
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
                                CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
                                               D8_64, D10_64, D12_64, D14_64,
                                               D16_64, D18_64]>>>>,

  // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>
]>;

def CC_MipsN_FastCC : CallingConv<[
  // Integer arguments are passed in integer registers.
  CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
                                 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
                                 T8_64, V1_64]>>,

  // f64 arguments are passed in double-precision floating pointer registers.
  CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
                                 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
                                 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
                                 D18_64, D19_64]>>,

  // Stack parameter slots for i64 and f64 are 64-bit doublewords and
  // 8-byte aligned.
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

def CC_Mips_FastCC : CallingConv<[
  // Handles byval parameters.
  CCIfByVal<CCPassByVal<4, 4>>,

  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Integer arguments are passed in integer registers. All scratch registers,
  // except for AT, V0 and T9, are available to be used as argument registers.
  CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,

  // In NaCl, T6, T7 and T8 are reserved and not available as argument
  // registers for fastcc.  T6 contains the mask for sandboxing control flow
  // (indirect jumps and calls).  T7 contains the mask for sandboxing memory
  // accesses (loads and stores).  T8 contains the thread pointer.
  CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,

  // f32 arguments are passed in single-precision floating pointer registers.
  CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
      CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
                     F14, F15, F16, F17, F18, F19]>>>,

  // Don't use odd numbered single-precision registers for -mno-odd-spreg.
  CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
      CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,

  // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
  CCDelegateTo<CC_MipsN_FastCC>
]>;

//===----------------------------------------------------------------------===//
// Mips Calling Convention Dispatch
//===----------------------------------------------------------------------===//

def RetCC_Mips : CallingConv<[
  CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
  CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
  CCDelegateTo<RetCC_MipsO32>
]>;

def CC_Mips_ByVal : CallingConv<[
  CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
  CCIfByVal<CCPassByVal<8, 8>>
]>;

def CC_Mips16RetHelper : CallingConv<[
  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  // Integer arguments are passed in integer registers.
  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
]>;

def CC_Mips_FixedArg : CallingConv<[
  // Mips16 needs special handling on some functions.
  CCIf<"State.getCallingConv() != CallingConv::Fast",
      CCIfSpecialCallingConv<"Mips16RetHelperConv",
           CCDelegateTo<CC_Mips16RetHelper>>>,

  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
  // f128 is not legal and is lowered to i128 which is further lowered to a pair
  // of i64's.
  // This presents us with a problem for the calling convention since hard-float
  // still needs to pass them in FPU registers. We therefore resort to a
  // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
  // whether the argument was originally an f128 into the tablegen-erated code.
  //
  // f128 should only occur for the N64 ABI where long double is 128-bit. On
  // N32, long double is equivalent to double.
  CCIfType<[i64],
      CCIfSubtargetNot<"useSoftFloat()",
          CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,

  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
  CCDelegateTo<CC_MipsN>
]>;

def CC_Mips_VarArg : CallingConv<[
  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
  CCDelegateTo<CC_MipsN_VarArg>
]>;

def CC_Mips : CallingConv<[
  CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
  CCDelegateTo<CC_Mips_FixedArg>
]>;

//===----------------------------------------------------------------------===//
// Callee-saved register lists.
//===----------------------------------------------------------------------===//

def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
                                               (sequence "S%u", 7, 0))>;

def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
                                        (sequence "S%u", 7, 0))> {
  let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
}

def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
                                   (sequence "S%u", 7, 0))>;

def CSR_O32_FP64 :
  CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
                       (sequence "S%u", 7, 0))>;

def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
                                   D30_64, RA_64, FP_64, GP_64,
                                   (sequence "S%u_64", 7, 0))>;

def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
                                   GP_64, (sequence "S%u_64", 7, 0))>;

def CSR_Mips16RetHelper :
  CalleeSavedRegs<(add V0, V1, FP,
                   (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
                   (sequence "D%u", 15, 10))>;

def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
                                              (sequence "S%u", 7, 0),
                                              (sequence "V%u", 1, 0),
                                              (sequence "T%u", 9, 0),
                                              RA, FP, GP, AT)>;

def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
                                            (sequence "S%u", 7, 0),
                                            (sequence "V%u", 1, 0),
                                            (sequence "T%u", 9, 0),
                                            RA, FP, GP, AT, LO0, HI0)>;

def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
                                              (sequence "V%u_64", 1, 0),
                                              (sequence "S%u_64", 7, 0),
                                              (sequence "T%u_64", 9, 0),
                                              RA_64, FP_64, GP_64, AT_64)>;

def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
                                            (sequence "S%u_64", 7, 0),
                                            (sequence "T%u_64", 9, 0),
                                            (sequence "V%u_64", 1, 0),
                                            RA_64, FP_64, GP_64, AT_64,
                                            LO0_64, HI0_64)>;