reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements interprocedural passes which walk the
/// call-graph deducing and/or propagating function attributes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <cassert>
#include <iterator>
#include <map>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "functionattrs"

STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumReturned, "Number of arguments marked returned");
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
STATISTIC(NumNoFree, "Number of functions marked as nofree");

static cl::opt<bool> EnableNonnullArgPropagation(
    "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
    cl::desc("Try to propagate nonnull argument attributes from callsites to "
             "caller functions."));

static cl::opt<bool> DisableNoUnwindInference(
    "disable-nounwind-inference", cl::Hidden,
    cl::desc("Stop inferring nounwind attribute during function-attrs pass"));

static cl::opt<bool> DisableNoFreeInference(
    "disable-nofree-inference", cl::Hidden,
    cl::desc("Stop inferring nofree attribute during function-attrs pass"));

namespace {

using SCCNodeSet = SmallSetVector<Function *, 8>;

} // end anonymous namespace

/// Returns the memory access attribute for function F using AAR for AA results,
/// where SCCNodes is the current SCC.
///
/// If ThisBody is true, this function may examine the function body and will
/// return a result pertaining to this copy of the function. If it is false, the
/// result will be based only on AA results for the function declaration; it
/// will be assumed that some other (perhaps less optimized) version of the
/// function may be selected at link time.
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
                                                  AAResults &AAR,
                                                  const SCCNodeSet &SCCNodes) {
  FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
  if (MRB == FMRB_DoesNotAccessMemory)
    // Already perfect!
    return MAK_ReadNone;

  if (!ThisBody) {
    if (AliasAnalysis::onlyReadsMemory(MRB))
      return MAK_ReadOnly;

    if (AliasAnalysis::doesNotReadMemory(MRB))
      return MAK_WriteOnly;

    // Conservatively assume it reads and writes to memory.
    return MAK_MayWrite;
  }

  // Scan the function body for instructions that may read or write memory.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
    Instruction *I = &*II;

    // Some instructions can be ignored even if they read or write memory.
    // Detect these now, skipping to the next instruction if one is found.
    if (auto *Call = dyn_cast<CallBase>(I)) {
      // Ignore calls to functions in the same SCC, as long as the call sites
      // don't have operand bundles.  Calls with operand bundles are allowed to
      // have memory effects not described by the memory effects of the call
      // target.
      if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
          SCCNodes.count(Call->getCalledFunction()))
        continue;
      FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
      ModRefInfo MRI = createModRefInfo(MRB);

      // If the call doesn't access memory, we're done.
      if (isNoModRef(MRI))
        continue;

      if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
        // The call could access any memory. If that includes writes, note it.
        if (isModSet(MRI))
          WritesMemory = true;
        // If it reads, note it.
        if (isRefSet(MRI))
          ReadsMemory = true;
        continue;
      }

      // Check whether all pointer arguments point to local memory, and
      // ignore calls that only access local memory.
      for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end();
           CI != CE; ++CI) {
        Value *Arg = *CI;
        if (!Arg->getType()->isPtrOrPtrVectorTy())
          continue;

        AAMDNodes AAInfo;
        I->getAAMetadata(AAInfo);
        MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);

        // Skip accesses to local or constant memory as they don't impact the
        // externally visible mod/ref behavior.
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;

        if (isModSet(MRI))
          // Writes non-local memory.
          WritesMemory = true;
        if (isRefSet(MRI))
          // Ok, it reads non-local memory.
          ReadsMemory = true;
      }
      continue;
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      // Ignore non-volatile loads from local memory. (Atomic is okay here.)
      if (!LI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(LI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      // Ignore non-volatile stores to local memory. (Atomic is okay here.)
      if (!SI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(SI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
      // Ignore vaargs on local memory.
      MemoryLocation Loc = MemoryLocation::get(VI);
      if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
        continue;
    }

    // Any remaining instructions need to be taken seriously!  Check if they
    // read or write memory.
    //
    // Writes memory, remember that.
    WritesMemory |= I->mayWriteToMemory();

    // If this instruction may read memory, remember that.
    ReadsMemory |= I->mayReadFromMemory();
  }

  if (WritesMemory) { 
    if (!ReadsMemory)
      return MAK_WriteOnly;
    else
      return MAK_MayWrite;
  }

  return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
}

MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
                                                       AAResults &AAR) {
  return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
}

/// Deduce readonly/readnone attributes for the SCC.
template <typename AARGetterT>
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
  // Check if any of the functions in the SCC read or write memory.  If they
  // write memory then they can't be marked readnone or readonly.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (Function *F : SCCNodes) {
    // Call the callable parameter to look up AA results for this function.
    AAResults &AAR = AARGetter(*F);

    // Non-exact function definitions may not be selected at link time, and an
    // alternative version that writes to memory may be selected.  See the
    // comment on GlobalValue::isDefinitionExact for more details.
    switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
                                      AAR, SCCNodes)) {
    case MAK_MayWrite:
      return false;
    case MAK_ReadOnly:
      ReadsMemory = true;
      break;
    case MAK_WriteOnly:
      WritesMemory = true;
      break;
    case MAK_ReadNone:
      // Nothing to do!
      break;
    }
  }

