reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s

; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s

; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s

; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s

; Test the floating point arguments for all ABI's and byte orders as specified
; by section 5 of MD00305 (MIPS ABIs Described).
;
; N32/N64 are identical in this area so their checks have been combined into
; the 'NEW' prefix (the N stands for New).

@bytes = global [11 x i8] zeroinitializer
@dwords = global [11 x i64] zeroinitializer
@floats = global [11 x float] zeroinitializer
@doubles = global [11 x double] zeroinitializer

define void @double_args(double %a, double %b, double %c, double %d, double %e,
                         double %f, double %g, double %h, double %i) nounwind {
entry:
        %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
        store volatile double %a, double* %0
        %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
        store volatile double %b, double* %1
        %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
        store volatile double %c, double* %2
        %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
        store volatile double %d, double* %3
        %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
        store volatile double %e, double* %4
        %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
        store volatile double %f, double* %5
        %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
        store volatile double %g, double* %6
        %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
        store volatile double %h, double* %7
        %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
        store volatile double %i, double* %8
        ret void
}

; ALL-LABEL: double_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)

; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG:           sdc1 $f12, 8([[R2]])
; O32-DAG:           sdc1 $f14, 16([[R2]])
; NEW-DAG:           sdc1 $f13, 16([[R2]])

; O32 has run out of argument registers and starts using the stack
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG:           sdc1 [[F1]], 24([[R2]])
; NEW-DAG:           sdc1 $f14, 24([[R2]])
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG:           sdc1 [[F1]], 32([[R2]])
; NEW-DAG:           sdc1 $f15, 32([[R2]])
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG:           sdc1 [[F1]], 40([[R2]])
; NEW-DAG:           sdc1 $f16, 40([[R2]])
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 40($sp)
; O32-DAG:           sdc1 [[F1]], 48([[R2]])
; NEW-DAG:           sdc1 $f17, 48([[R2]])
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 48($sp)
; O32-DAG:           sdc1 [[F1]], 56([[R2]])
; NEW-DAG:           sdc1 $f18, 56([[R2]])
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 56($sp)
; O32-DAG:           sdc1 [[F1]], 64([[R2]])
; NEW-DAG:           sdc1 $f19, 64([[R2]])

; N32/N64 have run out of registers and start using the stack too
; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 64($sp)
; O32-DAG:           sdc1 [[F1]], 72([[R2]])
; NEW-DAG:           ldc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG:           sdc1 [[F1]], 72([[R2]])

define void @float_args(float %a, float %b, float %c, float %d, float %e,
                        float %f, float %g, float %h, float %i) nounwind {
entry:
        %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
        store volatile float %a, float* %0
        %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
        store volatile float %b, float* %1
        %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
        store volatile float %c, float* %2
        %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
        store volatile float %d, float* %3
        %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
        store volatile float %e, float* %4
        %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
        store volatile float %f, float* %5
        %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
        store volatile float %g, float* %6
        %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
        store volatile float %h, float* %7
        %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
        store volatile float %i, float* %8
        ret void
}

; ALL-LABEL: float_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG:           addiu  [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(floats)

; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG:           swc1 $f12, 4([[R1]])
; O32-DAG:           swc1 $f14, 8([[R1]])
; NEW-DAG:           swc1 $f13, 8([[R1]])

; O32 has run out of argument registers and (in theory) starts using the stack
; I've yet to find a reference in the documentation about this but GCC uses up
; the remaining two argument slots in the GPR's first. We'll do the same for
; compatibility.
; O32-DAG:           mtc1 $6, $f0
; O32-DAG:           swc1 $f0, 12([[R1]])
; NEW-DAG:           swc1 $f14, 12([[R1]])
; O32-DAG:           mtc1 $7, $f0
; O32-DAG:           swc1 $f0, 16([[R1]])
; NEW-DAG:           swc1 $f15, 16([[R1]])

; O32 is definitely out of registers now and switches to the stack.
; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG:           swc1 [[F1]], 20([[R1]])
; NEW-DAG:           swc1 $f16, 20([[R1]])
; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 20($sp)
; O32-DAG:           swc1 [[F1]], 24([[R1]])
; NEW-DAG:           swc1 $f17, 24([[R1]])
; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG:           swc1 [[F1]], 28([[R1]])
; NEW-DAG:           swc1 $f18, 28([[R1]])
; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 28($sp)
; O32-DAG:           swc1 [[F1]], 32([[R1]])
; NEW-DAG:           swc1 $f19, 32([[R1]])

; N32/N64 have run out of registers and start using the stack too
; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG:           swc1 [[F1]], 36([[R1]])
; NEW-DAG:           lwc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG:           swc1 [[F1]], 36([[R1]])


define void @double_arg2(i8 %a, double %b) nounwind {
entry:
        %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
        store volatile i8 %a, i8* %0
        %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
        store volatile double %b, double* %1
        ret void
}

; ALL-LABEL: double_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)

; The first argument is the same in O32/N32/N64.
; ALL-DAG:           sb $4, 1([[R1]])

; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; The second slot is insufficiently aligned for double on O32 so it is skipped.
; Also, double occupies two slots on O32 and only one for N32/N64.
; O32LE-DAG:           mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
; O32LE-DAG:           mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG:           mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG:           mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
; O32-DAG:           sdc1 [[F1]], 8([[R2]])
; NEW-DAG:           sdc1 $f13, 8([[R2]])

define void @float_arg2(i8 %a, float %b) nounwind {
entry:
        %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
        store volatile i8 %a, i8* %0
        %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
        store volatile float %b, float* %1
        ret void
}

; ALL-LABEL: float_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(floats)

; The first argument is the same in O32/N32/N64.
; ALL-DAG:           sb $4, 1([[R1]])

; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
; aligned and occupying one slot. We'll use GCC's definition.
; O32-DAG:           mtc1 $5, $f0
; O32-DAG:           swc1 $f0, 4([[R2]])
; NEW-DAG:           swc1 $f13, 4([[R2]])