1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
| //===-- local_cache.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_LOCAL_CACHE_H_
#define SCUDO_LOCAL_CACHE_H_
#include "internal_defs.h"
#include "report.h"
#include "stats.h"
namespace scudo {
template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
struct TransferBatch {
static const u32 MaxNumCached = SizeClassMap::MaxNumCachedHint;
void setFromArray(void **Array, u32 N) {
DCHECK_LE(N, MaxNumCached);
Count = N;
memcpy(Batch, Array, sizeof(void *) * Count);
}
void clear() { Count = 0; }
void add(void *P) {
DCHECK_LT(Count, MaxNumCached);
Batch[Count++] = P;
}
void copyToArray(void **Array) const {
memcpy(Array, Batch, sizeof(void *) * Count);
}
u32 getCount() const { return Count; }
void *get(u32 I) const {
DCHECK_LE(I, Count);
return Batch[I];
}
static u32 getMaxCached(uptr Size) {
return Min(MaxNumCached, SizeClassMap::getMaxCachedHint(Size));
}
TransferBatch *Next;
private:
u32 Count;
void *Batch[MaxNumCached];
};
void initLinkerInitialized(GlobalStats *S, SizeClassAllocator *A) {
Stats.initLinkerInitialized();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
}
void init(GlobalStats *S, SizeClassAllocator *A) {
memset(this, 0, sizeof(*this));
initLinkerInitialized(S, A);
}
void destroy(GlobalStats *S) {
drain();
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
if (C->Count == 0) {
if (UNLIKELY(!refill(C, ClassId)))
return nullptr;
DCHECK_GT(C->Count, 0);
}
// We read ClassSize first before accessing Chunks because it's adjacent to
// Count, while Chunks might be further off (depending on Count). That keeps
// the memory accesses in close quarters.
const uptr ClassSize = C->ClassSize;
void *P = C->Chunks[--C->Count];
// The jury is still out as to whether any kind of PREFETCH here increases
// performance. It definitely decreases performance on Android though.
// if (!SCUDO_ANDROID) PREFETCH(P);
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return P;
}
void deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
// We still have to initialize the cache in the event that the first heap
// operation in a thread is a deallocation.
initCacheMaybe(C);
if (C->Count == C->MaxCount)
drain(C, ClassId);
// See comment in allocate() about memory accesses.
const uptr ClassSize = C->ClassSize;
C->Chunks[C->Count++] = P;
Stats.sub(StatAllocated, ClassSize);
Stats.add(StatFree, ClassSize);
}
void drain() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *C = &PerClassArray[I];
while (C->Count > 0)
drain(C, I);
}
}
TransferBatch *createBatch(uptr ClassId, void *B) {
if (ClassId != SizeClassMap::BatchClassId)
B = allocate(SizeClassMap::BatchClassId);
return reinterpret_cast<TransferBatch *>(B);
}
LocalStats &getStats() { return Stats; }
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
struct PerClass {
u32 Count;
u32 MaxCount;
uptr ClassSize;
void *Chunks[2 * TransferBatch::MaxNumCached];
};
PerClass PerClassArray[NumClasses];
LocalStats Stats;
SizeClassAllocator *Allocator;
ALWAYS_INLINE void initCacheMaybe(PerClass *C) {
if (LIKELY(C->MaxCount))
return;
initCache();
DCHECK_NE(C->MaxCount, 0U);
}
NOINLINE void initCache() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
P->MaxCount = 2 * TransferBatch::getMaxCached(Size);
P->ClassSize = Size;
}
}
void destroyBatch(uptr ClassId, void *B) {
if (ClassId != SizeClassMap::BatchClassId)
deallocate(SizeClassMap::BatchClassId, B);
}
NOINLINE bool refill(PerClass *C, uptr ClassId) {
initCacheMaybe(C);
TransferBatch *B = Allocator->popBatch(this, ClassId);
if (UNLIKELY(!B))
return false;
DCHECK_GT(B->getCount(), 0);
C->Count = B->getCount();
B->copyToArray(C->Chunks);
destroyBatch(ClassId, B);
return true;
}
NOINLINE void drain(PerClass *C, uptr ClassId) {
const u32 Count = Min(C->MaxCount / 2, C->Count);
const uptr FirstIndexToDrain = C->Count - Count;
TransferBatch *B = createBatch(ClassId, C->Chunks[FirstIndexToDrain]);
if (UNLIKELY(!B))
reportOutOfMemory(
SizeClassAllocator::getSizeByClassId(SizeClassMap::BatchClassId));
B->setFromArray(&C->Chunks[FirstIndexToDrain], Count);
C->Count -= Count;
Allocator->pushBatch(ClassId, B);
}
};
} // namespace scudo
#endif // SCUDO_LOCAL_CACHE_H_
|