  // If the SCC contains both functions that read and functions that write, then
  // we cannot add readonly attributes.
  if (ReadsMemory && WritesMemory)
    return false;

  // Success!  Functions in this SCC do not access memory, or only read memory.
  // Give them the appropriate attribute.
  bool MadeChange = false;

  for (Function *F : SCCNodes) {
    if (F->doesNotAccessMemory())
      // Already perfect!
      continue;

    if (F->onlyReadsMemory() && ReadsMemory)
      // No change.
      continue;

    if (F->doesNotReadMemory() && WritesMemory)
      continue;

    MadeChange = true;

    // Clear out any existing attributes.
    F->removeFnAttr(Attribute::ReadOnly);
    F->removeFnAttr(Attribute::ReadNone);
    F->removeFnAttr(Attribute::WriteOnly);

    if (!WritesMemory && !ReadsMemory) {
      // Clear out any "access range attributes" if readnone was deduced.
      F->removeFnAttr(Attribute::ArgMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
    }

    // Add in the new attribute.
    if (WritesMemory && !ReadsMemory)
      F->addFnAttr(Attribute::WriteOnly);
    else
      F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);

    if (WritesMemory && !ReadsMemory)
      ++NumWriteOnly;
    else if (ReadsMemory)
      ++NumReadOnly;
    else
      ++NumReadNone;
  }

  return MadeChange;
}

namespace {

/// For a given pointer Argument, this retains a list of Arguments of functions
/// in the same SCC that the pointer data flows into. We use this to build an
/// SCC of the arguments.
struct ArgumentGraphNode {
  Argument *Definition;
  SmallVector<ArgumentGraphNode *, 4> Uses;
};

class ArgumentGraph {
  // We store pointers to ArgumentGraphNode objects, so it's important that
  // that they not move around upon insert.
  using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;

  ArgumentMapTy ArgumentMap;

  // There is no root node for the argument graph, in fact:
  //   void f(int *x, int *y) { if (...) f(x, y); }
  // is an example where the graph is disconnected. The SCCIterator requires a
  // single entry point, so we maintain a fake ("synthetic") root node that
  // uses every node. Because the graph is directed and nothing points into
  // the root, it will not participate in any SCCs (except for its own).
  ArgumentGraphNode SyntheticRoot;

public:
  ArgumentGraph() { SyntheticRoot.Definition = nullptr; }

  using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  iterator begin() { return SyntheticRoot.Uses.begin(); }
  iterator end() { return SyntheticRoot.Uses.end(); }
  ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }

  ArgumentGraphNode *operator[](Argument *A) {
    ArgumentGraphNode &Node = ArgumentMap[A];
    Node.Definition = A;
    SyntheticRoot.Uses.push_back(&Node);
    return &Node;
  }
};

/// This tracker checks whether callees are in the SCC, and if so it does not
/// consider that a capture, instead adding it to the "Uses" list and
/// continuing with the analysis.
struct ArgumentUsesTracker : public CaptureTracker {
  ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}

  void tooManyUses() override { Captured = true; }

  bool captured(const Use *U) override {
    CallSite CS(U->getUser());
    if (!CS.getInstruction()) {
      Captured = true;
      return true;
    }

    Function *F = CS.getCalledFunction();
    if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
      Captured = true;
      return true;
    }

    // Note: the callee and the two successor blocks *follow* the argument
    // operands.  This means there is no need to adjust UseIndex to account for
    // these.

    unsigned UseIndex =
        std::distance(const_cast<const Use *>(CS.arg_begin()), U);

    assert(UseIndex < CS.data_operands_size() &&
           "Indirect function calls should have been filtered above!");

    if (UseIndex >= CS.getNumArgOperands()) {
      // Data operand, but not a argument operand -- must be a bundle operand
      assert(CS.hasOperandBundles() && "Must be!");

      // CaptureTracking told us that we're being captured by an operand bundle
      // use.  In this case it does not matter if the callee is within our SCC
      // or not -- we've been captured in some unknown way, and we have to be
      // conservative.
      Captured = true;
      return true;
    }

    if (UseIndex >= F->arg_size()) {
      assert(F->isVarArg() && "More params than args in non-varargs call");
      Captured = true;
      return true;
    }

    Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
    return false;
  }

  // True only if certainly captured (used outside our SCC).
  bool Captured = false;

  // Uses within our SCC.
  SmallVector<Argument *, 4> Uses;

  const SCCNodeSet &SCCNodes;
};

} // end anonymous namespace

namespace llvm {

template <> struct GraphTraits<ArgumentGraphNode *> {
  using NodeRef = ArgumentGraphNode *;
  using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  static NodeRef getEntryNode(NodeRef A) { return A; }
  static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
};

template <>
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
  static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }

  static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
    return AG->begin();
  }

  static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
};

