reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
; RUN: opt -S -codegenprepare %s -o - | FileCheck %s
; This file tests the different cases what are involved when codegen prepare
; tries to get sign/zero extension out of the way of addressing mode.
; This tests require an actual target as addressing mode decisions depends
; on the target.

target datalayout = "e-i64:64-f80:128-s:64-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx"


; Check that we correctly promote both operands of the promotable add.
; CHECK-LABEL: @twoArgsPromotion
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i32 %arg1 to i64
; CHECK: [[ARG2SEXT:%[a-zA-Z_0-9-]+]] = sext i32 %arg2 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], [[ARG2SEXT]]
; CHECK: inttoptr i64 [[PROMOTED]] to i8*
; CHECK: ret
define i8 @twoArgsPromotion(i32 %arg1, i32 %arg2) {
  %add = add nsw i32 %arg1, %arg2 
  %sextadd = sext i32 %add to i64
  %base = inttoptr i64 %sextadd to i8*
  %res = load i8, i8* %base
  ret i8 %res
}

; Check that we do not promote both operands of the promotable add when
; the instruction will not be folded into the addressing mode.
; Otherwise, we will increase the number of instruction executed.
; (This is a heuristic of course, because the new sext could have been
; merged with something else.)
; CHECK-LABEL: @twoArgsNoPromotion
; CHECK: add nsw i32 %arg1, %arg2
; CHECK: ret
define i8 @twoArgsNoPromotion(i32 %arg1, i32 %arg2, i8* %base) {
  %add = add nsw i32 %arg1, %arg2 
  %sextadd = sext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we do not promote when the related instruction does not have
; the nsw flag.
; CHECK-LABEL: @noPromotion
; CHECK-NOT: add i64
; CHECK: ret
define i8 @noPromotion(i32 %arg1, i32 %arg2, i8* %base) {
  %add = add i32 %arg1, %arg2 
  %sextadd = sext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we correctly promote constant arguments.
; CHECK-LABEL: @oneArgPromotion
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i32 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotion(i32 %arg1, i8* %base) {
  %add = add nsw i32 %arg1, 1 
  %sextadd = sext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we are able to merge a sign extension with a zero extension.
; CHECK-LABEL: @oneArgPromotionZExt
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1ZEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionZExt(i8 %arg1, i8* %base) {
  %zext = zext i8 %arg1 to i32
  %add = add nsw i32 %zext, 1 
  %sextadd = sext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; When promoting a constant zext, the IR builder returns a constant,
; not an instruction. Make sure this is properly handled. This used
; to crash.
; Note: The constant zext is promoted, but does not help matching
; more thing in the addressing mode. Therefore the modification is
; rolled back.
; Still, this test case exercises the desired code path.
; CHECK-LABEL: @oneArgPromotionCstZExt
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 0, 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionCstZExt(i8* %base) {
  %cst = zext i16 undef to i32
  %add = add nsw i32 %cst, 1
  %sextadd = sext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we do not promote truncate when we cannot determine the
; bits that are dropped.
; CHECK-LABEL: @oneArgPromotionBlockTrunc1
; CHECK: [[ARG1TRUNC:%[a-zA-Z_0-9-]+]] = trunc i32 %arg1 to i8
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i8 [[ARG1TRUNC]] to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionBlockTrunc1(i32 %arg1, i8* %base) {
  %trunc = trunc i32 %arg1 to i8
  %add = add nsw i8 %trunc, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we do not promote truncate when we cannot determine all the
; bits that are dropped.
; CHECK-LABEL: @oneArgPromotionBlockTrunc2
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i16 %arg1 to i32
; CHECK: [[ARG1TRUNC:%[a-zA-Z_0-9-]+]] = trunc i32 [[ARG1SEXT]] to i8
; CHECK: [[ARG1SEXT64:%[a-zA-Z_0-9-]+]] = sext i8 [[ARG1TRUNC]] to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT64]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionBlockTrunc2(i16 %arg1, i8* %base) {
  %sextarg1 = sext i16 %arg1 to i32
  %trunc = trunc i32 %sextarg1 to i8
  %add = add nsw i8 %trunc, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we are able to promote truncate when we know all the bits
; that are dropped.
; CHECK-LABEL: @oneArgPromotionPassTruncKeepSExt
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i1 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionPassTruncKeepSExt(i1 %arg1, i8* %base) {
  %sextarg1 = sext i1 %arg1 to i32
  %trunc = trunc i32 %sextarg1 to i8
  %add = add nsw i8 %trunc, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; On X86 truncate are free. Check that we are able to promote the add
; to be used as addressing mode and that we insert a truncate for the other
; use. 
; CHECK-LABEL: @oneArgPromotionTruncInsert
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: [[TRUNC:%[a-zA-Z_0-9-]+]] = trunc i64 [[PROMOTED]] to i8
; CHECK: [[GEP:%[a-zA-Z_0-9-]+]] = getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: [[LOAD:%[a-zA-Z_0-9-]+]] = load i8, i8* [[GEP]]
; CHECK: add i8 [[LOAD]], [[TRUNC]]
; CHECK: ret
define i8 @oneArgPromotionTruncInsert(i8 %arg1, i8* %base) {
  %add = add nsw i8 %arg1, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  %finalres = add i8 %res, %add
  ret i8 %finalres
}

