reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction definitions and patterns needed for 64-bit
// code generation on SPARC v9.
//
// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
// also be used in 32-bit code running on a SPARC v9 CPU.
//
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are don't care.
// This give us free trunc and anyext.
def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Shift Instructions.
//===----------------------------------------------------------------------===//
//
// The 32-bit shift instructions are still available. The left shift srl
// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
//
// The srl instructions only shift the low 32 bits and clear the high 32 bits.
// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.

let Predicates = [Is64Bit] in {

def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;

def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;

defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Immediates.
//===----------------------------------------------------------------------===//
//
// All 32-bit immediates can be materialized with sethi+or, but 64-bit
// immediates may require more code. There may be a point where it is
// preferable to use a constant pool load instead, depending on the
// microarchitecture.

// Single-instruction patterns.

// The ALU instructions want their simm13 operands as i32 immediates.
def as_i32imm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;

// Double-instruction patterns.

// All unsigned i32 immediates can be handled by sethi+or.
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
      Requires<[Is64Bit]>;

// All negative i33 immediates can be handled by sethi+xor.
def nimm33 : PatLeaf<(imm), [{
  int64_t Imm = N->getSExtValue();
  return Imm < 0 && isInt<33>(Imm);
}]>;
// Bits 10-31 inverted. Same as assembler's %hix.
def HIX22 : SDNodeXForm<imm, [{
  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
def LOX10 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N),
                                   MVT::i32);
}]>;
def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
      Requires<[Is64Bit]>;

// More possible patterns:
//
//   (sllx sethi, n)
//   (sllx simm13, n)
//
// 3 instrs:
//
//   (xor (sllx sethi), simm13)
//   (sllx (xor sethi, simm13))
//
// 4 instrs:
//
//   (or sethi, (sllx sethi))
//   (xnor sethi, (sllx sethi))
//
// 5 instrs:
//
//   (or (sllx sethi), (or sethi, simm13))
//   (xnor (sllx sethi), (or sethi, simm13))
//   (or (sllx sethi), (sllx sethi))
//   (xnor (sllx sethi), (sllx sethi))
//
// Worst case is 6 instrs:
//
//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))

// Bits 42-63, same as assembler's %hh.
def HH22 : SDNodeXForm<imm, [{
  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
// Bits 32-41, same as assembler's %hm.
def HM10 : SDNodeXForm<imm, [{
  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
def : Pat<(i64 imm:$val),
          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
      Requires<[Is64Bit]>;


//===----------------------------------------------------------------------===//
// 64-bit Integer Arithmetic and Logic.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

// Register-register instructions.
let isCodeGenOnly = 1 in {
defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;

def ANDXNrr  : F3_1<2, 0b000101,
                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                 "andn $b, $c, $dst",
                 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
def ORXNrr   : F3_1<2, 0b000110,
                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                 "orn $b, $c, $dst",
                 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
def XNORXrr  : F3_1<2, 0b000111,
                   (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                   "xnor $b, $c, $dst",
                   [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;

defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;

def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
                   "add $rs1, $rs2, $rd, $sym",
                   [(set i64:$rd,
                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;

// "LEA" form of add
def LEAX_ADDri : F3_2<2, 0b000000,
                     (outs I64Regs:$dst), (ins MEMri:$addr),
                     "add ${addr:arith}, $dst",
                     [(set iPTR:$dst, ADDRri:$addr)]>;
}

def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
def : Pat<(i64 (ctpop i64:$src)), (POPCrr $src)>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Integer Multiply and Divide.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

def MULXrr : F3_1<2, 0b001001,
                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                  "mulx $rs1, $rs2, $rd",
                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
def MULXri : F3_2<2, 0b001001,
                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                  "mulx $rs1, $simm13, $rd",
                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;

// Division can trap.
let hasSideEffects = 1 in {
def SDIVXrr : F3_1<2, 0b101101,
                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                   "sdivx $rs1, $rs2, $rd",
                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
def SDIVXri : F3_2<2, 0b101101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                   "sdivx $rs1, $simm13, $rd",
                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;

def UDIVXrr : F3_1<2, 0b001101,
                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                   "udivx $rs1, $rs2, $rd",
                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
def UDIVXri : F3_2<2, 0b001101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                   "udivx $rs1, $simm13, $rd",
                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
} // hasSideEffects = 1

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Loads and Stores.
//===----------------------------------------------------------------------===//
//
// All the 32-bit loads and stores are available. The extending loads are sign
// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
// Word).
//
// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.

let Predicates = [Is64Bit] in {

// 64-bit loads.
let DecoderMethod = "DecodeLoadInt" in
  defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;

let mayLoad = 1, isAsmParserOnly = 1 in
  def TLS_LDXrr : F3_1<3, 0b001011,
                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
                       "ldx [$addr], $dst, $sym",
                       [(set i64:$dst,
                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;

// Extending loads to i64.
def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;

// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
let DecoderMethod = "DecodeLoadInt" in
  defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;

// 64-bit stores.
let DecoderMethod = "DecodeStoreInt" in
  defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;

// Truncating stores from i64 are identical to the i32 stores.
def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;

// store 0, addr -> store %g0, addr
def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Conditionals.
//===----------------------------------------------------------------------===//

