reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "gwp_asan/guarded_pool_allocator.h"

#include "gwp_asan/options.h"

// RHEL creates the PRIu64 format macro (for printing uint64_t's) only when this
// macro is defined before including <inttypes.h>.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif

#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

using AllocationMetadata = gwp_asan::GuardedPoolAllocator::AllocationMetadata;
using Error = gwp_asan::GuardedPoolAllocator::Error;

namespace gwp_asan {
namespace {
// Forward declare the pointer to the singleton version of this class.
// Instantiated during initialisation, this allows the signal handler
// to find this class in order to deduce the root cause of failures. Must not be
// referenced by users outside this translation unit, in order to avoid
// init-order-fiasco.
GuardedPoolAllocator *SingletonPtr = nullptr;

class ScopedBoolean {
public:
  ScopedBoolean(bool &B) : Bool(B) { Bool = true; }
  ~ScopedBoolean() { Bool = false; }

private:
  bool &Bool;
};

void defaultPrintStackTrace(uintptr_t *Trace, size_t TraceLength,
                            options::Printf_t Printf) {
  if (TraceLength == 0)
    Printf("  <unknown (does your allocator support backtracing?)>\n");

  for (size_t i = 0; i < TraceLength; ++i) {
    Printf("  #%zu 0x%zx in <unknown>\n", i, Trace[i]);
  }
  Printf("\n");
}
} // anonymous namespace

// Gets the singleton implementation of this class. Thread-compatible until
// init() is called, thread-safe afterwards.
GuardedPoolAllocator *getSingleton() { return SingletonPtr; }

void GuardedPoolAllocator::AllocationMetadata::RecordAllocation(
    uintptr_t AllocAddr, size_t AllocSize, options::Backtrace_t Backtrace) {
  Addr = AllocAddr;
  Size = AllocSize;
  IsDeallocated = false;

  // TODO(hctim): Ask the caller to provide the thread ID, so we don't waste
  // other thread's time getting the thread ID under lock.
  AllocationTrace.ThreadID = getThreadID();
  AllocationTrace.TraceSize = 0;
  DeallocationTrace.TraceSize = 0;
  DeallocationTrace.ThreadID = kInvalidThreadID;

  if (Backtrace) {
    uintptr_t UncompressedBuffer[kMaxTraceLengthToCollect];
    size_t BacktraceLength =
        Backtrace(UncompressedBuffer, kMaxTraceLengthToCollect);
    AllocationTrace.TraceSize = compression::pack(
        UncompressedBuffer, BacktraceLength, AllocationTrace.CompressedTrace,
        kStackFrameStorageBytes);
  }
}

void GuardedPoolAllocator::AllocationMetadata::RecordDeallocation(
    options::Backtrace_t Backtrace) {
  IsDeallocated = true;
  // Ensure that the unwinder is not called if the recursive flag is set,
  // otherwise non-reentrant unwinders may deadlock.
  DeallocationTrace.TraceSize = 0;
  if (Backtrace && !ThreadLocals.RecursiveGuard) {
    ScopedBoolean B(ThreadLocals.RecursiveGuard);

    uintptr_t UncompressedBuffer[kMaxTraceLengthToCollect];
    size_t BacktraceLength =
        Backtrace(UncompressedBuffer, kMaxTraceLengthToCollect);
    DeallocationTrace.TraceSize = compression::pack(
        UncompressedBuffer, BacktraceLength, DeallocationTrace.CompressedTrace,
        kStackFrameStorageBytes);
  }
  DeallocationTrace.ThreadID = getThreadID();
}

void GuardedPoolAllocator::init(const options::Options &Opts) {
  // Note: We return from the constructor here if GWP-ASan is not available.
  // This will stop heap-allocation of class members, as well as mmap() of the
  // guarded slots.
  if (!Opts.Enabled || Opts.SampleRate == 0 ||
      Opts.MaxSimultaneousAllocations == 0)
    return;