} // end namespace llvm

/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
static Attribute::AttrKind
determinePointerReadAttrs(Argument *A,
                          const SmallPtrSet<Argument *, 8> &SCCNodes) {
  SmallVector<Use *, 32> Worklist;
  SmallPtrSet<Use *, 32> Visited;

  // inalloca arguments are always clobbered by the call.
  if (A->hasInAllocaAttr())
    return Attribute::None;

  bool IsRead = false;
  // We don't need to track IsWritten. If A is written to, return immediately.

  for (Use &U : A->uses()) {
    Visited.insert(&U);
    Worklist.push_back(&U);
  }

  while (!Worklist.empty()) {
    Use *U = Worklist.pop_back_val();
    Instruction *I = cast<Instruction>(U->getUser());

    switch (I->getOpcode()) {
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::AddrSpaceCast:
      // The original value is not read/written via this if the new value isn't.
      for (Use &UU : I->uses())
        if (Visited.insert(&UU).second)
          Worklist.push_back(&UU);
      break;

    case Instruction::Call:
    case Instruction::Invoke: {
      bool Captures = true;

      if (I->getType()->isVoidTy())
        Captures = false;

      auto AddUsersToWorklistIfCapturing = [&] {
        if (Captures)
          for (Use &UU : I->uses())
            if (Visited.insert(&UU).second)
              Worklist.push_back(&UU);
      };

      CallSite CS(I);
      if (CS.doesNotAccessMemory()) {
        AddUsersToWorklistIfCapturing();
        continue;
      }

      Function *F = CS.getCalledFunction();
      if (!F) {
        if (CS.onlyReadsMemory()) {
          IsRead = true;
          AddUsersToWorklistIfCapturing();
          continue;
        }
        return Attribute::None;
      }

      // Note: the callee and the two successor blocks *follow* the argument
      // operands.  This means there is no need to adjust UseIndex to account
      // for these.

      unsigned UseIndex = std::distance(CS.arg_begin(), U);

      // U cannot be the callee operand use: since we're exploring the
      // transitive uses of an Argument, having such a use be a callee would
      // imply the CallSite is an indirect call or invoke; and we'd take the
      // early exit above.
      assert(UseIndex < CS.data_operands_size() &&
             "Data operand use expected!");

      bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();

      if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
        assert(F->isVarArg() && "More params than args in non-varargs call");
        return Attribute::None;
      }

      Captures &= !CS.doesNotCapture(UseIndex);

      // Since the optimizer (by design) cannot see the data flow corresponding
      // to a operand bundle use, these cannot participate in the optimistic SCC
      // analysis.  Instead, we model the operand bundle uses as arguments in
      // call to a function external to the SCC.
      if (IsOperandBundleUse ||
          !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {

        // The accessors used on CallSite here do the right thing for calls and
        // invokes with operand bundles.

        if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
          return Attribute::None;
        if (!CS.doesNotAccessMemory(UseIndex))
          IsRead = true;
      }

      AddUsersToWorklistIfCapturing();
      break;
    }

    case Instruction::Load:
      // A volatile load has side effects beyond what readonly can be relied
      // upon.
      if (cast<LoadInst>(I)->isVolatile())
        return Attribute::None;

      IsRead = true;
      break;

    case Instruction::ICmp:
    case Instruction::Ret:
      break;

    default:
      return Attribute::None;
    }
  }

  return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
}

/// Deduce returned attributes for the SCC.
static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  // Check each function in turn, determining if an argument is always returned.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    if (F->getReturnType()->isVoidTy())
      continue;

    // There is nothing to do if an argument is already marked as 'returned'.
    if (llvm::any_of(F->args(),
                     [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
      continue;

    auto FindRetArg = [&]() -> Value * {
      Value *RetArg = nullptr;
      for (BasicBlock &BB : *F)
        if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
          // Note that stripPointerCasts should look through functions with
          // returned arguments.
          Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
          if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
            return nullptr;

          if (!RetArg)
            RetArg = RetVal;
          else if (RetArg != RetVal)
            return nullptr;
        }

      return RetArg;
    };

    if (Value *RetArg = FindRetArg()) {
      auto *A = cast<Argument>(RetArg);
      A->addAttr(Attribute::Returned);
      ++NumReturned;
      Changed = true;
    }
  }

  return Changed;
}

/// If a callsite has arguments that are also arguments to the parent function,
/// try to propagate attributes from the callsite's arguments to the parent's
/// arguments. This may be important because inlining can cause information loss
/// when attribute knowledge disappears with the inlined call.
static bool addArgumentAttrsFromCallsites(Function &F) {
  if (!EnableNonnullArgPropagation)
    return false;

  bool Changed = false;

  // For an argument attribute to transfer from a callsite to the parent, the
  // call must be guaranteed to execute every time the parent is called.
  // Conservatively, just check for calls in the entry block that are guaranteed
  // to execute.
  // TODO: This could be enhanced by testing if the callsite post-dominates the
  // entry block or by doing simple forward walks or backward walks to the
  // callsite.
  BasicBlock &Entry = F.getEntryBlock();
  for (Instruction &I : Entry) {
    if (auto CS = CallSite(&I)) {
      if (auto *CalledFunc = CS.getCalledFunction()) {
        for (auto &CSArg : CalledFunc->args()) {
          if (!CSArg.hasNonNullAttr())
            continue;

