1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
| //===-- RISCVInstrFormats.td - RISCV Instruction Formats ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//
// These instruction format definitions are structured to match the
// description in the RISC-V User-Level ISA specification as closely as
// possible. For instance, the specification describes instructions with the
// MSB (31st bit) on the left and the LSB (0th bit) on the right. This is
// reflected in the order of parameters to each instruction class.
//
// One area of divergence is in the description of immediates. The
// specification describes immediate encoding in terms of bit-slicing
// operations on the logical value represented. The immediate argument to
// these instruction formats instead represents the bit sequence that will be
// inserted into the instruction. e.g. although JAL's immediate is logically
// a 21-bit value (where the LSB is always zero), we describe it as an imm20
// to match how it is encoded.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is used by
// RISCVMCCodeEmitter to determine which form of fixup to use. These
// definitions must be kept in-sync with RISCVBaseInfo.h.
class InstFormat<bits<5> val> {
bits<5> Value = val;
}
def InstFormatPseudo : InstFormat<0>;
def InstFormatR : InstFormat<1>;
def InstFormatR4 : InstFormat<2>;
def InstFormatI : InstFormat<3>;
def InstFormatS : InstFormat<4>;
def InstFormatB : InstFormat<5>;
def InstFormatU : InstFormat<6>;
def InstFormatJ : InstFormat<7>;
def InstFormatCR : InstFormat<8>;
def InstFormatCI : InstFormat<9>;
def InstFormatCSS : InstFormat<10>;
def InstFormatCIW : InstFormat<11>;
def InstFormatCL : InstFormat<12>;
def InstFormatCS : InstFormat<13>;
def InstFormatCA : InstFormat<14>;
def InstFormatCB : InstFormat<15>;
def InstFormatCJ : InstFormat<16>;
def InstFormatOther : InstFormat<17>;
// The following opcode names match those given in Table 19.1 in the
// RISC-V User-level ISA specification ("RISC-V base opcode map").
class RISCVOpcode<bits<7> val> {
bits<7> Value = val;
}
def OPC_LOAD : RISCVOpcode<0b0000011>;
def OPC_LOAD_FP : RISCVOpcode<0b0000111>;
def OPC_MISC_MEM : RISCVOpcode<0b0001111>;
def OPC_OP_IMM : RISCVOpcode<0b0010011>;
def OPC_AUIPC : RISCVOpcode<0b0010111>;
def OPC_OP_IMM_32 : RISCVOpcode<0b0011011>;
def OPC_STORE : RISCVOpcode<0b0100011>;
def OPC_STORE_FP : RISCVOpcode<0b0100111>;
def OPC_AMO : RISCVOpcode<0b0101111>;
def OPC_OP : RISCVOpcode<0b0110011>;
def OPC_LUI : RISCVOpcode<0b0110111>;
def OPC_OP_32 : RISCVOpcode<0b0111011>;
def OPC_MADD : RISCVOpcode<0b1000011>;
def OPC_MSUB : RISCVOpcode<0b1000111>;
def OPC_NMSUB : RISCVOpcode<0b1001011>;
def OPC_NMADD : RISCVOpcode<0b1001111>;
def OPC_OP_FP : RISCVOpcode<0b1010011>;
def OPC_BRANCH : RISCVOpcode<0b1100011>;
def OPC_JALR : RISCVOpcode<0b1100111>;
def OPC_JAL : RISCVOpcode<0b1101111>;
def OPC_SYSTEM : RISCVOpcode<0b1110011>;
class RVInst<dag outs, dag ins, string opcodestr, string argstr,
list<dag> pattern, InstFormat format>
: Instruction {
field bits<32> Inst;
// SoftFail is a field the disassembler can use to provide a way for
// instructions to not match without killing the whole decode process. It is
// mainly used for ARM, but Tablegen expects this field to exist or it fails
// to build the decode table.