  // TODO(hctim): Add a death unit test for this.
  if (SingletonPtr) {
    (*SingletonPtr->Printf)(
        "GWP-ASan Error: init() has already been called.\n");
    exit(EXIT_FAILURE);
  }

  if (Opts.SampleRate < 0) {
    Opts.Printf("GWP-ASan Error: SampleRate is < 0.\n");
    exit(EXIT_FAILURE);
  }

  if (Opts.SampleRate > INT32_MAX) {
    Opts.Printf("GWP-ASan Error: SampleRate is > 2^31.\n");
    exit(EXIT_FAILURE);
  }

  if (Opts.MaxSimultaneousAllocations < 0) {
    Opts.Printf("GWP-ASan Error: MaxSimultaneousAllocations is < 0.\n");
    exit(EXIT_FAILURE);
  }

  SingletonPtr = this;

  MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;

  PageSize = getPlatformPageSize();

  PerfectlyRightAlign = Opts.PerfectlyRightAlign;
  Printf = Opts.Printf;
  Backtrace = Opts.Backtrace;
  if (Opts.PrintBacktrace)
    PrintBacktrace = Opts.PrintBacktrace;
  else
    PrintBacktrace = defaultPrintStackTrace;

  size_t PoolBytesRequired =
      PageSize * (1 + MaxSimultaneousAllocations) +
      MaxSimultaneousAllocations * maximumAllocationSize();
  void *GuardedPoolMemory = mapMemory(PoolBytesRequired);

  size_t BytesRequired = MaxSimultaneousAllocations * sizeof(*Metadata);
  Metadata = reinterpret_cast<AllocationMetadata *>(mapMemory(BytesRequired));
  markReadWrite(Metadata, BytesRequired);

  // Allocate memory and set up the free pages queue.
  BytesRequired = MaxSimultaneousAllocations * sizeof(*FreeSlots);
  FreeSlots = reinterpret_cast<size_t *>(mapMemory(BytesRequired));
  markReadWrite(FreeSlots, BytesRequired);

  // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
  // SampleRate) chance of sampling.
  if (Opts.SampleRate != 1)
    AdjustedSampleRate = static_cast<uint32_t>(Opts.SampleRate) * 2;
  else
    AdjustedSampleRate = 1;

  GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
  GuardedPagePoolEnd =
      reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;

  // Ensure that signal handlers are installed as late as possible, as the class
  // is not thread-safe until init() is finished, and thus a SIGSEGV may cause a
  // race to members if received during init().
  if (Opts.InstallSignalHandlers)
    installSignalHandlers();
}

void *GuardedPoolAllocator::allocate(size_t Size) {
  // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
  // back to the supporting allocator.
  if (GuardedPagePoolEnd == 0)
    return nullptr;

  // Protect against recursivity.
  if (ThreadLocals.RecursiveGuard)
    return nullptr;
  ScopedBoolean SB(ThreadLocals.RecursiveGuard);

  if (Size == 0 || Size > maximumAllocationSize())
    return nullptr;

  size_t Index;
  {
    ScopedLock L(PoolMutex);
    Index = reserveSlot();
  }

  if (Index == kInvalidSlotID)
    return nullptr;

  uintptr_t Ptr = slotToAddr(Index);
  Ptr += allocationSlotOffset(Size);
  AllocationMetadata *Meta = addrToMetadata(Ptr);

  // If a slot is multiple pages in size, and the allocation takes up a single
  // page, we can improve overflow detection by leaving the unused pages as
  // unmapped.
  markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr)), Size);

  Meta->RecordAllocation(Ptr, Size, Backtrace);

  return reinterpret_cast<void *>(Ptr);
}

void GuardedPoolAllocator::deallocate(void *Ptr) {
  assert(pointerIsMine(Ptr) && "Pointer is not mine!");
  uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
  uintptr_t SlotStart = slotToAddr(addrToSlot(UPtr));
  AllocationMetadata *Meta = addrToMetadata(UPtr);
  if (Meta->Addr != UPtr) {
    reportError(UPtr, Error::INVALID_FREE);
    exit(EXIT_FAILURE);
  }

  // Intentionally scope the mutex here, so that other threads can access the
  // pool during the expensive markInaccessible() call.
  {
    ScopedLock L(PoolMutex);
    if (Meta->IsDeallocated) {
      reportError(UPtr, Error::DOUBLE_FREE);
      exit(EXIT_FAILURE);
    }

