reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains classes used to discover if for a particular value
// there from sue to definition that crosses a suspend block.
//
// Using the information discovered we form a Coroutine Frame structure to
// contain those values. All uses of those values are replaced with appropriate
// GEP + load from the coroutine frame. At the point of the definition we spill
// the value into the coroutine frame.
//
// TODO: pack values tightly using liveness info.
//===----------------------------------------------------------------------===//

#include "CoroInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/circular_raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"

using namespace llvm;

// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"

enum { SmallVectorThreshold = 32 };

// Provides two way mapping between the blocks and numbers.
namespace {
class BlockToIndexMapping {
  SmallVector<BasicBlock *, SmallVectorThreshold> V;

public:
  size_t size() const { return V.size(); }

  BlockToIndexMapping(Function &F) {
    for (BasicBlock &BB : F)
      V.push_back(&BB);
    llvm::sort(V);
  }

  size_t blockToIndex(BasicBlock *BB) const {
    auto *I = llvm::lower_bound(V, BB);
    assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
    return I - V.begin();
  }

  BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
};
} // end anonymous namespace

// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point.
//
// For every basic block 'i' it maintains a BlockData that consists of:
//   Consumes:  a bit vector which contains a set of indices of blocks that can
//              reach block 'i'
//   Kills: a bit vector which contains a set of indices of blocks that can
//          reach block 'i', but one of the path will cross a suspend point
//   Suspend: a boolean indicating whether block 'i' contains a suspend point.
//   End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
//
namespace {
struct SuspendCrossingInfo {
  BlockToIndexMapping Mapping;

  struct BlockData {
    BitVector Consumes;
    BitVector Kills;
    bool Suspend = false;
    bool End = false;
  };
  SmallVector<BlockData, SmallVectorThreshold> Block;

  iterator_range<succ_iterator> successors(BlockData const &BD) const {
    BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
    return llvm::successors(BB);
  }

  BlockData &getBlockData(BasicBlock *BB) {
    return Block[Mapping.blockToIndex(BB)];
  }

  void dump() const;
  void dump(StringRef Label, BitVector const &BV) const;

  SuspendCrossingInfo(Function &F, coro::Shape &Shape);

  bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
    size_t const DefIndex = Mapping.blockToIndex(DefBB);
    size_t const UseIndex = Mapping.blockToIndex(UseBB);

    assert(Block[UseIndex].Consumes[DefIndex] && "use must consume def");
    bool const Result = Block[UseIndex].Kills[DefIndex];
    LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
                      << " answer is " << Result << "\n");
    return Result;
  }

  bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
    auto *I = cast<Instruction>(U);

    // We rewrote PHINodes, so that only the ones with exactly one incoming
    // value need to be analyzed.
    if (auto *PN = dyn_cast<PHINode>(I))
      if (PN->getNumIncomingValues() > 1)
        return false;

    BasicBlock *UseBB = I->getParent();

    // As a special case, treat uses by an llvm.coro.suspend.retcon
    // as if they were uses in the suspend's single predecessor: the
    // uses conceptually occur before the suspend.
    if (isa<CoroSuspendRetconInst>(I)) {
      UseBB = UseBB->getSinglePredecessor();
      assert(UseBB && "should have split coro.suspend into its own block");
    }

    return hasPathCrossingSuspendPoint(DefBB, UseBB);
  }

  bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
    return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
  }

  bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
    auto *DefBB = I.getParent();

    // As a special case, treat values produced by an llvm.coro.suspend.*
    // as if they were defined in the single successor: the uses
    // conceptually occur after the suspend.
    if (isa<AnyCoroSuspendInst>(I)) {
      DefBB = DefBB->getSingleSuccessor();
      assert(DefBB && "should have split coro.suspend into its own block");
    }

    return isDefinitionAcrossSuspend(DefBB, U);
  }
};
} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
                                                BitVector const &BV) const {
  dbgs() << Label << ":";
  for (size_t I = 0, N = BV.size(); I < N; ++I)
    if (BV[I])
      dbgs() << " " << Mapping.indexToBlock(I)->getName();
  dbgs() << "\n";
}

LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
  for (size_t I = 0, N = Block.size(); I < N; ++I) {
    BasicBlock *const B = Mapping.indexToBlock(I);
    dbgs() << B->getName() << ":\n";
    dump("   Consumes", Block[I].Consumes);
    dump("      Kills", Block[I].Kills);
  }
  dbgs() << "\n";
}
#endif

SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
    : Mapping(F) {
  const size_t N = Mapping.size();
  Block.resize(N);

  // Initialize every block so that it consumes itself
  for (size_t I = 0; I < N; ++I) {
    auto &B = Block[I];
    B.Consumes.resize(N);
    B.Kills.resize(N);
    B.Consumes.set(I);
  }

  // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
  // the code beyond coro.end is reachable during initial invocation of the
  // coroutine.
  for (auto *CE : Shape.CoroEnds)
    getBlockData(CE->getParent()).End = true;

  // Mark all suspend blocks and indicate that they kill everything they
  // consume. Note, that crossing coro.save also requires a spill, as any code
  // between coro.save and coro.suspend may resume the coroutine and all of the
  // state needs to be saved by that time.
  auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
    BasicBlock *SuspendBlock = BarrierInst->getParent();
    auto &B = getBlockData(SuspendBlock);
    B.Suspend = true;
    B.Kills |= B.Consumes;
  };
  for (auto *CSI : Shape.CoroSuspends) {
    markSuspendBlock(CSI);
    if (auto *Save = CSI->getCoroSave())
      markSuspendBlock(Save);
  }