          // If the non-null callsite argument operand is an argument to 'F'
          // (the caller) and the call is guaranteed to execute, then the value
          // must be non-null throughout 'F'.
          auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
          if (FArg && !FArg->hasNonNullAttr()) {
            FArg->addAttr(Attribute::NonNull);
            Changed = true;
          }
        }
      }
    }
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
  }

  return Changed;
}

static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
  assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
         && "Must be a Read attribute.");
  assert(A && "Argument must not be null.");

  // If the argument already has the attribute, nothing needs to be done.
  if (A->hasAttribute(R))
      return false;

  // Otherwise, remove potentially conflicting attribute, add the new one,
  // and update statistics.
  A->removeAttr(Attribute::WriteOnly);
  A->removeAttr(Attribute::ReadOnly);
  A->removeAttr(Attribute::ReadNone);
  A->addAttr(R);
  R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
  return true;
}

/// Deduce nocapture attributes for the SCC.
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  ArgumentGraph AG;

  // Check each function in turn, determining which pointer arguments are not
  // captured.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    Changed |= addArgumentAttrsFromCallsites(*F);

    // Functions that are readonly (or readnone) and nounwind and don't return
    // a value can't capture arguments. Don't analyze them.
    if (F->onlyReadsMemory() && F->doesNotThrow() &&
        F->getReturnType()->isVoidTy()) {
      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
           ++A) {
        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
          A->addAttr(Attribute::NoCapture);
          ++NumNoCapture;
          Changed = true;
        }
      }
      continue;
    }

    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
         ++A) {
      if (!A->getType()->isPointerTy())
        continue;
      bool HasNonLocalUses = false;
      if (!A->hasNoCaptureAttr()) {
        ArgumentUsesTracker Tracker(SCCNodes);
        PointerMayBeCaptured(&*A, &Tracker);
        if (!Tracker.Captured) {
          if (Tracker.Uses.empty()) {
            // If it's trivially not captured, mark it nocapture now.
            A->addAttr(Attribute::NoCapture);
            ++NumNoCapture;
            Changed = true;
          } else {
            // If it's not trivially captured and not trivially not captured,
            // then it must be calling into another function in our SCC. Save
            // its particulars for Argument-SCC analysis later.
            ArgumentGraphNode *Node = AG[&*A];
            for (Argument *Use : Tracker.Uses) {
              Node->Uses.push_back(AG[Use]);
              if (Use != &*A)
                HasNonLocalUses = true;
            }
          }
        }
        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
      }
      if (!HasNonLocalUses && !A->onlyReadsMemory()) {
        // Can we determine that it's readonly/readnone without doing an SCC?
        // Note that we don't allow any calls at all here, or else our result
        // will be dependent on the iteration order through the functions in the
        // SCC.
        SmallPtrSet<Argument *, 8> Self;
        Self.insert(&*A);
        Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
        if (R != Attribute::None)
          Changed = addReadAttr(A, R);
      }
    }
  }

  // The graph we've collected is partial because we stopped scanning for
  // argument uses once we solved the argument trivially. These partial nodes
  // show up as ArgumentGraphNode objects with an empty Uses list, and for
  // these nodes the final decision about whether they capture has already been
  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
  // captures.

  for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
    const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
    if (ArgumentSCC.size() == 1) {
      if (!ArgumentSCC[0]->Definition)
        continue; // synthetic root node

      // eg. "void f(int* x) { if (...) f(x); }"
      if (ArgumentSCC[0]->Uses.size() == 1 &&
          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
        Argument *A = ArgumentSCC[0]->Definition;
        A->addAttr(Attribute::NoCapture);
        ++NumNoCapture;
        Changed = true;
      }
      continue;
    }

    bool SCCCaptured = false;
    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *Node = *I;
      if (Node->Uses.empty()) {
        if (!Node->Definition->hasNoCaptureAttr())
          SCCCaptured = true;
      }
    }
    if (SCCCaptured)
      continue;

    SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
    // quickly looking up whether a given Argument is in this ArgumentSCC.
    for (ArgumentGraphNode *I : ArgumentSCC) {
      ArgumentSCCNodes.insert(I->Definition);
    }

    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *N = *I;
      for (ArgumentGraphNode *Use : N->Uses) {
        Argument *A = Use->Definition;
        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
          continue;
        SCCCaptured = true;
        break;
      }
    }
    if (SCCCaptured)
      continue;

    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      A->addAttr(Attribute::NoCapture);
      ++NumNoCapture;
      Changed = true;
    }

    // We also want to compute readonly/readnone. With a small number of false
    // negatives, we can assume that any pointer which is captured isn't going
    // to be provably readonly or readnone, since by definition we can't
    // analyze all uses of a captured pointer.
    //
    // The false negatives happen when the pointer is captured by a function
    // that promises readonly/readnone behaviour on the pointer, then the
    // pointer's lifetime ends before anything that writes to arbitrary memory.
    // Also, a readonly/readnone pointer may be returned, but returning a
    // pointer is capturing it.