; Cannot sext from a larger type than the promoted type.
; CHECK-LABEL: @oneArgPromotionLargerType
; CHECK: [[ARG1TRUNC:%[a-zA-Z_0-9-]+]] = trunc i128 %arg1 to i8
; CHECK: [[ARG1SEXT64:%[a-zA-Z_0-9-]+]] = sext i8 [[ARG1TRUNC]] to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT64]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionLargerType(i128 %arg1, i8* %base) {
  %trunc = trunc i128 %arg1 to i8
  %add = add nsw i8 %trunc, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  %finalres = add i8 %res, %add
  ret i8 %finalres
}

; Use same inserted trunc
; On X86 truncate are free. Check that we are able to promote the add
; to be used as addressing mode and that we insert a truncate for
; *all* the other uses. 
; CHECK-LABEL: @oneArgPromotionTruncInsertSeveralUse
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: [[TRUNC:%[a-zA-Z_0-9-]+]] = trunc i64 [[PROMOTED]] to i8
; CHECK: [[GEP:%[a-zA-Z_0-9-]+]] = getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: [[LOAD:%[a-zA-Z_0-9-]+]] = load i8, i8* [[GEP]]
; CHECK: [[ADDRES:%[a-zA-Z_0-9-]+]] = add i8 [[LOAD]], [[TRUNC]]
; CHECK: add i8 [[ADDRES]], [[TRUNC]]
; CHECK: ret
define i8 @oneArgPromotionTruncInsertSeveralUse(i8 %arg1, i8* %base) {
  %add = add nsw i8 %arg1, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  %almostfinalres = add i8 %res, %add
  %finalres = add i8 %almostfinalres, %add
  ret i8 %finalres
}

; Check that the promoted instruction is used for all uses of the original
; sign extension.
; CHECK-LABEL: @oneArgPromotionSExtSeveralUse
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nsw i64 [[ARG1SEXT]], 1
; CHECK: [[GEP:%[a-zA-Z_0-9-]+]] = getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: [[LOAD:%[a-zA-Z_0-9-]+]] = load i8, i8* [[GEP]]
; CHECK: [[ADDRES:%[a-zA-Z_0-9-]+]] = zext i8 [[LOAD]] to i64
; CHECK: add i64 [[ADDRES]], [[PROMOTED]]
; CHECK: ret
define i64 @oneArgPromotionSExtSeveralUse(i8 %arg1, i8* %base) {
  %add = add nsw i8 %arg1, 1 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  %almostfinalres = zext i8 %res to i64
  %finalres = add i64 %almostfinalres, %sextadd
  ret i64 %finalres
}