  // Iterate propagating consumes and kills until they stop changing.
  int Iteration = 0;
  (void)Iteration;

  bool Changed;
  do {
    LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
    LLVM_DEBUG(dbgs() << "==============\n");

    Changed = false;
    for (size_t I = 0; I < N; ++I) {
      auto &B = Block[I];
      for (BasicBlock *SI : successors(B)) {

        auto SuccNo = Mapping.blockToIndex(SI);

        // Saved Consumes and Kills bitsets so that it is easy to see
        // if anything changed after propagation.
        auto &S = Block[SuccNo];
        auto SavedConsumes = S.Consumes;
        auto SavedKills = S.Kills;

        // Propagate Kills and Consumes from block B into its successor S.
        S.Consumes |= B.Consumes;
        S.Kills |= B.Kills;

        // If block B is a suspend block, it should propagate kills into the
        // its successor for every block B consumes.
        if (B.Suspend) {
          S.Kills |= B.Consumes;
        }
        if (S.Suspend) {
          // If block S is a suspend block, it should kill all of the blocks it
          // consumes.
          S.Kills |= S.Consumes;
        } else if (S.End) {
          // If block S is an end block, it should not propagate kills as the
          // blocks following coro.end() are reached during initial invocation
          // of the coroutine while all the data are still available on the
          // stack or in the registers.
          S.Kills.reset();
        } else {
          // This is reached when S block it not Suspend nor coro.end and it
          // need to make sure that it is not in the kill set.
          S.Kills.reset(SuccNo);
        }

        // See if anything changed.
        Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);

        if (S.Kills != SavedKills) {
          LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
                            << "\n");
          LLVM_DEBUG(dump("S.Kills", S.Kills));
          LLVM_DEBUG(dump("SavedKills", SavedKills));
        }
        if (S.Consumes != SavedConsumes) {
          LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
          LLVM_DEBUG(dump("S.Consume", S.Consumes));
          LLVM_DEBUG(dump("SavedCons", SavedConsumes));
        }
      }
    }
  } while (Changed);
  LLVM_DEBUG(dump());
}

#undef DEBUG_TYPE // "coro-suspend-crossing"
#define DEBUG_TYPE "coro-frame"

// We build up the list of spills for every case where a use is separated
// from the definition by a suspend point.

static const unsigned InvalidFieldIndex = ~0U;

namespace {
class Spill {
  Value *Def = nullptr;
  Instruction *User = nullptr;
  unsigned FieldNo = InvalidFieldIndex;

public:
  Spill(Value *Def, llvm::User *U) : Def(Def), User(cast<Instruction>(U)) {}

  Value *def() const { return Def; }
  Instruction *user() const { return User; }
  BasicBlock *userBlock() const { return User->getParent(); }

  // Note that field index is stored in the first SpillEntry for a particular
  // definition. Subsequent mentions of a defintion do not have fieldNo
  // assigned. This works out fine as the users of Spills capture the info about
  // the definition the first time they encounter it. Consider refactoring
  // SpillInfo into two arrays to normalize the spill representation.
  unsigned fieldIndex() const {
    assert(FieldNo != InvalidFieldIndex && "Accessing unassigned field");
    return FieldNo;
  }
  void setFieldIndex(unsigned FieldNumber) {
    assert(FieldNo == InvalidFieldIndex && "Reassigning field number");
    FieldNo = FieldNumber;
  }
};
} // namespace

// Note that there may be more than one record with the same value of Def in
// the SpillInfo vector.
using SpillInfo = SmallVector<Spill, 8>;

#ifndef NDEBUG
static void dump(StringRef Title, SpillInfo const &Spills) {
  dbgs() << "------------- " << Title << "--------------\n";
  Value *CurrentValue = nullptr;
  for (auto const &E : Spills) {
    if (CurrentValue != E.def()) {
      CurrentValue = E.def();
      CurrentValue->dump();
    }
    dbgs() << "   user: ";
    E.user()->dump();
  }
}
#endif

namespace {
// We cannot rely solely on natural alignment of a type when building a
// coroutine frame and if the alignment specified on the Alloca instruction
// differs from the natural alignment of the alloca type we will need to insert
// padding.
struct PaddingCalculator {
  const DataLayout &DL;
  LLVMContext &Context;
  unsigned StructSize = 0;

  PaddingCalculator(LLVMContext &Context, DataLayout const &DL)
      : DL(DL), Context(Context) {}

  // Replicate the logic from IR/DataLayout.cpp to match field offset
  // computation for LLVM structs.
  void addType(Type *Ty) {
    unsigned TyAlign = DL.getABITypeAlignment(Ty);
    if ((StructSize & (TyAlign - 1)) != 0)
      StructSize = alignTo(StructSize, TyAlign);

    StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item.
  }

  void addTypes(SmallVectorImpl<Type *> const &Types) {
    for (auto *Ty : Types)
      addType(Ty);
  }

  unsigned computePadding(Type *Ty, unsigned ForcedAlignment) {
    unsigned TyAlign = DL.getABITypeAlignment(Ty);
    auto Natural = alignTo(StructSize, TyAlign);
    auto Forced = alignTo(StructSize, ForcedAlignment);

    // Return how many bytes of padding we need to insert.
    if (Natural != Forced)
      return std::max(Natural, Forced) - StructSize;

