reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
//===-- local_cache.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_LOCAL_CACHE_H_
#define SCUDO_LOCAL_CACHE_H_

#include "internal_defs.h"
#include "report.h"
#include "stats.h"

namespace scudo {

template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
  typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;

  struct TransferBatch {
    static const u32 MaxNumCached = SizeClassMap::MaxNumCachedHint;
    void setFromArray(void **Array, u32 N) {
      DCHECK_LE(N, MaxNumCached);
      Count = N;
      memcpy(Batch, Array, sizeof(void *) * Count);
    }
    void clear() { Count = 0; }
    void add(void *P) {
      DCHECK_LT(Count, MaxNumCached);
      Batch[Count++] = P;
    }
    void copyToArray(void **Array) const {
      memcpy(Array, Batch, sizeof(void *) * Count);
    }
    u32 getCount() const { return Count; }
    void *get(u32 I) const {
      DCHECK_LE(I, Count);
      return Batch[I];
    }
    static u32 getMaxCached(uptr Size) {
      return Min(MaxNumCached, SizeClassMap::getMaxCachedHint(Size));
    }
    TransferBatch *Next;

  private:
    u32 Count;
    void *Batch[MaxNumCached];
  };

  void initLinkerInitialized(GlobalStats *S, SizeClassAllocator *A) {
    Stats.initLinkerInitialized();
    if (LIKELY(S))
      S->link(&Stats);
    Allocator = A;
  }

  void init(GlobalStats *S, SizeClassAllocator *A) {
    memset(this, 0, sizeof(*this));
    initLinkerInitialized(S, A);
  }

  void destroy(GlobalStats *S) {
    drain();
    if (LIKELY(S))
      S->unlink(&Stats);
  }

  void *allocate(uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    PerClass *C = &PerClassArray[ClassId];
    if (C->Count == 0) {
      if (UNLIKELY(!refill(C, ClassId)))
        return nullptr;
      DCHECK_GT(C->Count, 0);
    }
    // We read ClassSize first before accessing Chunks because it's adjacent to
    // Count, while Chunks might be further off (depending on Count). That keeps
    // the memory accesses in close quarters.
    const uptr ClassSize = C->ClassSize;
    void *P = C->Chunks[--C->Count];
    // The jury is still out as to whether any kind of PREFETCH here increases
    // performance. It definitely decreases performance on Android though.
    // if (!SCUDO_ANDROID) PREFETCH(P);
    Stats.add(StatAllocated, ClassSize);
    Stats.sub(StatFree, ClassSize);
    return P;
  }

  void deallocate(uptr ClassId, void *P) {
    CHECK_LT(ClassId, NumClasses);
    PerClass *C = &PerClassArray[ClassId];
    // We still have to initialize the cache in the event that the first heap
    // operation in a thread is a deallocation.
    initCacheMaybe(C);
    if (C->Count == C->MaxCount)
      drain(C, ClassId);
    // See comment in allocate() about memory accesses.
    const uptr ClassSize = C->ClassSize;
    C->Chunks[C->Count++] = P;
    Stats.sub(StatAllocated, ClassSize);
    Stats.add(StatFree, ClassSize);
  }

  void drain() {
    for (uptr I = 0; I < NumClasses; I++) {
      PerClass *C = &PerClassArray[I];
      while (C->Count > 0)
        drain(C, I);
    }
  }

  TransferBatch *createBatch(uptr ClassId, void *B) {
    if (ClassId != SizeClassMap::BatchClassId)
      B = allocate(SizeClassMap::BatchClassId);
    return reinterpret_cast<TransferBatch *>(B);
  }

  LocalStats &getStats() { return Stats; }

private:
  static const uptr NumClasses = SizeClassMap::NumClasses;
  struct PerClass {
    u32 Count;
    u32 MaxCount;
    uptr ClassSize;
    void *Chunks[2 * TransferBatch::MaxNumCached];
  };
  PerClass PerClassArray[NumClasses];
  LocalStats Stats;
  SizeClassAllocator *Allocator;

  ALWAYS_INLINE void initCacheMaybe(PerClass *C) {
    if (LIKELY(C->MaxCount))
      return;
    initCache();
    DCHECK_NE(C->MaxCount, 0U);
  }

  NOINLINE void initCache() {
    for (uptr I = 0; I < NumClasses; I++) {
      PerClass *P = &PerClassArray[I];
      const uptr Size = SizeClassAllocator::getSizeByClassId(I);
      P->MaxCount = 2 * TransferBatch::getMaxCached(Size);
      P->ClassSize = Size;
    }
  }

  void destroyBatch(uptr ClassId, void *B) {
    if (ClassId != SizeClassMap::BatchClassId)
      deallocate(SizeClassMap::BatchClassId, B);
  }

  NOINLINE bool refill(PerClass *C, uptr ClassId) {
    initCacheMaybe(C);
    TransferBatch *B = Allocator->popBatch(this, ClassId);
    if (UNLIKELY(!B))
      return false;
    DCHECK_GT(B->getCount(), 0);
    C->Count = B->getCount();
    B->copyToArray(C->Chunks);
    destroyBatch(ClassId, B);
    return true;
  }

  NOINLINE void drain(PerClass *C, uptr ClassId) {
    const u32 Count = Min(C->MaxCount / 2, C->Count);
    const uptr FirstIndexToDrain = C->Count - Count;
    TransferBatch *B = createBatch(ClassId, C->Chunks[FirstIndexToDrain]);
    if (UNLIKELY(!B))
      reportOutOfMemory(
          SizeClassAllocator::getSizeByClassId(SizeClassMap::BatchClassId));
    B->setFromArray(&C->Chunks[FirstIndexToDrain], Count);
    C->Count -= Count;
    Allocator->pushBatch(ClassId, B);
  }
};

} // namespace scudo

#endif // SCUDO_LOCAL_CACHE_H_