; Check all types of rollback mechanism.
; For this test, the sign extension stays in place.
; However, the matching process goes until promoting both the operands
; of the first promotable add implies.
; At this point the rollback mechanism kicks in and restores the states
; until the addressing mode matcher is able to match something: in that
; case promote nothing.
; Along the way, the promotion mechanism involves:
; - Mutating the type of %promotableadd1 and %promotableadd2.
; - Creating a sext for %arg1 and %arg2.
; - Creating a trunc for a use of %promotableadd1.
; - Replacing a bunch of uses.
; - Setting the operands of the promoted instruction with the promoted values.
; - Moving instruction around (mainly sext when promoting instruction).
; Each type of those promotions has to be undo at least once during this
; specific test. 
; CHECK-LABEL: @twoArgsPromotionNest
; CHECK: [[ORIG:%[a-zA-Z_0-9-]+]] = add nsw i32 %arg1, %arg2
; CHECK: [[ADD:%[a-zA-Z_0-9-]+]] = add nsw i32 [[ORIG]], [[ORIG]]
; CHECK: [[SEXT:%[a-zA-Z_0-9-]+]] = sext i32 [[ADD]] to i64
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[SEXT]]
; CHECK: ret
define i8 @twoArgsPromotionNest(i32 %arg1, i32 %arg2, i8* %base) {
  %promotableadd1 = add nsw i32 %arg1, %arg2
  %promotableadd2 = add nsw i32 %promotableadd1, %promotableadd1 
  %sextadd = sext i32 %promotableadd2 to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Test the InstructionRemover undo, which was the only one not
; kicked in the previous test.
; The matcher first promotes the add, removes the trunc and promotes
; the sext of arg1.
; Then, the matcher cannot use an addressing mode r + r + r, thus it
; rolls back. 
; CHECK-LABEL: @twoArgsNoPromotionRemove
; CHECK: [[SEXTARG1:%[a-zA-Z_0-9-]+]] = sext i1 %arg1 to i32
; CHECK: [[TRUNC:%[a-zA-Z_0-9-]+]] = trunc i32 [[SEXTARG1]] to i8
; CHECK: [[ADD:%[a-zA-Z_0-9-]+]] = add nsw i8 [[TRUNC]], %arg2
; CHECK: [[SEXT:%[a-zA-Z_0-9-]+]] = sext i8 [[ADD]] to i64
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[SEXT]]
; CHECK: ret
define i8 @twoArgsNoPromotionRemove(i1 %arg1, i8 %arg2, i8* %base) {
  %sextarg1 = sext i1 %arg1 to i32
  %trunc = trunc i32 %sextarg1 to i8
  %add = add nsw i8 %trunc, %arg2 
  %sextadd = sext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %sextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Ensure that when the profitability checks kicks in, the IR is not modified
; will IgnoreProfitability is on.
; The profitabily check happens when a candidate instruction has several uses.
; The matcher will create a new matcher for each use and check if the
; instruction is in the list of the matched instructions of this new matcher.
; All changes made by the new matchers must be dropped before pursuing
; otherwise the state of the original matcher will be wrong.
;
; Without the profitability check, when checking for the second use of
; arrayidx, the matcher promotes everything all the way to %arg1, %arg2.
; Check that we did not promote anything in the final matching.
;
; <rdar://problem/16020230>
; CHECK-LABEL: @checkProfitability
; CHECK-NOT: {{%[a-zA-Z_0-9-]+}} = sext i32 %arg1 to i64
; CHECK-NOT: {{%[a-zA-Z_0-9-]+}} = sext i32 %arg2 to i64
; CHECK: [[SHL:%[a-zA-Z_0-9-]+]] = shl nsw i32 %arg1, 1
; CHECK: [[ADD:%[a-zA-Z_0-9-]+]] = add nsw i32 [[SHL]], %arg2
; CHECK: [[SEXTADD:%[a-zA-Z_0-9-]+]] = sext i32 [[ADD]] to i64
; BB then
; CHECK: [[BASE1:%[a-zA-Z_0-9-]+]] = inttoptr i64 [[SEXTADD]] to i32*
; CHECK: [[BCC1:%[a-zA-Z_0-9-]+]] = bitcast i32* [[BASE1]] to i8*
; CHECK: [[FULL1:%[a-zA-Z_0-9-]+]] = getelementptr i8, i8* [[BCC1]], i64 48
; CHECK: [[ADDR1:%[a-zA-Z_0-9-]+]] = bitcast i8* [[FULL1]] to i32*
; CHECK: load i32, i32* [[ADDR1]]
; BB else
; CHECK: [[BASE2:%[a-zA-Z_0-9-]+]] = inttoptr i64 [[SEXTADD]] to i32*
; CHECK: [[BCC2:%[a-zA-Z_0-9-]+]] = bitcast i32* [[BASE2]] to i8*
; CHECK: [[FULL2:%[a-zA-Z_0-9-]+]] = getelementptr i8, i8* [[BCC2]], i64 48
; CHECK: [[ADDR2:%[a-zA-Z_0-9-]+]] = bitcast i8* [[FULL2]] to i32*
; CHECK: load i32, i32* [[ADDR2]]
; CHECK: ret
define i32 @checkProfitability(i32 %arg1, i32 %arg2, i1 %test) {
  %shl = shl nsw i32 %arg1, 1
  %add1 = add nsw i32 %shl, %arg2
  %sextidx1 = sext i32 %add1 to i64
  %tmpptr = inttoptr i64 %sextidx1 to i32*
  %arrayidx1 = getelementptr i32, i32* %tmpptr, i64 12
  br i1 %test, label %then, label %else
then: 
  %res1 = load i32, i32* %arrayidx1
  br label %end
else:
  %res2 = load i32, i32* %arrayidx1
  br label %end
end:
  %tmp = phi i32 [%res1, %then], [%res2, %else]
  %res = add i32 %tmp, %add1
  %addr = inttoptr i32 %res to i32*
  %final = load i32, i32* %addr
  ret i32 %final
}