    Attribute::AttrKind ReadAttr = Attribute::ReadNone;
    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
      if (K == Attribute::ReadNone)
        continue;
      if (K == Attribute::ReadOnly) {
        ReadAttr = Attribute::ReadOnly;
        continue;
      }
      ReadAttr = K;
      break;
    }

    if (ReadAttr != Attribute::None) {
      for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
        Argument *A = ArgumentSCC[i]->Definition;
        Changed = addReadAttr(A, ReadAttr);
      }
    }
  }

  return Changed;
}

/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    if (Constant *C = dyn_cast<Constant>(RetVal)) {
      if (!C->isNullValue() && !isa<UndefValue>(C))
        return false;

      continue;
    }

    if (isa<Argument>(RetVal))
      return false;

    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
      switch (RVI->getOpcode()) {
      // Extend the analysis by looking upwards.
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
      case Instruction::AddrSpaceCast:
        FlowsToReturn.insert(RVI->getOperand(0));
        continue;
      case Instruction::Select: {
        SelectInst *SI = cast<SelectInst>(RVI);
        FlowsToReturn.insert(SI->getTrueValue());
        FlowsToReturn.insert(SI->getFalseValue());
        continue;
      }
      case Instruction::PHI: {
        PHINode *PN = cast<PHINode>(RVI);
        for (Value *IncValue : PN->incoming_values())
          FlowsToReturn.insert(IncValue);
        continue;
      }

      // Check whether the pointer came from an allocation.
      case Instruction::Alloca:
        break;
      case Instruction::Call:
      case Instruction::Invoke: {
        CallSite CS(RVI);
        if (CS.hasRetAttr(Attribute::NoAlias))
          break;
        if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
          break;
        LLVM_FALLTHROUGH;
      }
      default:
        return false; // Did not come from an allocation.
      }

    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
      return false;
  }

  return true;
}

/// Deduce noalias attributes for the SCC.
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
  // Check each function in turn, determining which functions return noalias
  // pointers.
  for (Function *F : SCCNodes) {
    // Already noalias.
    if (F->returnDoesNotAlias())
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate noalias return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    if (!isFunctionMallocLike(F, SCCNodes))
      return false;
  }

  bool MadeChange = false;
  for (Function *F : SCCNodes) {
    if (F->returnDoesNotAlias() ||
        !F->getReturnType()->isPointerTy())
      continue;

    F->setReturnDoesNotAlias();
    ++NumNoAlias;
    MadeChange = true;
  }

  return MadeChange;
}

/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
                            bool &Speculative) {
  assert(F->getReturnType()->isPointerTy() &&
         "nonnull only meaningful on pointer types");
  Speculative = false;

  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  auto &DL = F->getParent()->getDataLayout();

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    // If this value is locally known to be non-null, we're good
    if (isKnownNonZero(RetVal, DL))
      continue;

    // Otherwise, we need to look upwards since we can't make any local
    // conclusions.
    Instruction *RVI = dyn_cast<Instruction>(RetVal);
    if (!RVI)
      return false;
    switch (RVI->getOpcode()) {
    // Extend the analysis by looking upwards.
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::AddrSpaceCast:
      FlowsToReturn.insert(RVI->getOperand(0));
      continue;
    case Instruction::Select: {
      SelectInst *SI = cast<SelectInst>(RVI);
      FlowsToReturn.insert(SI->getTrueValue());
      FlowsToReturn.insert(SI->getFalseValue());
      continue;
    }
    case Instruction::PHI: {
      PHINode *PN = cast<PHINode>(RVI);
      for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        FlowsToReturn.insert(PN->getIncomingValue(i));
      continue;
    }
    case Instruction::Call:
    case Instruction::Invoke: {
      CallSite CS(RVI);
      Function *Callee = CS.getCalledFunction();
      // A call to a node within the SCC is assumed to return null until
      // proven otherwise
      if (Callee && SCCNodes.count(Callee)) {
        Speculative = true;
        continue;
      }
      return false;
    }
    default:
      return false; // Unknown source, may be null
    };
    llvm_unreachable("should have either continued or returned");
  }

  return true;
}

/// Deduce nonnull attributes for the SCC.
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
  // Speculative that all functions in the SCC return only nonnull
  // pointers.  We may refute this as we analyze functions.
  bool SCCReturnsNonNull = true;

  bool MadeChange = false;