    // Rely on natural alignment.
    return 0;
  }

  // If padding required, return the padding field type to insert.
  ArrayType *getPaddingType(Type *Ty, unsigned ForcedAlignment) {
    if (auto Padding = computePadding(Ty, ForcedAlignment))
      return ArrayType::get(Type::getInt8Ty(Context), Padding);

    return nullptr;
  }
};
} // namespace

// Build a struct that will keep state for an active coroutine.
//   struct f.frame {
//     ResumeFnTy ResumeFnAddr;
//     ResumeFnTy DestroyFnAddr;
//     int ResumeIndex;
//     ... promise (if present) ...
//     ... spills ...
//   };
static StructType *buildFrameType(Function &F, coro::Shape &Shape,
                                  SpillInfo &Spills) {
  LLVMContext &C = F.getContext();
  const DataLayout &DL = F.getParent()->getDataLayout();
  PaddingCalculator Padder(C, DL);
  SmallString<32> Name(F.getName());
  Name.append(".Frame");
  StructType *FrameTy = StructType::create(C, Name);
  SmallVector<Type *, 8> Types;

  AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();

  if (Shape.ABI == coro::ABI::Switch) {
    auto *FramePtrTy = FrameTy->getPointerTo();
    auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
                                   /*IsVarArg=*/false);
    auto *FnPtrTy = FnTy->getPointerTo();

    // Figure out how wide should be an integer type storing the suspend index.
    unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
    Type *PromiseType = PromiseAlloca
                            ? PromiseAlloca->getType()->getElementType()
                            : Type::getInt1Ty(C);
    Type *IndexType = Type::getIntNTy(C, IndexBits);
    Types.push_back(FnPtrTy);
    Types.push_back(FnPtrTy);
    Types.push_back(PromiseType);
    Types.push_back(IndexType);
  } else {
    assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
  }

  Value *CurrentDef = nullptr;

  Padder.addTypes(Types);

  // Create an entry for every spilled value.
  for (auto &S : Spills) {
    if (CurrentDef == S.def())
      continue;

    CurrentDef = S.def();
    // PromiseAlloca was already added to Types array earlier.
    if (CurrentDef == PromiseAlloca)
      continue;

    uint64_t Count = 1;
    Type *Ty = nullptr;
    if (auto *AI = dyn_cast<AllocaInst>(CurrentDef)) {
      Ty = AI->getAllocatedType();
      if (unsigned AllocaAlignment = AI->getAlignment()) {
        // If alignment is specified in alloca, see if we need to insert extra
        // padding.
        if (auto PaddingTy = Padder.getPaddingType(Ty, AllocaAlignment)) {
          Types.push_back(PaddingTy);
          Padder.addType(PaddingTy);
        }
      }
      if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
        Count = CI->getValue().getZExtValue();
      else
        report_fatal_error("Coroutines cannot handle non static allocas yet");
    } else {
      Ty = CurrentDef->getType();
    }
    S.setFieldIndex(Types.size());
    if (Count == 1)
      Types.push_back(Ty);
    else
      Types.push_back(ArrayType::get(Ty, Count));
    Padder.addType(Ty);
  }
  FrameTy->setBody(Types);

  switch (Shape.ABI) {
  case coro::ABI::Switch:
    break;

  // Remember whether the frame is inline in the storage.
  case coro::ABI::Retcon:
  case coro::ABI::RetconOnce: {
    auto &Layout = F.getParent()->getDataLayout();
    auto Id = Shape.getRetconCoroId();
    Shape.RetconLowering.IsFrameInlineInStorage
      = (Layout.getTypeAllocSize(FrameTy) <= Id->getStorageSize() &&
         Layout.getABITypeAlignment(FrameTy) <= Id->getStorageAlignment());
    break;
  }
  }

  return FrameTy;
}

// We use a pointer use visitor to discover if there are any writes into an
// alloca that dominates CoroBegin. If that is the case, insertSpills will copy
// the value from the alloca into the coroutine frame spill slot corresponding
// to that alloca.
namespace {
struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
  using Base = PtrUseVisitor<AllocaUseVisitor>;
  AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
                   const CoroBeginInst &CB)
      : PtrUseVisitor(DL), DT(DT), CoroBegin(CB) {}

  // We are only interested in uses that dominate coro.begin.
  void visit(Instruction &I) {
    if (DT.dominates(&I, &CoroBegin))
      Base::visit(I);
  }
  // We need to provide this overload as PtrUseVisitor uses a pointer based
  // visiting function.
  void visit(Instruction *I) { return visit(*I); }

  void visitLoadInst(LoadInst &) {} // Good. Nothing to do.

  // If the use is an operand, the pointer escaped and anything can write into
  // that memory. If the use is the pointer, we are definitely writing into the
  // alloca and therefore we need to copy.
  void visitStoreInst(StoreInst &SI) { PI.setAborted(&SI); }

  // Any other instruction that is not filtered out by PtrUseVisitor, will
  // result in the copy.
  void visitInstruction(Instruction &I) { PI.setAborted(&I); }

private:
  const DominatorTree &DT;
  const CoroBeginInst &CoroBegin;
};
} // namespace
static bool mightWriteIntoAllocaPtr(AllocaInst &A, const DominatorTree &DT,
                                    const CoroBeginInst &CB) {
  const DataLayout &DL = A.getModule()->getDataLayout();
  AllocaUseVisitor Visitor(DL, DT, CB);
  auto PtrI = Visitor.visitPtr(A);
  if (PtrI.isEscaped() || PtrI.isAborted()) {
    auto *PointerEscapingInstr = PtrI.getEscapingInst()
                                     ? PtrI.getEscapingInst()
                                     : PtrI.getAbortingInst();
    if (PointerEscapingInstr) {
      LLVM_DEBUG(
          dbgs() << "AllocaInst copy was triggered by instruction: "
                 << *PointerEscapingInstr << "\n");
    }
    return true;
  }
  return false;
}

// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
//   cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
  BasicBlock *CurrentBlock = CatchSwitch->getParent();
  BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
  CurrentBlock->getTerminator()->eraseFromParent();

  auto *CleanupPad =
      CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
  auto *CleanupRet =
      CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
  return CleanupRet;
}