    // Ensure that the deallocation is recorded before marking the page as
    // inaccessible. Otherwise, a racy use-after-free will have inconsistent
    // metadata.
    Meta->RecordDeallocation(Backtrace);
  }

  markInaccessible(reinterpret_cast<void *>(SlotStart),
                   maximumAllocationSize());

  // And finally, lock again to release the slot back into the pool.
  ScopedLock L(PoolMutex);
  freeSlot(addrToSlot(UPtr));
}

size_t GuardedPoolAllocator::getSize(const void *Ptr) {
  assert(pointerIsMine(Ptr));
  ScopedLock L(PoolMutex);
  AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
  assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
  return Meta->Size;
}

size_t GuardedPoolAllocator::maximumAllocationSize() const { return PageSize; }

AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
  return &Metadata[addrToSlot(Ptr)];
}

size_t GuardedPoolAllocator::addrToSlot(uintptr_t Ptr) const {
  assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
  size_t ByteOffsetFromPoolStart = Ptr - GuardedPagePool;
  return ByteOffsetFromPoolStart / (maximumAllocationSize() + PageSize);
}

uintptr_t GuardedPoolAllocator::slotToAddr(size_t N) const {
  return GuardedPagePool + (PageSize * (1 + N)) + (maximumAllocationSize() * N);
}

uintptr_t GuardedPoolAllocator::getPageAddr(uintptr_t Ptr) const {
  assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
  return Ptr & ~(static_cast<uintptr_t>(PageSize) - 1);
}

bool GuardedPoolAllocator::isGuardPage(uintptr_t Ptr) const {
  assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
  size_t PageOffsetFromPoolStart = (Ptr - GuardedPagePool) / PageSize;
  size_t PagesPerSlot = maximumAllocationSize() / PageSize;
  return (PageOffsetFromPoolStart % (PagesPerSlot + 1)) == 0;
}

size_t GuardedPoolAllocator::reserveSlot() {
  // Avoid potential reuse of a slot before we have made at least a single
  // allocation in each slot. Helps with our use-after-free detection.
  if (NumSampledAllocations < MaxSimultaneousAllocations)
    return NumSampledAllocations++;

  if (FreeSlotsLength == 0)
    return kInvalidSlotID;

  size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
  size_t SlotIndex = FreeSlots[ReservedIndex];
  FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
  return SlotIndex;
}

void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
  assert(FreeSlotsLength < MaxSimultaneousAllocations);
  FreeSlots[FreeSlotsLength++] = SlotIndex;
}

uintptr_t GuardedPoolAllocator::allocationSlotOffset(size_t Size) const {
  assert(Size > 0);

  bool ShouldRightAlign = getRandomUnsigned32() % 2 == 0;
  if (!ShouldRightAlign)
    return 0;

  uintptr_t Offset = maximumAllocationSize();
  if (!PerfectlyRightAlign) {
    if (Size == 3)
      Size = 4;
    else if (Size > 4 && Size <= 8)
      Size = 8;
    else if (Size > 8 && (Size % 16) != 0)
      Size += 16 - (Size % 16);
  }
  Offset -= Size;
  return Offset;
}

void GuardedPoolAllocator::reportError(uintptr_t AccessPtr, Error E) {
  if (SingletonPtr)
    SingletonPtr->reportErrorInternal(AccessPtr, E);
}

size_t GuardedPoolAllocator::getNearestSlot(uintptr_t Ptr) const {
  if (Ptr <= GuardedPagePool + PageSize)
    return 0;
  if (Ptr > GuardedPagePoolEnd - PageSize)
    return MaxSimultaneousAllocations - 1;

  if (!isGuardPage(Ptr))
    return addrToSlot(Ptr);

  if (Ptr % PageSize <= PageSize / 2)
    return addrToSlot(Ptr - PageSize); // Round down.
  return addrToSlot(Ptr + PageSize);   // Round up.
}