  // Check each function in turn, determining which functions return nonnull
  // pointers.
  for (Function *F : SCCNodes) {
    // Already nonnull.
    if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                        Attribute::NonNull))
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate nonnull return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    bool Speculative = false;
    if (isReturnNonNull(F, SCCNodes, Speculative)) {
      if (!Speculative) {
        // Mark the function eagerly since we may discover a function
        // which prevents us from speculating about the entire SCC
        LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
                          << " as nonnull\n");
        F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
        ++NumNonNullReturn;
        MadeChange = true;
      }
      continue;
    }
    // At least one function returns something which could be null, can't
    // speculate any more.
    SCCReturnsNonNull = false;
  }

  if (SCCReturnsNonNull) {
    for (Function *F : SCCNodes) {
      if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                          Attribute::NonNull) ||
          !F->getReturnType()->isPointerTy())
        continue;

      LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
      F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
      ++NumNonNullReturn;
      MadeChange = true;
    }
  }

  return MadeChange;
}

namespace {

/// Collects a set of attribute inference requests and performs them all in one
/// go on a single SCC Node. Inference involves scanning function bodies
/// looking for instructions that violate attribute assumptions.
/// As soon as all the bodies are fine we are free to set the attribute.
/// Customization of inference for individual attributes is performed by
/// providing a handful of predicates for each attribute.
class AttributeInferer {
public:
  /// Describes a request for inference of a single attribute.
  struct InferenceDescriptor {

    /// Returns true if this function does not have to be handled.
    /// General intent for this predicate is to provide an optimization
    /// for functions that do not need this attribute inference at all
    /// (say, for functions that already have the attribute).
    std::function<bool(const Function &)> SkipFunction;

    /// Returns true if this instruction violates attribute assumptions.
    std::function<bool(Instruction &)> InstrBreaksAttribute;

    /// Sets the inferred attribute for this function.
    std::function<void(Function &)> SetAttribute;

    /// Attribute we derive.
    Attribute::AttrKind AKind;

    /// If true, only "exact" definitions can be used to infer this attribute.
    /// See GlobalValue::isDefinitionExact.
    bool RequiresExactDefinition;

    InferenceDescriptor(Attribute::AttrKind AK,
                        std::function<bool(const Function &)> SkipFunc,
                        std::function<bool(Instruction &)> InstrScan,
                        std::function<void(Function &)> SetAttr,
                        bool ReqExactDef)
        : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
          SetAttribute(SetAttr), AKind(AK),
          RequiresExactDefinition(ReqExactDef) {}
  };

private:
  SmallVector<InferenceDescriptor, 4> InferenceDescriptors;

public:
  void registerAttrInference(InferenceDescriptor AttrInference) {
    InferenceDescriptors.push_back(AttrInference);
  }

  bool run(const SCCNodeSet &SCCNodes);
};

/// Perform all the requested attribute inference actions according to the
/// attribute predicates stored before.
bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
  SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
  // Go through all the functions in SCC and check corresponding attribute
  // assumptions for each of them. Attributes that are invalid for this SCC
  // will be removed from InferInSCC.
  for (Function *F : SCCNodes) {

    // No attributes whose assumptions are still valid - done.
    if (InferInSCC.empty())
      return false;

    // Check if our attributes ever need scanning/can be scanned.
    llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
      if (ID.SkipFunction(*F))
        return false;

      // Remove from further inference (invalidate) when visiting a function
      // that has no instructions to scan/has an unsuitable definition.
      return F->isDeclaration() ||
             (ID.RequiresExactDefinition && !F->hasExactDefinition());
    });

    // For each attribute still in InferInSCC that doesn't explicitly skip F,
    // set up the F instructions scan to verify assumptions of the attribute.
    SmallVector<InferenceDescriptor, 4> InferInThisFunc;
    llvm::copy_if(
        InferInSCC, std::back_inserter(InferInThisFunc),
        [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });

    if (InferInThisFunc.empty())
      continue;

    // Start instruction scan.
    for (Instruction &I : instructions(*F)) {
      llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
        if (!ID.InstrBreaksAttribute(I))
          return false;
        // Remove attribute from further inference on any other functions
        // because attribute assumptions have just been violated.
        llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
          return D.AKind == ID.AKind;
        });
        // Remove attribute from the rest of current instruction scan.
        return true;
      });

      if (InferInThisFunc.empty())
        break;
    }
  }

  if (InferInSCC.empty())
    return false;

  bool Changed = false;
  for (Function *F : SCCNodes)
    // At this point InferInSCC contains only functions that were either:
    //   - explicitly skipped from scan/inference, or
    //   - verified to have no instructions that break attribute assumptions.
    // Hence we just go and force the attribute for all non-skipped functions.
    for (auto &ID : InferInSCC) {
      if (ID.SkipFunction(*F))
        continue;
      Changed = true;
      ID.SetAttribute(*F);
    }
  return Changed;
}

} // end anonymous namespace

/// Helper for non-Convergent inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonConvergent(Instruction &I,
                                     const SCCNodeSet &SCCNodes) {
  const CallSite CS(&I);
  // Breaks non-convergent assumption if CS is a convergent call to a function
  // not in the SCC.
  return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
}