// Replace all alloca and SSA values that are accessed across suspend points
// with GetElementPointer from coroutine frame + loads and stores. Create an
// AllocaSpillBB that will become the new entry block for the resume parts of
// the coroutine:
//
//    %hdl = coro.begin(...)
//    whatever
//
// becomes:
//
//    %hdl = coro.begin(...)
//    %FramePtr = bitcast i8* hdl to %f.frame*
//    br label %AllocaSpillBB
//
//  AllocaSpillBB:
//    ; geps corresponding to allocas that were moved to coroutine frame
//    br label PostSpill
//
//  PostSpill:
//    whatever
//
//
static Instruction *insertSpills(const SpillInfo &Spills, coro::Shape &Shape) {
  auto *CB = Shape.CoroBegin;
  LLVMContext &C = CB->getContext();
  IRBuilder<> Builder(CB->getNextNode());
  StructType *FrameTy = Shape.FrameTy;
  PointerType *FramePtrTy = FrameTy->getPointerTo();
  auto *FramePtr =
      cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
  DominatorTree DT(*CB->getFunction());

  Value *CurrentValue = nullptr;
  BasicBlock *CurrentBlock = nullptr;
  Value *CurrentReload = nullptr;

  // Proper field number will be read from field definition.
  unsigned Index = InvalidFieldIndex;

  // We need to keep track of any allocas that need "spilling"
  // since they will live in the coroutine frame now, all access to them
  // need to be changed, not just the access across suspend points
  // we remember allocas and their indices to be handled once we processed
  // all the spills.
  SmallVector<std::pair<AllocaInst *, unsigned>, 4> Allocas;
  // Promise alloca (if present) has a fixed field number.
  if (auto *PromiseAlloca = Shape.getPromiseAlloca()) {
    assert(Shape.ABI == coro::ABI::Switch);
    Allocas.emplace_back(PromiseAlloca, coro::Shape::SwitchFieldIndex::Promise);
  }

  // Create a GEP with the given index into the coroutine frame for the original
  // value Orig. Appends an extra 0 index for array-allocas, preserving the
  // original type.
  auto GetFramePointer = [&](uint32_t Index, Value *Orig) -> Value * {
    SmallVector<Value *, 3> Indices = {
        ConstantInt::get(Type::getInt32Ty(C), 0),
        ConstantInt::get(Type::getInt32Ty(C), Index),
    };

    if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
      if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
        auto Count = CI->getValue().getZExtValue();
        if (Count > 1) {
          Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
        }
      } else {
        report_fatal_error("Coroutines cannot handle non static allocas yet");
      }
    }

    return Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices);
  };

  // Create a load instruction to reload the spilled value from the coroutine
  // frame.
  auto CreateReload = [&](Instruction *InsertBefore) {
    assert(Index != InvalidFieldIndex && "accessing unassigned field number");
    Builder.SetInsertPoint(InsertBefore);

    auto *G = GetFramePointer(Index, CurrentValue);
    G->setName(CurrentValue->getName() + Twine(".reload.addr"));

    return isa<AllocaInst>(CurrentValue)
               ? G
               : Builder.CreateLoad(FrameTy->getElementType(Index), G,
                                    CurrentValue->getName() + Twine(".reload"));
  };

  for (auto const &E : Spills) {
    // If we have not seen the value, generate a spill.
    if (CurrentValue != E.def()) {
      CurrentValue = E.def();
      CurrentBlock = nullptr;
      CurrentReload = nullptr;

      Index = E.fieldIndex();

      if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
        // Spilled AllocaInst will be replaced with GEP from the coroutine frame
        // there is no spill required.
        Allocas.emplace_back(AI, Index);
        if (!AI->isStaticAlloca())
          report_fatal_error("Coroutines cannot handle non static allocas yet");
      } else {
        // Otherwise, create a store instruction storing the value into the
        // coroutine frame.

        Instruction *InsertPt = nullptr;
        if (auto Arg = dyn_cast<Argument>(CurrentValue)) {
          // For arguments, we will place the store instruction right after
          // the coroutine frame pointer instruction, i.e. bitcast of
          // coro.begin from i8* to %f.frame*.
          InsertPt = FramePtr->getNextNode();

          // If we're spilling an Argument, make sure we clear 'nocapture'
          // from the coroutine function.
          Arg->getParent()->removeParamAttr(Arg->getArgNo(),
                                            Attribute::NoCapture);

        } else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
          // If we are spilling the result of the invoke instruction, split the
          // normal edge and insert the spill in the new block.
          auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
          InsertPt = NewBB->getTerminator();
        } else if (isa<PHINode>(CurrentValue)) {
          // Skip the PHINodes and EH pads instructions.
          BasicBlock *DefBlock = cast<Instruction>(E.def())->getParent();
          if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
            InsertPt = splitBeforeCatchSwitch(CSI);
          else
            InsertPt = &*DefBlock->getFirstInsertionPt();
        } else if (auto CSI = dyn_cast<AnyCoroSuspendInst>(CurrentValue)) {
          // Don't spill immediately after a suspend; splitting assumes
          // that the suspend will be followed by a branch.
          InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI();
        } else {
          auto *I = cast<Instruction>(E.def());
          assert(!I->isTerminator() && "unexpected terminator");
          // For all other values, the spill is placed immediately after
          // the definition.
          if (DT.dominates(CB, I)) {
            InsertPt = I->getNextNode();
          } else {
            // Unless, it is not dominated by CoroBegin, then it will be
            // inserted immediately after CoroFrame is computed.
            InsertPt = FramePtr->getNextNode();
          }
        }