Error GuardedPoolAllocator::diagnoseUnknownError(uintptr_t AccessPtr,
                                                 AllocationMetadata **Meta) {
  // Let's try and figure out what the source of this error is.
  if (isGuardPage(AccessPtr)) {
    size_t Slot = getNearestSlot(AccessPtr);
    AllocationMetadata *SlotMeta = addrToMetadata(slotToAddr(Slot));

    // Ensure that this slot was allocated once upon a time.
    if (!SlotMeta->Addr)
      return Error::UNKNOWN;
    *Meta = SlotMeta;

    if (SlotMeta->Addr < AccessPtr)
      return Error::BUFFER_OVERFLOW;
    return Error::BUFFER_UNDERFLOW;
  }

  // Access wasn't a guard page, check for use-after-free.
  AllocationMetadata *SlotMeta = addrToMetadata(AccessPtr);
  if (SlotMeta->IsDeallocated) {
    *Meta = SlotMeta;
    return Error::USE_AFTER_FREE;
  }

  // If we have reached here, the error is still unknown. There is no metadata
  // available.
  *Meta = nullptr;
  return Error::UNKNOWN;
}

namespace {
// Prints the provided error and metadata information.
void printErrorType(Error E, uintptr_t AccessPtr, AllocationMetadata *Meta,
                    options::Printf_t Printf, uint64_t ThreadID) {
  // Print using intermediate strings. Platforms like Android don't like when
  // you print multiple times to the same line, as there may be a newline
  // appended to a log file automatically per Printf() call.
  const char *ErrorString;
  switch (E) {
  case Error::UNKNOWN:
    ErrorString = "GWP-ASan couldn't automatically determine the source of "
                  "the memory error. It was likely caused by a wild memory "
                  "access into the GWP-ASan pool. The error occurred";
    break;
  case Error::USE_AFTER_FREE:
    ErrorString = "Use after free";
    break;
  case Error::DOUBLE_FREE:
    ErrorString = "Double free";
    break;
  case Error::INVALID_FREE:
    ErrorString = "Invalid (wild) free";
    break;
  case Error::BUFFER_OVERFLOW:
    ErrorString = "Buffer overflow";
    break;
  case Error::BUFFER_UNDERFLOW:
    ErrorString = "Buffer underflow";
    break;
  }

  constexpr size_t kDescriptionBufferLen = 128;
  char DescriptionBuffer[kDescriptionBufferLen];
  if (Meta) {
    if (E == Error::USE_AFTER_FREE) {
      snprintf(DescriptionBuffer, kDescriptionBufferLen,
               "(%zu byte%s into a %zu-byte allocation at 0x%zx)",
               AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
               Meta->Size, Meta->Addr);
    } else if (AccessPtr < Meta->Addr) {
      snprintf(DescriptionBuffer, kDescriptionBufferLen,
               "(%zu byte%s to the left of a %zu-byte allocation at 0x%zx)",
               Meta->Addr - AccessPtr, (Meta->Addr - AccessPtr == 1) ? "" : "s",
               Meta->Size, Meta->Addr);
    } else if (AccessPtr > Meta->Addr) {
      snprintf(DescriptionBuffer, kDescriptionBufferLen,
               "(%zu byte%s to the right of a %zu-byte allocation at 0x%zx)",
               AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
               Meta->Size, Meta->Addr);
    } else {
      snprintf(DescriptionBuffer, kDescriptionBufferLen,
               "(a %zu-byte allocation)", Meta->Size);
    }
  }

  // Possible number of digits of a 64-bit number: ceil(log10(2^64)) == 20. Add
  // a null terminator, and round to the nearest 8-byte boundary.
  constexpr size_t kThreadBufferLen = 24;
  char ThreadBuffer[kThreadBufferLen];
  if (ThreadID == GuardedPoolAllocator::kInvalidThreadID)
    snprintf(ThreadBuffer, kThreadBufferLen, "<unknown>");
  else
    snprintf(ThreadBuffer, kThreadBufferLen, "%" PRIu64, ThreadID);

