reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 x87 FPU instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
                                           SDTCisPtrTy<1>]>;
def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
                                           SDTCisPtrTy<1>]>;
def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;

def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;

def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
                              SDNPMemOperand]>;
def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
                              SDNPMemOperand]>;
def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
                              SDNPMemOperand]>;
def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
                              SDNPMemOperand]>;

def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
                        (X86fst node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
                        (X86fst node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
                        (X86fst node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
}]>;

def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
}]>;

def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;

def X86fildflag64 : PatFrag<(ops node:$ptr), (X86fildflag node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;

def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
                        (X86fist node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;

def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
                              (X86fp_to_mem node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
                              (X86fp_to_mem node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
                              (X86fp_to_mem node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;

//===----------------------------------------------------------------------===//
// FPStack pattern fragments
//===----------------------------------------------------------------------===//

def fpimm0 : FPImmLeaf<fAny, [{
  return Imm.isExactlyValue(+0.0);
}]>;

def fpimmneg0 : FPImmLeaf<fAny, [{
  return Imm.isExactlyValue(-0.0);
}]>;

def fpimm1 : FPImmLeaf<fAny, [{
  return Imm.isExactlyValue(+1.0);
}]>;

def fpimmneg1 : FPImmLeaf<fAny, [{
  return Imm.isExactlyValue(-1.0);
}]>;

// Some 'special' instructions - expanded after instruction selection.
// Clobbers EFLAGS due to OR instruction used internally.
// FIXME: Can we model this in SelectionDAG?
let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
}

// All FP Stack operations are represented with four instructions here.  The
// first three instructions, generated by the instruction selector, use "RFP32"
// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
// 64-bit or 80-bit floating point values.  These sizes apply to the values,
// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
// copied to each other without losing information.  These instructions are all
// pseudo instructions and use the "_Fp" suffix.
// In some cases there are additional variants with a mixture of different
// register sizes.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler.  These use "RST" registers, although frequently
// the actual register(s) used are implicit.  These are always 80 bits.
// The FP stackifier pass converts one to the other after register allocation
// occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).

// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
// f80 instructions cannot use SSE and use neither of these.
class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;

// Factoring for arithmetic.
multiclass FPBinary_rr<SDNode OpNode> {
// Register op register -> register
// These are separated out because they have no reversed form.
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
}
// The FopST0 series are not included here because of the irregularities
// in where the 'r' goes in assembly output.
// These instructions cannot address 80-bit memory.
multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
                    bit Forward = 1> {
// ST(0) = ST(0) + [mem]
def _Fp32m  : FpIf32<(outs RFP32:$dst),
                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
                  [!if(Forward,
                       (set RFP32:$dst,
                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
                       (set RFP32:$dst,
                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
def _Fp64m  : FpIf64<(outs RFP64:$dst),
                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
                  [!if(Forward,
                       (set RFP64:$dst,
                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
                       (set RFP64:$dst,
                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
def _Fp64m32: FpIf64<(outs RFP64:$dst),
                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
                  [!if(Forward,
                       (set RFP64:$dst,
                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
                       (set RFP64:$dst,
                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
def _Fp80m32: FpI_<(outs RFP80:$dst),
                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
                  [!if(Forward,
                       (set RFP80:$dst,
                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
                       (set RFP80:$dst,
                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
def _Fp80m64: FpI_<(outs RFP80:$dst),
                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
                  [!if(Forward,
                       (set RFP80:$dst,
                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
                       (set RFP80:$dst,
                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
let mayLoad = 1 in
def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
                 !strconcat("f", asmstring, "{s}\t$src")>;
let mayLoad = 1 in
def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
                 !strconcat("f", asmstring, "{l}\t$src")>;
// ST(0) = ST(0) + [memint]
def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
                       OneArgFPRW,
                       [!if(Forward,
                            (set RFP32:$dst,
                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
                            (set RFP32:$dst,
                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
                       OneArgFPRW,
                       [!if(Forward,
                            (set RFP32:$dst,
                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
                            (set RFP32:$dst,
                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
                       OneArgFPRW,
                       [!if(Forward,
                            (set RFP64:$dst,
                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
                            (set RFP64:$dst,
                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
                       OneArgFPRW,
                       [!if(Forward,
                            (set RFP64:$dst,
                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
                            (set RFP64:$dst,
                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
                     OneArgFPRW,
                     [!if(Forward,
                          (set RFP80:$dst,
                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
                          (set RFP80:$dst,
                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
                     OneArgFPRW,
                     [!if(Forward,
                          (set RFP80:$dst,
                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
                          (set RFP80:$dst,
                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
let mayLoad = 1 in
def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
                  !strconcat("fi", asmstring, "{s}\t$src")>;
let mayLoad = 1 in
def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
                  !strconcat("fi", asmstring, "{l}\t$src")>;
}

let Defs = [FPSW], Uses = [FPCW] in {
// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
// resources.
let hasNoSchedulingInfo = 1 in {
defm ADD : FPBinary_rr<fadd>;
defm SUB : FPBinary_rr<fsub>;
defm MUL : FPBinary_rr<fmul>;
defm DIV : FPBinary_rr<fdiv>;
}

// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
let SchedRW = [WriteFAddLd] in {
defm ADD : FPBinary<fadd, MRM0m, "add">;
defm SUB : FPBinary<fsub, MRM4m, "sub">;
defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
}

let SchedRW = [WriteFMulLd] in {
defm MUL : FPBinary<fmul, MRM1m, "mul">;
}

let SchedRW = [WriteFDivLd] in {
defm DIV : FPBinary<fdiv, MRM6m, "div">;
defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
}
} // Defs = [FPSW]

class FPST0rInst<Format fp, string asm>
  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
class FPrST0Inst<Format fp, string asm>
  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
class FPrST0PInst<Format fp, string asm>
  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;

// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
// we have to put some 'r's in and take them out of weird places.
let SchedRW = [WriteFAdd], Defs = [FPSW], Uses = [FPCW] in {
def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
} // SchedRW
let SchedRW = [WriteFCom], Defs = [FPSW], Uses = [FPCW] in {
def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
} // SchedRW
let SchedRW = [WriteFMul], Defs = [FPSW], Uses = [FPCW] in {
def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
} // SchedRW
let SchedRW = [WriteFDiv], Defs = [FPSW], Uses = [FPCW] in {
def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
} // SchedRW

// Unary operations.
multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
}

let Defs = [FPSW], Uses = [FPCW] in {

let SchedRW = [WriteFSign] in {
defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
}

let SchedRW = [WriteFSqrt80] in
defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;

let SchedRW = [WriteMicrocoded] in {
defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
defm COS : FPUnary<fcos, MRM_FF, "fcos">;
}

let SchedRW = [WriteFCom] in {
let hasSideEffects = 0 in {
def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
} // hasSideEffects

def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
} // SchedRW
} // Defs = [FPSW]

// Versions of FP instructions that take a single memory operand.  Added for the
//   disassembler; remove as they are included with patterns elsewhere.
let SchedRW = [WriteFComLd], Defs = [FPSW], Uses = [FPCW] in {
def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;

def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;

def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;

def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
} // SchedRW

let SchedRW = [WriteMicrocoded] in {
def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;

def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;

def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
} // SchedRW

// Floating point cmovs.
class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;

multiclass FPCMov<PatLeaf cc> {
  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
                       CondMovFP,
                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
                                        cc, EFLAGS))]>;
  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
                       CondMovFP,
                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
                                        cc, EFLAGS))]>;
  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
                     CondMovFP,
                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
                                        cc, EFLAGS))]>,
                                        Requires<[HasCMov]>;
}

let Defs = [FPSW] in {
let SchedRW = [WriteFCMOV] in {
let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
defm CMOVB  : FPCMov<X86_COND_B>;
defm CMOVBE : FPCMov<X86_COND_BE>;
defm CMOVE  : FPCMov<X86_COND_E>;
defm CMOVP  : FPCMov<X86_COND_P>;
defm CMOVNB : FPCMov<X86_COND_AE>;
defm CMOVNBE: FPCMov<X86_COND_A>;
defm CMOVNE : FPCMov<X86_COND_NE>;
defm CMOVNP : FPCMov<X86_COND_NP>;
} // Uses = [EFLAGS], Constraints = "$src1 = $dst"

let Predicates = [HasCMov] in {
// These are not factored because there's no clean way to pass DA/DB.
def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
                  "fcmovb\t{$op, %st|st, $op}">;
def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
                  "fcmovbe\t{$op, %st|st, $op}">;
def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
                  "fcmove\t{$op, %st|st, $op}">;
def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
                  "fcmovu\t{$op, %st|st, $op}">;
def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
                  "fcmovnb\t{$op, %st|st, $op}">;
def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
                  "fcmovnbe\t{$op, %st|st, $op}">;
def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
                  "fcmovne\t{$op, %st|st, $op}">;
def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
                  "fcmovnu\t{$op, %st|st, $op}">;
} // Predicates = [HasCMov]
} // SchedRW