        Builder.SetInsertPoint(InsertPt);
        auto *G = Builder.CreateConstInBoundsGEP2_32(
            FrameTy, FramePtr, 0, Index,
            CurrentValue->getName() + Twine(".spill.addr"));
        Builder.CreateStore(CurrentValue, G);
      }
    }

    // If we have not seen the use block, generate a reload in it.
    if (CurrentBlock != E.userBlock()) {
      CurrentBlock = E.userBlock();
      CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt());
    }

    // If we have a single edge PHINode, remove it and replace it with a reload
    // from the coroutine frame. (We already took care of multi edge PHINodes
    // by rewriting them in the rewritePHIs function).
    if (auto *PN = dyn_cast<PHINode>(E.user())) {
      assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
                                                "values in the PHINode");
      PN->replaceAllUsesWith(CurrentReload);
      PN->eraseFromParent();
      continue;
    }

    // Replace all uses of CurrentValue in the current instruction with reload.
    E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
  }

  BasicBlock *FramePtrBB = FramePtr->getParent();

  auto SpillBlock =
    FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");      
  SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
  Shape.AllocaSpillBlock = SpillBlock;
  // If we found any allocas, replace all of their remaining uses with Geps.
  // Note: we cannot do it indiscriminately as some of the uses may not be
  // dominated by CoroBegin.
  bool MightNeedToCopy = false;
  Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
  SmallVector<Instruction *, 4> UsersToUpdate;
  for (auto &P : Allocas) {
    AllocaInst *const A = P.first;
    UsersToUpdate.clear();
    for (User *U : A->users()) {
      auto *I = cast<Instruction>(U);
      if (DT.dominates(CB, I))
        UsersToUpdate.push_back(I);
      else
        MightNeedToCopy = true;
    }
    if (!UsersToUpdate.empty()) {
      auto *G = GetFramePointer(P.second, A);
      G->takeName(A);
      for (Instruction *I : UsersToUpdate)
        I->replaceUsesOfWith(A, G);
    }
  }
  // If we discovered such uses not dominated by CoroBegin, see if any of them
  // preceed coro begin and have instructions that can modify the
  // value of the alloca and therefore would require a copying the value into
  // the spill slot in the coroutine frame.
  if (MightNeedToCopy) {
    Builder.SetInsertPoint(FramePtr->getNextNode());

    for (auto &P : Allocas) {
      AllocaInst *const A = P.first;
      if (mightWriteIntoAllocaPtr(*A, DT, *CB)) {
        if (A->isArrayAllocation())
          report_fatal_error(
              "Coroutines cannot handle copying of array allocas yet");

        auto *G = GetFramePointer(P.second, A);
        auto *Value = Builder.CreateLoad(A);
        Builder.CreateStore(Value, G);
      }
    }
  }
  return FramePtr;
}

// Sets the unwind edge of an instruction to a particular successor.
static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
  if (auto *II = dyn_cast<InvokeInst>(TI))
    II->setUnwindDest(Succ);
  else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
    CS->setUnwindDest(Succ);
  else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
    CR->setUnwindDest(Succ);
  else
    llvm_unreachable("unexpected terminator instruction");
}

// Replaces all uses of OldPred with the NewPred block in all PHINodes in a
// block.
static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
                           BasicBlock *NewPred,
                           PHINode *LandingPadReplacement) {
  unsigned BBIdx = 0;
  for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);

    // We manually update the LandingPadReplacement PHINode and it is the last
    // PHI Node. So, if we find it, we are done.
    if (LandingPadReplacement == PN)
      break;

    // Reuse the previous value of BBIdx if it lines up.  In cases where we
    // have multiple phi nodes with *lots* of predecessors, this is a speed
    // win because we don't have to scan the PHI looking for TIBB.  This
    // happens because the BB list of PHI nodes are usually in the same
    // order.
    if (PN->getIncomingBlock(BBIdx) != OldPred)
      BBIdx = PN->getBasicBlockIndex(OldPred);

    assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!");
    PN->setIncomingBlock(BBIdx, NewPred);
  }
}

// Uses SplitEdge unless the successor block is an EHPad, in which case do EH
// specific handling.
static BasicBlock *ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
                                    LandingPadInst *OriginalPad,
                                    PHINode *LandingPadReplacement) {
  auto *PadInst = Succ->getFirstNonPHI();
  if (!LandingPadReplacement && !PadInst->isEHPad())
    return SplitEdge(BB, Succ);

  auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ);
  setUnwindEdgeTo(BB->getTerminator(), NewBB);
  updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);

  if (LandingPadReplacement) {
    auto *NewLP = OriginalPad->clone();
    auto *Terminator = BranchInst::Create(Succ, NewBB);
    NewLP->insertBefore(Terminator);
    LandingPadReplacement->addIncoming(NewLP, NewBB);
    return NewBB;
  }
  Value *ParentPad = nullptr;
  if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
    ParentPad = FuncletPad->getParentPad();
  else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
    ParentPad = CatchSwitch->getParentPad();
  else
    llvm_unreachable("handling for other EHPads not implemented yet");

  auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB);
  CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
  return NewBB;
}

static void rewritePHIs(BasicBlock &BB) {
  // For every incoming edge we will create a block holding all
  // incoming values in a single PHI nodes.
  //
  // loop:
  //    %n.val = phi i32[%n, %entry], [%inc, %loop]
  //
  // It will create:
  //
  // loop.from.entry:
  //    %n.loop.pre = phi i32 [%n, %entry]
  //    br %label loop
  // loop.from.loop:
  //    %inc.loop.pre = phi i32 [%inc, %loop]
  //    br %label loop
  //
  // After this rewrite, further analysis will ignore any phi nodes with more
  // than one incoming edge.