field bits<32> SoftFail = 0;
let Size = 4;
bits<7> Opcode = 0;
let Inst{6-0} = Opcode;
let Namespace = "RISCV";
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = opcodestr # "\t" # argstr;
let Pattern = pattern;
let TSFlags{4-0} = format.Value;
}
// Pseudo instructions
class Pseudo<dag outs, dag ins, list<dag> pattern, string opcodestr = "", string argstr = "">
: RVInst<outs, ins, opcodestr, argstr, pattern, InstFormatPseudo> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Pseudo load instructions.
class PseudoLoad<string opcodestr, RegisterClass rdty = GPR>
: Pseudo<(outs rdty:$rd), (ins bare_symbol:$addr), [], opcodestr, "$rd, $addr"> {
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
class PseudoFloatLoad<string opcodestr, RegisterClass rdty = GPR>
: Pseudo<(outs rdty:$rd, GPR:$tmp), (ins bare_symbol:$addr), [], opcodestr, "$rd, $addr, $tmp"> {
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
// Pseudo store instructions.
class PseudoStore<string opcodestr, RegisterClass rsty = GPR>
: Pseudo<(outs rsty:$rs, GPR:$tmp), (ins bare_symbol:$addr), [], opcodestr, "$rs, $addr, $tmp"> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 1;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
// Instruction formats are listed in the order they appear in the RISC-V
// instruction set manual (R, I, S, B, U, J) with sub-formats (e.g. RVInstR4,
// RVInstRAtomic) sorted alphabetically.
class RVInstR<bits<7> funct7, bits<3> funct3, RISCVOpcode opcode, dag outs,
dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<5> rd;
let Inst{31-25} = funct7;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstR4<bits<2> funct2, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR4> {
bits<5> rs3;
bits<5> rs2;
bits<5> rs1;
bits<3> funct3;
bits<5> rd;
let Inst{31-27} = rs3;
let Inst{26-25} = funct2;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstRAtomic<bits<5> funct5, bit aq, bit rl, bits<3> funct3,
RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<5> rd;
let Inst{31-27} = funct5;
let Inst{26} = aq;
let Inst{25} = rl;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstRFrm<bits<7> funct7, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<3> funct3;
bits<5> rd;
let Inst{31-25} = funct7;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstI<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<12> imm12;
bits<5> rs1;
bits<5> rd;
let Inst{31-20} = imm12;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstIShift<bit arithshift, bits<3> funct3, RISCVOpcode opcode,
dag outs, dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<6> shamt;
bits<5> rs1;
bits<5> rd;
let Inst{31} = 0;
let Inst{30} = arithshift;
let Inst{29-26} = 0;
let Inst{25-20} = shamt;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstIShiftW<bit arithshift, bits<3> funct3, RISCVOpcode opcode,
dag outs, dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<5> shamt;
bits<5> rs1;
bits<5> rd;
let Inst{31} = 0;
let Inst{30} = arithshift;
let Inst{29-25} = 0;
let Inst{24-20} = shamt;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstS<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatS> {
bits<12> imm12;
bits<5> rs2;
bits<5> rs1;
let Inst{31-25} = imm12{11-5};
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = imm12{4-0};
let Opcode = opcode.Value;
}
class RVInstB<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatB> {
bits<12> imm12;
bits<5> rs2;
bits<5> rs1;
let Inst{31} = imm12{11};
let Inst{30-25} = imm12{9-4};
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-8} = imm12{3-0};
let Inst{7} = imm12{10};
let Opcode = opcode.Value;
}
class RVInstU<RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatU> {
bits<20> imm20;
bits<5> rd;
let Inst{31-12} = imm20;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstJ<RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatJ> {
bits<20> imm20;
bits<5> rd;
let Inst{31} = imm20{19};
let Inst{30-21} = imm20{9-0};
let Inst{20} = imm20{10};
let Inst{19-12} = imm20{18-11};
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
|