// Floating point loads & stores.
let SchedRW = [WriteLoad], Uses = [FPCW] in {
let canFoldAsLoad = 1 in {
def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
} // canFoldAsLoad
def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
} // SchedRW

let SchedRW = [WriteStore], Uses = [FPCW] in {
def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
                  [(store RFP32:$src, addr:$op)]>;
def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
                  [(truncstoref32 RFP64:$src, addr:$op)]>;
def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
                  [(store RFP64:$src, addr:$op)]>;
def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
                  [(truncstoref32 RFP80:$src, addr:$op)]>;
def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
                  [(truncstoref64 RFP80:$src, addr:$op)]>;
// FST does not support 80-bit memory target; FSTP must be used.

let mayStore = 1, hasSideEffects = 0 in {
def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
} // mayStore

def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
                    [(store RFP80:$src, addr:$op)]>;

let mayStore = 1, hasSideEffects = 0 in {
def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
} // mayStore
} // SchedRW, Uses = [FPCW]

let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
}
let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
}

// FISTTP requires SSE3 even though it's a FPStack op.
let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
} // Predicates = [HasSSE3]

let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
}

// FP Stack manipulation instructions.
let SchedRW = [WriteMove], Uses = [FPCW] in {
def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
}

// Floating point constant loads.
let SchedRW = [WriteZero], Uses = [FPCW] in {
def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                [(set RFP32:$dst, fpimm0)]>;
def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                [(set RFP32:$dst, fpimm1)]>;
def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                [(set RFP64:$dst, fpimm0)]>;
def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                [(set RFP64:$dst, fpimm1)]>;
def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                [(set RFP80:$dst, fpimm0)]>;
def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                [(set RFP80:$dst, fpimm1)]>;
}

let SchedRW = [WriteFLD0], Uses = [FPCW] in
def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;

let SchedRW = [WriteFLD1], Uses = [FPCW] in
def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;

let SchedRW = [WriteFLDC], Uses = [FPCW] in {
def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
} // SchedRW

// Floating point compares.
let SchedRW = [WriteFCom], Uses = [FPCW] in {
def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
} // SchedRW
} // Defs = [FPSW]

let SchedRW = [WriteFCom] in {
// CC = ST(0) cmp ST(i)
let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>,
                  Requires<[FPStackf32, HasCMov]>;
def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>,
                  Requires<[FPStackf64, HasCMov]>;
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>,
                  Requires<[HasCMov]>;
}

let Defs = [FPSW], Uses = [ST0, FPCW] in {
def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
                    (outs), (ins), "fucompp">;
}

let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;

def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
                  "fcomi\t{$reg, %st|st, $reg}">;
def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
                   "fcompi\t{$reg, %st|st, $reg}">;
}
} // SchedRW

// Floating point flag ops.
let SchedRW = [WriteALU] in {
let Defs = [AX], Uses = [FPSW] in
def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
                  (outs), (ins), "fnstsw\t{%ax|ax}",
                  [(set AX, (X86fp_stsw FPSW))]>;
let Defs = [FPSW], Uses = [FPCW] in
def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
                  [(X86fp_cwd_get16 addr:$dst)]>;
} // SchedRW
let Defs = [FPSW,FPCW], mayLoad = 1 in
def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>,
                Sched<[WriteLoad]>;

// FPU control instructions
let SchedRW = [WriteMicrocoded] in {
let Defs = [FPSW] in {
def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;

// Clear exceptions
def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
} // Defs = [FPSW]
} // SchedRW

// Operand-less floating-point instructions for the disassembler.
def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;

let SchedRW = [WriteMicrocoded] in {
let Defs = [FPSW] in {
def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>;
def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
} // Defs = [FPSW]

def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB,
             Requires<[HasFXSR]>;
def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
               TB, Requires<[HasFXSR, In64BitMode]>;
def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
              TB, Requires<[HasFXSR]>;
def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
                TB, Requires<[HasFXSR, In64BitMode]>;
} // SchedRW

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// Required for RET of f32 / f64 / f80 values.
def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;

// Required for CALL which return f32 / f64 / f80 values.
def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;

// Floating point constant -0.0 and -1.0
def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;

// Used to conv. i64 to f64 since there isn't a SSE version.
def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m64 addr:$src)>;

// Used to conv. between f80 and i64 for i64 atomic loads.
def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m80 addr:$src)>;
def : Pat<(X86fist64 RFP80:$src, addr:$op), (IST_Fp64m80 addr:$op, RFP80:$src)>;

// FP extensions map onto simple pseudo-value conversions if they are to/from
// the FP stack.
def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
          Requires<[FPStackf32]>;
def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
           Requires<[FPStackf32]>;
def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
           Requires<[FPStackf64]>;

// FP truncations map onto simple pseudo-value conversions if they are to/from
// the FP stack.  We have validated that only value-preserving truncations make
// it through isel.
def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
          Requires<[FPStackf32]>;
def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
           Requires<[FPStackf32]>;
def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
           Requires<[FPStackf64]>;