  // TODO: Simplify PHINodes in the basic block to remove duplicate
  // predecessors.

  LandingPadInst *LandingPad = nullptr;
  PHINode *ReplPHI = nullptr;
  if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
    // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
    // We replace the original landing pad with a PHINode that will collect the
    // results from all of them.
    ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
    ReplPHI->takeName(LandingPad);
    LandingPad->replaceAllUsesWith(ReplPHI);
    // We will erase the original landing pad at the end of this function after
    // ehAwareSplitEdge cloned it in the transition blocks.
  }

  SmallVector<BasicBlock *, 8> Preds(pred_begin(&BB), pred_end(&BB));
  for (BasicBlock *Pred : Preds) {
    auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
    IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
    auto *PN = cast<PHINode>(&BB.front());
    do {
      int Index = PN->getBasicBlockIndex(IncomingBB);
      Value *V = PN->getIncomingValue(Index);
      PHINode *InputV = PHINode::Create(
          V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
          &IncomingBB->front());
      InputV->addIncoming(V, Pred);
      PN->setIncomingValue(Index, InputV);
      PN = dyn_cast<PHINode>(PN->getNextNode());
    } while (PN != ReplPHI); // ReplPHI is either null or the PHI that replaced
                             // the landing pad.
  }

  if (LandingPad) {
    // Calls to ehAwareSplitEdge function cloned the original lading pad.
    // No longer need it.
    LandingPad->eraseFromParent();
  }
}

static void rewritePHIs(Function &F) {
  SmallVector<BasicBlock *, 8> WorkList;

  for (BasicBlock &BB : F)
    if (auto *PN = dyn_cast<PHINode>(&BB.front()))
      if (PN->getNumIncomingValues() > 1)
        WorkList.push_back(&BB);

  for (BasicBlock *BB : WorkList)
    rewritePHIs(*BB);
}

// Check for instructions that we can recreate on resume as opposed to spill
// the result into a coroutine frame.
static bool materializable(Instruction &V) {
  return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
         isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
}

// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
  return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
         isa<CoroSuspendInst>(&I);
}

// For every use of the value that is across suspend point, recreate that value
// after a suspend point.
static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
                                              SpillInfo const &Spills) {
  BasicBlock *CurrentBlock = nullptr;
  Instruction *CurrentMaterialization = nullptr;
  Instruction *CurrentDef = nullptr;

  for (auto const &E : Spills) {
    // If it is a new definition, update CurrentXXX variables.
    if (CurrentDef != E.def()) {
      CurrentDef = cast<Instruction>(E.def());
      CurrentBlock = nullptr;
      CurrentMaterialization = nullptr;
    }

    // If we have not seen this block, materialize the value.
    if (CurrentBlock != E.userBlock()) {
      CurrentBlock = E.userBlock();
      CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
      CurrentMaterialization->setName(CurrentDef->getName());
      CurrentMaterialization->insertBefore(
          &*CurrentBlock->getFirstInsertionPt());
    }

    if (auto *PN = dyn_cast<PHINode>(E.user())) {
      assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
                                                "values in the PHINode");
      PN->replaceAllUsesWith(CurrentMaterialization);
      PN->eraseFromParent();
      continue;
    }

    // Replace all uses of CurrentDef in the current instruction with the
    // CurrentMaterialization for the block.
    E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
  }
}

// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
  auto *BB = I->getParent();
  if (&BB->front() == I) {
    if (BB->getSinglePredecessor()) {
      BB->setName(Name);
      return BB;
    }
  }
  return BB->splitBasicBlock(I, Name);
}

// Split above and below a particular instruction so that it
// will be all alone by itself in a block.
static void splitAround(Instruction *I, const Twine &Name) {
  splitBlockIfNotFirst(I, Name);
  splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}

static bool isSuspendBlock(BasicBlock *BB) {
  return isa<AnyCoroSuspendInst>(BB->front());
}

typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet;

/// Does control flow starting at the given block ever reach a suspend
/// instruction before reaching a block in VisitedOrFreeBBs?
static bool isSuspendReachableFrom(BasicBlock *From,
                                   VisitedBlocksSet &VisitedOrFreeBBs) {
  // Eagerly try to add this block to the visited set.  If it's already
  // there, stop recursing; this path doesn't reach a suspend before
  // either looping or reaching a freeing block.
  if (!VisitedOrFreeBBs.insert(From).second)
    return false;

  // We assume that we'll already have split suspends into their own blocks.
  if (isSuspendBlock(From))
    return true;

  // Recurse on the successors.
  for (auto Succ : successors(From)) {
    if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
      return true;
  }

  return false;
}

/// Is the given alloca "local", i.e. bounded in lifetime to not cross a
/// suspend point?
static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
  // Seed the visited set with all the basic blocks containing a free
  // so that we won't pass them up.
  VisitedBlocksSet VisitedOrFreeBBs;
  for (auto User : AI->users()) {
    if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
      VisitedOrFreeBBs.insert(FI->getParent());
  }

  return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
}

/// After we split the coroutine, will the given basic block be along
/// an obvious exit path for the resumption function?
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB,
                                              unsigned depth = 3) {
  // If we've bottomed out our depth count, stop searching and assume
  // that the path might loop back.
  if (depth == 0) return false;

  // If this is a suspend block, we're about to exit the resumption function.
  if (isSuspendBlock(BB)) return true;

  // Recurse into the successors.
  for (auto Succ : successors(BB)) {
    if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
      return false;
  }

