reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \
; RUN:   | FileCheck %s

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

declare float @llvm.sqrt.f32(float)
declare double @llvm.sqrt.f64(double)

; -- reciprocal sqrt --

; CHECK-LABEL test_rsqrt32
define float @test_rsqrt32(float %a) #0 {
; CHECK: rsqrt.approx.f32
  %val = tail call float @llvm.sqrt.f32(float %a)
  %ret = fdiv float 1.0, %val
  ret float %ret
}

; CHECK-LABEL test_rsqrt_ftz
define float @test_rsqrt_ftz(float %a) #0 #1 {
; CHECK: rsqrt.approx.ftz.f32
  %val = tail call float @llvm.sqrt.f32(float %a)
  %ret = fdiv float 1.0, %val
  ret float %ret
}

; CHECK-LABEL test_rsqrt64
define double @test_rsqrt64(double %a) #0 {
; CHECK: rsqrt.approx.f64
  %val = tail call double @llvm.sqrt.f64(double %a)
  %ret = fdiv double 1.0, %val
  ret double %ret
}

; CHECK-LABEL test_rsqrt64_ftz
define double @test_rsqrt64_ftz(double %a) #0 #1 {
; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
  %val = tail call double @llvm.sqrt.f64(double %a)
  %ret = fdiv double 1.0, %val
  ret double %ret
}

; -- sqrt --

; CHECK-LABEL test_sqrt32
define float @test_sqrt32(float %a) #0 {
; CHECK: sqrt.approx.f32
  %ret = tail call float @llvm.sqrt.f32(float %a)
  ret float %ret
}

; CHECK-LABEL test_sqrt_ftz
define float @test_sqrt_ftz(float %a) #0 #1 {
; CHECK: sqrt.approx.ftz.f32
  %ret = tail call float @llvm.sqrt.f32(float %a)
  ret float %ret
}

; CHECK-LABEL test_sqrt64
define double @test_sqrt64(double %a) #0 {
; There's no sqrt.approx.f64 instruction; we emit
; reciprocal(rsqrt.approx.f64(x)).  There's no non-ftz approximate reciprocal,
; so we just use the ftz version.
; CHECK: rsqrt.approx.f64
; CHECK: rcp.approx.ftz.f64
  %ret = tail call double @llvm.sqrt.f64(double %a)
  ret double %ret
}

; CHECK-LABEL test_sqrt64_ftz
define double @test_sqrt64_ftz(double %a) #0 #1 {
; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
; CHECK: rcp.approx.ftz.f64
  %ret = tail call double @llvm.sqrt.f64(double %a)
  ret double %ret
}

; -- refined sqrt and rsqrt --
;
; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed
; by some math.

; CHECK-LABEL: test_rsqrt32_refined
define float @test_rsqrt32_refined(float %a) #0 #2 {
; CHECK: rsqrt.approx.f32
  %val = tail call float @llvm.sqrt.f32(float %a)
  %ret = fdiv float 1.0, %val
  ret float %ret
}

; CHECK-LABEL: test_sqrt32_refined
define float @test_sqrt32_refined(float %a) #0 #2 {
; CHECK: rsqrt.approx.f32
  %ret = tail call float @llvm.sqrt.f32(float %a)
  ret float %ret
}

; CHECK-LABEL: test_rsqrt64_refined
define double @test_rsqrt64_refined(double %a) #0 #2 {
; CHECK: rsqrt.approx.f64
  %val = tail call double @llvm.sqrt.f64(double %a)
  %ret = fdiv double 1.0, %val
  ret double %ret
}

; CHECK-LABEL: test_sqrt64_refined
define double @test_sqrt64_refined(double %a) #0 #2 {
; CHECK: rsqrt.approx.f64
  %ret = tail call double @llvm.sqrt.f64(double %a)
  ret double %ret
}

; -- refined sqrt and rsqrt with ftz enabled --

; CHECK-LABEL: test_rsqrt32_refined_ftz
define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 {
; CHECK: rsqrt.approx.ftz.f32
  %val = tail call float @llvm.sqrt.f32(float %a)
  %ret = fdiv float 1.0, %val
  ret float %ret
}

; CHECK-LABEL: test_sqrt32_refined_ftz
define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
; CHECK: rsqrt.approx.ftz.f32
  %ret = tail call float @llvm.sqrt.f32(float %a)
  ret float %ret
}

; CHECK-LABEL: test_rsqrt64_refined_ftz
define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
  %val = tail call double @llvm.sqrt.f64(double %a)
  %ret = fdiv double 1.0, %val
  ret double %ret
}

; CHECK-LABEL: test_sqrt64_refined_ftz
define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 {
; CHECK: rsqrt.approx.f64
  %ret = tail call double @llvm.sqrt.f64(double %a)
  ret double %ret
}

attributes #0 = { "unsafe-fp-math" = "true" }
attributes #1 = { "nvptx-f32ftz" = "true" }
attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" }