%struct.dns_packet = type { i32, i32, %union.anon }
%union.anon = type { i32 }

@a = common global i32 0, align 4
@b = common global i16 0, align 2

; We used to crash on this function because we did not return the right
; promoted instruction for %conv.i.
; Make sure we generate the right code now.
; CHECK-LABEL: @fn3
; %conv.i is used twice and only one of its use is being promoted.
; Use it at the starting point for the matching.
; CHECK: %conv.i = zext i16 [[PLAIN_OPND:%[.a-zA-Z_0-9-]+]] to i32
; CHECK-NEXT: [[PROMOTED_CONV:%[.a-zA-Z_0-9-]+]] = zext i16 [[PLAIN_OPND]] to i64
; CHECK-NEXT: [[BASE:%[a-zA-Z_0-9-]+]] = bitcast %struct.dns_packet* %P to i8*
; CHECK-NEXT: [[ADD:%[a-zA-Z_0-9-]+]] = getelementptr i8, i8* [[BASE]], i64 [[PROMOTED_CONV]]
; CHECK-NEXT: [[ADDR:%[a-zA-Z_0-9-]+]] = getelementptr i8, i8* [[ADD]], i64 7
; CHECK-NEXT: load i8, i8* [[ADDR]], align 1
define signext i16 @fn3(%struct.dns_packet* nocapture readonly %P) {
entry:
  %tmp = getelementptr inbounds %struct.dns_packet, %struct.dns_packet* %P, i64 0, i32 2
  %data.i.i = bitcast %union.anon* %tmp to [0 x i8]*
  br label %while.body.i.i

while.body.i.i:                                   ; preds = %while.body.i.i, %entry
  %src.addr.0.i.i = phi i16 [ 0, %entry ], [ %inc.i.i, %while.body.i.i ]
  %inc.i.i = add i16 %src.addr.0.i.i, 1
  %idxprom.i.i = sext i16 %src.addr.0.i.i to i64
  %arrayidx.i.i = getelementptr inbounds [0 x i8], [0 x i8]* %data.i.i, i64 0, i64 %idxprom.i.i
  %tmp1 = load i8, i8* %arrayidx.i.i, align 1
  %conv2.i.i = zext i8 %tmp1 to i32
  %and.i.i = and i32 %conv2.i.i, 15
  store i32 %and.i.i, i32* @a, align 4
  %tobool.i.i = icmp eq i32 %and.i.i, 0
  br i1 %tobool.i.i, label %while.body.i.i, label %fn1.exit.i