//
// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
// The icc flags correspond to the 32-bit result, and the xcc are for the
// full 64-bit result.
//
// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
// 64-bit compares. See LowerBR_CC.

let Predicates = [Is64Bit] in {

let Uses = [ICC], cc = 0b10 in
  defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;

// Conditional moves on %xcc.
let Uses = [ICC], Constraints = "$f = $rd" in {
let intcc = 1, cc = 0b10 in {
def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
                      "mov$cond %xcc, $rs2, $rd",
                      [(set i32:$rd,
                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
                      "mov$cond %xcc, $simm11, $rd",
                      [(set i32:$rd,
                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
} // cc

let intcc = 1, opf_cc = 0b10 in {
def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
                      "fmovs$cond %xcc, $rs2, $rd",
                      [(set f32:$rd,
                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
                      "fmovd$cond %xcc, $rs2, $rd",
                      [(set f64:$rd,
                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
                      "fmovq$cond %xcc, $rs2, $rd",
                      [(set f128:$rd,
                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
} // opf_cc
} // Uses, Constraints

// Branch On integer register with Prediction (BPr).
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
multiclass BranchOnReg<bits<3> cond, string OpcStr> {
  def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, " $rs1, $imm16"), []>;
  def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
  def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
  def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
}

multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
  def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
                  (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
  def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
                  (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
}

defm BPZ   : BranchOnReg<0b001, "brz">;
defm BPLEZ : BranchOnReg<0b010, "brlez">;
defm BPLZ  : BranchOnReg<0b011, "brlz">;
defm BPNZ  : BranchOnReg<0b101, "brnz">;
defm BPGZ  : BranchOnReg<0b110, "brgz">;
defm BPGEZ : BranchOnReg<0b111, "brgez">;

defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >;
defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >;
defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >;
defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >;
defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;

// Move integer register on register condition (MOVr).
multiclass MOVR< bits<3> rcond,  string OpcStr> {
  def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, IntRegs:$rs2),
                   !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;

  def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, i64imm:$simm10),
                   !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
}

defm MOVRRZ  : MOVR<0b001, "movrz">;
defm MOVRLEZ : MOVR<0b010, "movrlez">;
defm MOVRLZ  : MOVR<0b011, "movrlz">;
defm MOVRNZ  : MOVR<0b101, "movrnz">;
defm MOVRGZ  : MOVR<0b110, "movrgz">;
defm MOVRGEZ : MOVR<0b111, "movrgez">;

// Move FP register on integer register condition (FMOVr).
multiclass FMOVR<bits<3> rcond, string OpcStr> {

  def S : F4_4r<0b110101, 0b00101, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
                []>;
  def D : F4_4r<0b110101, 0b00110, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
                []>;
  def Q : F4_4r<0b110101, 0b00111, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
                []>, Requires<[HasHardQuad]>;
}

let Predicates = [HasV9] in {
  defm FMOVRZ   : FMOVR<0b001, "z">;
  defm FMOVRLEZ : FMOVR<0b010, "lez">;
  defm FMOVRLZ  : FMOVR<0b011, "lz">;
  defm FMOVRNZ  : FMOVR<0b101, "nz">;
  defm FMOVRGZ  : FMOVR<0b110, "gz">;
  defm FMOVRGEZ : FMOVR<0b111, "gez">;
}

//===----------------------------------------------------------------------===//
// 64-bit Floating Point Conversions.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

def FXTOS : F3_3u<2, 0b110100, 0b010000100,
                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtos $rs2, $rd",
                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
def FXTOD : F3_3u<2, 0b110100, 0b010001000,
                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtod $rs2, $rd",
                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtoq $rs2, $rd",
                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

def FSTOX : F3_3u<2, 0b110100, 0b010000001,
                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
                 "fstox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
def FDTOX : F3_3u<2, 0b110100, 0b010000010,
                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fdtox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
def FQTOX : F3_3u<2, 0b110100, 0b010000011,
                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
                 "fqtox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

} // Predicates = [Is64Bit]

def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
          (MOVXCCrr $t, $f, imm:$cond)>;
def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;

def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
          (MOVICCrr $t, $f, imm:$cond)>;
def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;

def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
          (MOVFCCrr $t, $f, imm:$cond)>;
def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;

} // Predicates = [Is64Bit]


// 64 bit SETHI
let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
def SETHIXi : F2_1<0b100,
                   (outs IntRegs:$rd), (ins i64imm:$imm22),
                   "sethi $imm22, $rd",
                   [(set i64:$rd, SETHIimm:$imm22)]>;
}

// ATOMICS.
let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in {
  def CASXrr: F3_1_asi<3, 0b111110,
                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
                                     I64Regs:$swap),
                 "casx [$rs1], $rs2, $rd",
                 [(set i64:$rd,
                     (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>;

} // Predicates = [Is64Bit], Constraints = ...

let Predicates = [Is64Bit] in {

def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;

// atomic_load_64 addr -> load addr
def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>;

// atomic_store_64 val, addr -> store val, addr
def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;

} // Predicates = [Is64Bit]

let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
 defm TXCC : TRAP<"%xcc">;

// Global addresses, constant pool entries
let Predicates = [Is64Bit] in {

def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;

// GlobalTLS addresses
def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;

// Blockaddress
def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;

// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
                        (ADDXri $r, tblockaddress:$in)>;
}