/// Helper for NoUnwind inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
  if (!I.mayThrow())
    return false;
  if (const auto *CI = dyn_cast<CallInst>(&I)) {
    if (Function *Callee = CI->getCalledFunction()) {
      // I is a may-throw call to a function inside our SCC. This doesn't
      // invalidate our current working assumption that the SCC is no-throw; we
      // just have to scan that other function.
      if (SCCNodes.count(Callee) > 0)
        return false;
    }
  }
  return true;
}

/// Helper for NoFree inference predicate InstrBreaksAttribute.
static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
  CallSite CS(&I);
  if (!CS)
    return false;

  Function *Callee = CS.getCalledFunction();
  if (!Callee)
    return true;

  if (Callee->doesNotFreeMemory())
    return false;

  if (SCCNodes.count(Callee) > 0)
    return false;

  return true;
}

/// Infer attributes from all functions in the SCC by scanning every
/// instruction for compliance to the attribute assumptions. Currently it
/// does:
///   - removal of Convergent attribute
///   - addition of NoUnwind attribute
///
/// Returns true if any changes to function attributes were made.
static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {

  AttributeInferer AI;

  // Request to remove the convergent attribute from all functions in the SCC
  // if every callsite within the SCC is not convergent (except for calls
  // to functions within the SCC).
  // Note: Removal of the attr from the callsites will happen in
  // InstCombineCalls separately.
  AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
      Attribute::Convergent,
      // Skip non-convergent functions.
      [](const Function &F) { return !F.isConvergent(); },
      // Instructions that break non-convergent assumption.
      [SCCNodes](Instruction &I) {
        return InstrBreaksNonConvergent(I, SCCNodes);
      },
      [](Function &F) {
        LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
                          << "\n");
        F.setNotConvergent();
      },
      /* RequiresExactDefinition= */ false});

  if (!DisableNoUnwindInference)
    // Request to infer nounwind attribute for all the functions in the SCC if
    // every callsite within the SCC is not throwing (except for calls to
    // functions within the SCC). Note that nounwind attribute suffers from
    // derefinement - results may change depending on how functions are
    // optimized. Thus it can be inferred only from exact definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoUnwind,
        // Skip non-throwing functions.
        [](const Function &F) { return F.doesNotThrow(); },
        // Instructions that break non-throwing assumption.
        [SCCNodes](Instruction &I) {
          return InstrBreaksNonThrowing(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nounwind attr to fn " << F.getName() << "\n");
          F.setDoesNotThrow();
          ++NumNoUnwind;
        },
        /* RequiresExactDefinition= */ true});

  if (!DisableNoFreeInference)
    // Request to infer nofree attribute for all the functions in the SCC if
    // every callsite within the SCC does not directly or indirectly free
    // memory (except for calls to functions within the SCC). Note that nofree
    // attribute suffers from derefinement - results may change depending on
    // how functions are optimized. Thus it can be inferred only from exact
    // definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoFree,
        // Skip functions known not to free memory.
        [](const Function &F) { return F.doesNotFreeMemory(); },
        // Instructions that break non-deallocating assumption.
        [SCCNodes](Instruction &I) {
          return InstrBreaksNoFree(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nofree attr to fn " << F.getName() << "\n");
          F.setDoesNotFreeMemory();
          ++NumNoFree;
        },
        /* RequiresExactDefinition= */ true});

  // Perform all the requested attribute inference actions.
  return AI.run(SCCNodes);
}

static bool setDoesNotRecurse(Function &F) {
  if (F.doesNotRecurse())
    return false;
  F.setDoesNotRecurse();
  ++NumNoRecurse;
  return true;
}

static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
  // Try and identify functions that do not recurse.

  // If the SCC contains multiple nodes we know for sure there is recursion.
  if (SCCNodes.size() != 1)
    return false;

  Function *F = *SCCNodes.begin();
  if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
    return false;

  // If all of the calls in F are identifiable and are to norecurse functions, F
  // is norecurse. This check also detects self-recursion as F is not currently
  // marked norecurse, so any called from F to F will not be marked norecurse.
  for (auto &BB : *F)
    for (auto &I : BB.instructionsWithoutDebug())
      if (auto CS = CallSite(&I)) {
        Function *Callee = CS.getCalledFunction();
        if (!Callee || Callee == F || !Callee->doesNotRecurse())
          // Function calls a potentially recursive function.
          return false;
      }

  // Every call was to a non-recursive function other than this function, and
  // we have no indirect recursion as the SCC size is one. This function cannot
  // recurse.
  return setDoesNotRecurse(*F);
}

template <typename AARGetterT>
static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes,
                                   AARGetterT &&AARGetter,
                                   bool HasUnknownCall) {
  bool Changed = false;

  // Bail if the SCC only contains optnone functions.
  if (SCCNodes.empty())
    return Changed;

  Changed |= addArgumentReturnedAttrs(SCCNodes);
  Changed |= addReadAttrs(SCCNodes, AARGetter);
  Changed |= addArgumentAttrs(SCCNodes);