  // If none of the successors leads back in a loop, we're on an exit/abort.
  return true;
}

static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) {
  // Look for a free that isn't sufficiently obviously followed by
  // either a suspend or a termination, i.e. something that will leave
  // the coro resumption frame.
  for (auto U : AI->users()) {
    auto FI = dyn_cast<CoroAllocaFreeInst>(U);
    if (!FI) continue;

    if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
      return true;
  }

  // If we never found one, we don't need a stack save.
  return false;
}

/// Turn each of the given local allocas into a normal (dynamic) alloca
/// instruction.
static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas,
                              SmallVectorImpl<Instruction*> &DeadInsts) {
  for (auto AI : LocalAllocas) {
    auto M = AI->getModule();
    IRBuilder<> Builder(AI);

    // Save the stack depth.  Try to avoid doing this if the stackrestore
    // is going to immediately precede a return or something.
    Value *StackSave = nullptr;
    if (localAllocaNeedsStackSave(AI))
      StackSave = Builder.CreateCall(
                            Intrinsic::getDeclaration(M, Intrinsic::stacksave));

    // Allocate memory.
    auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
    Alloca->setAlignment(MaybeAlign(AI->getAlignment()));

    for (auto U : AI->users()) {
      // Replace gets with the allocation.
      if (isa<CoroAllocaGetInst>(U)) {
        U->replaceAllUsesWith(Alloca);

      // Replace frees with stackrestores.  This is safe because
      // alloca.alloc is required to obey a stack discipline, although we
      // don't enforce that structurally.
      } else {
        auto FI = cast<CoroAllocaFreeInst>(U);
        if (StackSave) {
          Builder.SetInsertPoint(FI);
          Builder.CreateCall(
                    Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
                             StackSave);
        }
      }
      DeadInsts.push_back(cast<Instruction>(U));
    }

    DeadInsts.push_back(AI);
  }
}

/// Turn the given coro.alloca.alloc call into a dynamic allocation.
/// This happens during the all-instructions iteration, so it must not
/// delete the call.
static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI,
                                        coro::Shape &Shape,
                                   SmallVectorImpl<Instruction*> &DeadInsts) {
  IRBuilder<> Builder(AI);
  auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);

  for (User *U : AI->users()) {
    if (isa<CoroAllocaGetInst>(U)) {
      U->replaceAllUsesWith(Alloc);
    } else {
      auto FI = cast<CoroAllocaFreeInst>(U);
      Builder.SetInsertPoint(FI);
      Shape.emitDealloc(Builder, Alloc, nullptr);
    }
    DeadInsts.push_back(cast<Instruction>(U));
  }

  // Push this on last so that it gets deleted after all the others.
  DeadInsts.push_back(AI);

  // Return the new allocation value so that we can check for needed spills.
  return cast<Instruction>(Alloc);
}

/// Get the current swifterror value.
static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy,
                                     coro::Shape &Shape) {
  // Make a fake function pointer as a sort of intrinsic.
  auto FnTy = FunctionType::get(ValueTy, {}, false);
  auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());

  auto Call = Builder.CreateCall(Fn, {});
  Shape.SwiftErrorOps.push_back(Call);

  return Call;
}

/// Set the given value as the current swifterror value.
///
/// Returns a slot that can be used as a swifterror slot.
static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V,
                                     coro::Shape &Shape) {
  // Make a fake function pointer as a sort of intrinsic.
  auto FnTy = FunctionType::get(V->getType()->getPointerTo(),
                                {V->getType()}, false);
  auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());

  auto Call = Builder.CreateCall(Fn, { V });
  Shape.SwiftErrorOps.push_back(Call);

  return Call;
}

/// Set the swifterror value from the given alloca before a call,
/// then put in back in the alloca afterwards.
///
/// Returns an address that will stand in for the swifterror slot
/// until splitting.
static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call,
                                                 AllocaInst *Alloca,
                                                 coro::Shape &Shape) {
  auto ValueTy = Alloca->getAllocatedType();
  IRBuilder<> Builder(Call);

  // Load the current value from the alloca and set it as the
  // swifterror value.
  auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
  auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);

  // Move to after the call.  Since swifterror only has a guaranteed
  // value on normal exits, we can ignore implicit and explicit unwind
  // edges.
  if (isa<CallInst>(Call)) {
    Builder.SetInsertPoint(Call->getNextNode());
  } else {
    auto Invoke = cast<InvokeInst>(Call);
    Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
  }

  // Get the current swifterror value and store it to the alloca.
  auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
  Builder.CreateStore(ValueAfterCall, Alloca);

  return Addr;
}

/// Eliminate a formerly-swifterror alloca by inserting the get/set
/// intrinsics and attempting to MemToReg the alloca away.
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca,
                                      coro::Shape &Shape) {
  for (auto UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) {
    // We're likely changing the use list, so use a mutation-safe
    // iteration pattern.
    auto &Use = *UI;
    ++UI;

    // swifterror values can only be used in very specific ways.
    // We take advantage of that here.
    auto User = Use.getUser();
    if (isa<LoadInst>(User) || isa<StoreInst>(User))
      continue;

    assert(isa<CallInst>(User) || isa<InvokeInst>(User));
    auto Call = cast<Instruction>(User);

    auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);

    // Use the returned slot address as the call argument.
    Use.set(Addr);
  }

  // All the uses should be loads and stores now.
  assert(isAllocaPromotable(Alloca));
}

/// "Eliminate" a swifterror argument by reducing it to the alloca case
/// and then loading and storing in the prologue and epilog.
///
/// The argument keeps the swifterror flag.
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg,
                                        coro::Shape &Shape,
                             SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
  IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());

  auto ArgTy = cast<PointerType>(Arg.getType());
  auto ValueTy = ArgTy->getElementType();

  // Reduce to the alloca case:

  // Create an alloca and replace all uses of the arg with it.
  auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
  Arg.replaceAllUsesWith(Alloca);

