1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
| //===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements soft-float multiplication with the IEEE-754 default
// rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#include "fp_lib.h"
static __inline fp_t __mulXf3__(fp_t a, fp_t b) {
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent - 1U >= maxExponent - 1U ||
bExponent - 1U >= maxExponent - 1U) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
// NaN * anything = qNaN
if (aAbs > infRep)
return fromRep(toRep(a) | quietBit);
// anything * NaN = qNaN
if (bAbs > infRep)
return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// infinity * non-zero = +/- infinity
if (bAbs)
return fromRep(aAbs | productSign);
// infinity * zero = NaN
else
return fromRep(qnanRep);
}
if (bAbs == infRep) {
// non-zero * infinity = +/- infinity
if (aAbs)
return fromRep(bAbs | productSign);
// zero * infinity = NaN
else
return fromRep(qnanRep);
}
// zero * anything = +/- zero
if (!aAbs)
return fromRep(productSign);
// anything * zero = +/- zero
if (!bAbs)
return fromRep(productSign);
// One or both of a or b is denormal. The other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit)
scale += normalize(&aSignificand);
if (bAbs < implicitBit)
scale += normalize(&bSignificand);
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
aSignificand |= implicitBit;
bSignificand |= implicitBit;
// Perform a basic multiplication on the significands. One of them must be
// shifted beforehand to be aligned with the exponent.
rep_t productHi, productLo;
wideMultiply(aSignificand, bSignificand << exponentBits, &productHi,
&productLo);
int productExponent = aExponent + bExponent - exponentBias + scale;
// Normalize the significand and adjust the exponent if needed.
if (productHi & implicitBit)
productExponent++;
else
wideLeftShift(&productHi, &productLo, 1);
// If we have overflowed the type, return +/- infinity.
if (productExponent >= maxExponent)
return fromRep(infRep | productSign);
if (productExponent <= 0) {
// The result is denormal before rounding.
//
// If the result is so small that it just underflows to zero, return
// zero with the appropriate sign. Mathematically, there is no need to
// handle this case separately, but we make it a special case to
// simplify the shift logic.
const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
if (shift >= typeWidth)
return fromRep(productSign);
// Otherwise, shift the significand of the result so that the round
// bit is the high bit of productLo.
wideRightShiftWithSticky(&productHi, &productLo, shift);
} else {
// The result is normal before rounding. Insert the exponent.
productHi &= significandMask;
productHi |= (rep_t)productExponent << significandBits;
}
// Insert the sign of the result.
productHi |= productSign;
// Perform the final rounding. The final result may overflow to infinity,
// or underflow to zero, but those are the correct results in those cases.
// We use the default IEEE-754 round-to-nearest, ties-to-even rounding mode.
if (productLo > signBit)
productHi++;
if (productLo == signBit)
productHi += productHi & 1;
return fromRep(productHi);
}
|