  // If we have no external nodes participating in the SCC, we can deduce some
  // more precise attributes as well.
  if (!HasUnknownCall) {
    Changed |= addNoAliasAttrs(SCCNodes);
    Changed |= addNonNullAttrs(SCCNodes);
    Changed |= inferAttrsFromFunctionBodies(SCCNodes);
    Changed |= addNoRecurseAttrs(SCCNodes);
  }

  return Changed;
}

PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
                                                  CGSCCAnalysisManager &AM,
                                                  LazyCallGraph &CG,
                                                  CGSCCUpdateResult &) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();

  // We pass a lambda into functions to wire them up to the analysis manager
  // for getting function analyses.
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };

  // Fill SCCNodes with the elements of the SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool HasUnknownCall = false;
  for (LazyCallGraph::Node &N : C) {
    Function &F = N.getFunction();
    if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) {
      // Treat any function we're trying not to optimize as if it were an
      // indirect call and omit it from the node set used below.
      HasUnknownCall = true;
      continue;
    }
    // Track whether any functions in this SCC have an unknown call edge.
    // Note: if this is ever a performance hit, we can common it with
    // subsequent routines which also do scans over the instructions of the
    // function.
    if (!HasUnknownCall)
      for (Instruction &I : instructions(F))
        if (auto CS = CallSite(&I))
          if (!CS.getCalledFunction()) {
            HasUnknownCall = true;
            break;
          }

    SCCNodes.insert(&F);
  }

  if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
    return PreservedAnalyses::none();

  return PreservedAnalyses::all();
}

namespace {

struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
  // Pass identification, replacement for typeid
  static char ID;

  PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
    initializePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnSCC(CallGraphSCC &SCC) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AssumptionCacheTracker>();
    getAAResultsAnalysisUsage(AU);
    CallGraphSCCPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char PostOrderFunctionAttrsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                      "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                    "Deduce function attributes", false, false)

Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
  return new PostOrderFunctionAttrsLegacyPass();
}

template <typename AARGetterT>
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {

  // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
  // whether a given CallGraphNode is in this SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool ExternalNode = false;
  for (CallGraphNode *I : SCC) {
    Function *F = I->getFunction();
    if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
      // External node or function we're trying not to optimize - we both avoid
      // transform them and avoid leveraging information they provide.
      ExternalNode = true;
      continue;
    }

    SCCNodes.insert(F);
  }

  return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
}

bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;
  return runImpl(SCC, LegacyAARGetter(*this));
}

namespace {

struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
  // Pass identification, replacement for typeid
  static char ID;

  ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
    initializeReversePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<CallGraphWrapperPass>();
    AU.addPreserved<CallGraphWrapperPass>();
  }
};

} // end anonymous namespace

char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                      "Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                    "Deduce function attributes in RPO", false, false)

Pass *llvm::createReversePostOrderFunctionAttrsPass() {
  return new ReversePostOrderFunctionAttrsLegacyPass();
}

static bool addNoRecurseAttrsTopDown(Function &F) {
  // We check the preconditions for the function prior to calling this to avoid
  // the cost of building up a reversible post-order list. We assert them here
  // to make sure none of the invariants this relies on were violated.
  assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
  assert(!F.doesNotRecurse() &&
         "This function has already been deduced as norecurs!");
  assert(F.hasInternalLinkage() &&
         "Can only do top-down deduction for internal linkage functions!");

  // If F is internal and all of its uses are calls from a non-recursive
  // functions, then none of its calls could in fact recurse without going
  // through a function marked norecurse, and so we can mark this function too
  // as norecurse. Note that the uses must actually be calls -- otherwise
  // a pointer to this function could be returned from a norecurse function but
  // this function could be recursively (indirectly) called. Note that this
  // also detects if F is directly recursive as F is not yet marked as
  // a norecurse function.
  for (auto *U : F.users()) {
    auto *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    CallSite CS(I);
    if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
      return false;
  }
  return setDoesNotRecurse(F);
}

static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
  // We only have a post-order SCC traversal (because SCCs are inherently
  // discovered in post-order), so we accumulate them in a vector and then walk
  // it in reverse. This is simpler than using the RPO iterator infrastructure
  // because we need to combine SCC detection and the PO walk of the call
  // graph. We can also cheat egregiously because we're primarily interested in
  // synthesizing norecurse and so we can only save the singular SCCs as SCCs
  // with multiple functions in them will clearly be recursive.
  SmallVector<Function *, 16> Worklist;
  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    if (I->size() != 1)
      continue;

    Function *F = I->front()->getFunction();
    if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
        F->hasInternalLinkage())
      Worklist.push_back(F);
  }

  bool Changed = false;
  for (auto *F : llvm::reverse(Worklist))
    Changed |= addNoRecurseAttrsTopDown(*F);

  return Changed;
}

bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  return deduceFunctionAttributeInRPO(M, CG);
}

PreservedAnalyses
ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto &CG = AM.getResult<CallGraphAnalysis>(M);

  if (!deduceFunctionAttributeInRPO(M, CG))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<CallGraphAnalysis>();
  return PA;
}