  // Set an initial value in the alloca.  swifterror is always null on entry.
  auto InitialValue = Constant::getNullValue(ValueTy);
  Builder.CreateStore(InitialValue, Alloca);

  // Find all the suspends in the function and save and restore around them.
  for (auto Suspend : Shape.CoroSuspends) {
    (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
  }

  // Find all the coro.ends in the function and restore the error value.
  for (auto End : Shape.CoroEnds) {
    Builder.SetInsertPoint(End);
    auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
    (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
  }

  // Now we can use the alloca logic.
  AllocasToPromote.push_back(Alloca);
  eliminateSwiftErrorAlloca(F, Alloca, Shape);
}

/// Eliminate all problematic uses of swifterror arguments and allocas
/// from the function.  We'll fix them up later when splitting the function.
static void eliminateSwiftError(Function &F, coro::Shape &Shape) {
  SmallVector<AllocaInst*, 4> AllocasToPromote;

  // Look for a swifterror argument.
  for (auto &Arg : F.args()) {
    if (!Arg.hasSwiftErrorAttr()) continue;

    eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
    break;
  }

  // Look for swifterror allocas.
  for (auto &Inst : F.getEntryBlock()) {
    auto Alloca = dyn_cast<AllocaInst>(&Inst);
    if (!Alloca || !Alloca->isSwiftError()) continue;

    // Clear the swifterror flag.
    Alloca->setSwiftError(false);

    AllocasToPromote.push_back(Alloca);
    eliminateSwiftErrorAlloca(F, Alloca, Shape);
  }

  // If we have any allocas to promote, compute a dominator tree and
  // promote them en masse.
  if (!AllocasToPromote.empty()) {
    DominatorTree DT(F);
    PromoteMemToReg(AllocasToPromote, DT);
  }
}

void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
  // Lower coro.dbg.declare to coro.dbg.value, since we are going to rewrite
  // access to local variables.
  LowerDbgDeclare(F);

  eliminateSwiftError(F, Shape);

  if (Shape.ABI == coro::ABI::Switch &&
      Shape.SwitchLowering.PromiseAlloca) {
    Shape.getSwitchCoroId()->clearPromise();
  }

  // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
  // intrinsics are in their own blocks to simplify the logic of building up
  // SuspendCrossing data.
  for (auto *CSI : Shape.CoroSuspends) {
    if (auto *Save = CSI->getCoroSave())
      splitAround(Save, "CoroSave");
    splitAround(CSI, "CoroSuspend");
  }

  // Put CoroEnds into their own blocks.
  for (CoroEndInst *CE : Shape.CoroEnds)
    splitAround(CE, "CoroEnd");

  // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
  // never has its definition separated from the PHI by the suspend point.
  rewritePHIs(F);

  // Build suspend crossing info.
  SuspendCrossingInfo Checker(F, Shape);

  IRBuilder<> Builder(F.getContext());
  SpillInfo Spills;
  SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas;
  SmallVector<Instruction*, 4> DeadInstructions;

  for (int Repeat = 0; Repeat < 4; ++Repeat) {
    // See if there are materializable instructions across suspend points.
    for (Instruction &I : instructions(F))
      if (materializable(I))
        for (User *U : I.users())
          if (Checker.isDefinitionAcrossSuspend(I, U))
            Spills.emplace_back(&I, U);

    if (Spills.empty())
      break;

    // Rewrite materializable instructions to be materialized at the use point.
    LLVM_DEBUG(dump("Materializations", Spills));
    rewriteMaterializableInstructions(Builder, Spills);
    Spills.clear();
  }

  // Collect the spills for arguments and other not-materializable values.
  for (Argument &A : F.args())
    for (User *U : A.users())
      if (Checker.isDefinitionAcrossSuspend(A, U))
        Spills.emplace_back(&A, U);

  for (Instruction &I : instructions(F)) {
    // Values returned from coroutine structure intrinsics should not be part
    // of the Coroutine Frame.
    if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
      continue;

    // The Coroutine Promise always included into coroutine frame, no need to
    // check for suspend crossing.
    if (Shape.ABI == coro::ABI::Switch &&
        Shape.SwitchLowering.PromiseAlloca == &I)
      continue;

    // Handle alloca.alloc specially here.
    if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
      // Check whether the alloca's lifetime is bounded by suspend points.
      if (isLocalAlloca(AI)) {
        LocalAllocas.push_back(AI);
        continue;
      }

      // If not, do a quick rewrite of the alloca and then add spills of
      // the rewritten value.  The rewrite doesn't invalidate anything in
      // Spills because the other alloca intrinsics have no other operands
      // besides AI, and it doesn't invalidate the iteration because we delay
      // erasing AI.
      auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);

      for (User *U : Alloc->users()) {
        if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
          Spills.emplace_back(Alloc, U);
      }
      continue;
    }

    // Ignore alloca.get; we process this as part of coro.alloca.alloc.
    if (isa<CoroAllocaGetInst>(I)) {
      continue;
    }

    for (User *U : I.users())
      if (Checker.isDefinitionAcrossSuspend(I, U)) {
        // We cannot spill a token.
        if (I.getType()->isTokenTy())
          report_fatal_error(
              "token definition is separated from the use by a suspend point");
        Spills.emplace_back(&I, U);
      }
  }
  LLVM_DEBUG(dump("Spills", Spills));
  Shape.FrameTy = buildFrameType(F, Shape, Spills);
  Shape.FramePtr = insertSpills(Spills, Shape);
  lowerLocalAllocas(LocalAllocas, DeadInstructions);

  for (auto I : DeadInstructions)
    I->eraseFromParent();
}