  Printf("%s at 0x%zx %s by thread %s here:\n", ErrorString, AccessPtr,
         DescriptionBuffer, ThreadBuffer);
}

void printAllocDeallocTraces(uintptr_t AccessPtr, AllocationMetadata *Meta,
                             options::Printf_t Printf,
                             options::PrintBacktrace_t PrintBacktrace) {
  assert(Meta != nullptr && "Metadata is non-null for printAllocDeallocTraces");

  if (Meta->IsDeallocated) {
    if (Meta->DeallocationTrace.ThreadID ==
        GuardedPoolAllocator::kInvalidThreadID)
      Printf("0x%zx was deallocated by thread <unknown> here:\n", AccessPtr);
    else
      Printf("0x%zx was deallocated by thread %zu here:\n", AccessPtr,
             Meta->DeallocationTrace.ThreadID);

    uintptr_t UncompressedTrace[AllocationMetadata::kMaxTraceLengthToCollect];
    size_t UncompressedLength = compression::unpack(
        Meta->DeallocationTrace.CompressedTrace,
        Meta->DeallocationTrace.TraceSize, UncompressedTrace,
        AllocationMetadata::kMaxTraceLengthToCollect);

    PrintBacktrace(UncompressedTrace, UncompressedLength, Printf);
  }

  if (Meta->AllocationTrace.ThreadID == GuardedPoolAllocator::kInvalidThreadID)
    Printf("0x%zx was allocated by thread <unknown> here:\n", Meta->Addr);
  else
    Printf("0x%zx was allocated by thread %zu here:\n", Meta->Addr,
           Meta->AllocationTrace.ThreadID);

  uintptr_t UncompressedTrace[AllocationMetadata::kMaxTraceLengthToCollect];
  size_t UncompressedLength = compression::unpack(
      Meta->AllocationTrace.CompressedTrace, Meta->AllocationTrace.TraceSize,
      UncompressedTrace, AllocationMetadata::kMaxTraceLengthToCollect);

  PrintBacktrace(UncompressedTrace, UncompressedLength, Printf);
}

struct ScopedEndOfReportDecorator {
  ScopedEndOfReportDecorator(options::Printf_t Printf) : Printf(Printf) {}
  ~ScopedEndOfReportDecorator() { Printf("*** End GWP-ASan report ***\n"); }
  options::Printf_t Printf;
};
} // anonymous namespace

void GuardedPoolAllocator::reportErrorInternal(uintptr_t AccessPtr, Error E) {
  if (!pointerIsMine(reinterpret_cast<void *>(AccessPtr))) {
    return;
  }

  // Attempt to prevent races to re-use the same slot that triggered this error.
  // This does not guarantee that there are no races, because another thread can
  // take the locks during the time that the signal handler is being called.
  PoolMutex.tryLock();
  ThreadLocals.RecursiveGuard = true;

  Printf("*** GWP-ASan detected a memory error ***\n");
  ScopedEndOfReportDecorator Decorator(Printf);

  AllocationMetadata *Meta = nullptr;

  if (E == Error::UNKNOWN) {
    E = diagnoseUnknownError(AccessPtr, &Meta);
  } else {
    size_t Slot = getNearestSlot(AccessPtr);
    Meta = addrToMetadata(slotToAddr(Slot));
    // Ensure that this slot has been previously allocated.
    if (!Meta->Addr)
      Meta = nullptr;
  }

  // Print the error information.
  uint64_t ThreadID = getThreadID();
  printErrorType(E, AccessPtr, Meta, Printf, ThreadID);
  if (Backtrace) {
    static constexpr unsigned kMaximumStackFramesForCrashTrace = 512;
    uintptr_t Trace[kMaximumStackFramesForCrashTrace];
    size_t TraceLength = Backtrace(Trace, kMaximumStackFramesForCrashTrace);

    PrintBacktrace(Trace, TraceLength, Printf);
  } else {
    Printf("  <unknown (does your allocator support backtracing?)>\n\n");
  }

  if (Meta)
    printAllocDeallocTraces(AccessPtr, Meta, Printf, PrintBacktrace);
}

TLS_INITIAL_EXEC
GuardedPoolAllocator::ThreadLocalPackedVariables
    GuardedPoolAllocator::ThreadLocals;
} // namespace gwp_asan