fn1.exit.i:                                       ; preds = %while.body.i.i
  %inc.i.i.lcssa = phi i16 [ %inc.i.i, %while.body.i.i ]
  %conv.i = zext i16 %inc.i.i.lcssa to i32
  %sub.i = add nsw i32 %conv.i, -1
  %idxprom.i = sext i32 %sub.i to i64
  %arrayidx.i = getelementptr inbounds [0 x i8], [0 x i8]* %data.i.i, i64 0, i64 %idxprom.i
  %tmp2 = load i8, i8* %arrayidx.i, align 1
  %conv2.i = sext i8 %tmp2 to i16
  store i16 %conv2.i, i16* @b, align 2
  %sub4.i = sub nsw i32 0, %conv.i
  %conv5.i = zext i16 %conv2.i to i32
  %cmp.i = icmp sgt i32 %conv5.i, %sub4.i
  br i1 %cmp.i, label %if.then.i, label %fn2.exit

if.then.i:                                        ; preds = %fn1.exit.i
  %end.i = getelementptr inbounds %struct.dns_packet, %struct.dns_packet* %P, i64 0, i32 1
  %tmp3 = load i32, i32* %end.i, align 4
  %sub7.i = add i32 %tmp3, 65535
  %conv8.i = trunc i32 %sub7.i to i16
  br label %fn2.exit

fn2.exit:                                         ; preds = %if.then.i, %fn1.exit.i
  %retval.0.i = phi i16 [ %conv8.i, %if.then.i ], [ undef, %fn1.exit.i ]
  ret i16 %retval.0.i
}

; Check that we do not promote an extension if the non-wrapping flag does not
; match the kind of the extension.
; CHECK-LABEL: @noPromotionFlag
; CHECK: [[ADD:%[a-zA-Z_0-9-]+]] = add nsw i32 %arg1, %arg2
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = zext i32 [[ADD]] to i64
; CHECK: inttoptr i64 [[PROMOTED]] to i8*
; CHECK: ret
define i8 @noPromotionFlag(i32 %arg1, i32 %arg2) {
  %add = add nsw i32 %arg1, %arg2 
  %zextadd = zext i32 %add to i64
  %base = inttoptr i64 %zextadd to i8*
  %res = load i8, i8* %base
  ret i8 %res
}

; Check that we correctly promote both operands of the promotable add with zext.
; CHECK-LABEL: @twoArgsPromotionZExt
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i32 %arg1 to i64
; CHECK: [[ARG2ZEXT:%[a-zA-Z_0-9-]+]] = zext i32 %arg2 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], [[ARG2ZEXT]]
; CHECK: inttoptr i64 [[PROMOTED]] to i8*
; CHECK: ret
define i8 @twoArgsPromotionZExt(i32 %arg1, i32 %arg2) {
  %add = add nuw i32 %arg1, %arg2 
  %zextadd = zext i32 %add to i64
  %base = inttoptr i64 %zextadd to i8*
  %res = load i8, i8* %base
  ret i8 %res
}

; Check that we correctly promote constant arguments.
; CHECK-LABEL: @oneArgPromotionNegativeCstZExt
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], 255
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionNegativeCstZExt(i8 %arg1, i8* %base) {
  %add = add nuw i8 %arg1, -1 
  %zextadd = zext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %zextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we are able to merge two zero extensions.
; CHECK-LABEL: @oneArgPromotionZExtZExt
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i8 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionZExtZExt(i8 %arg1, i8* %base) {
  %zext = zext i8 %arg1 to i32
  %add = add nuw i32 %zext, 1 
  %zextadd = zext i32 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %zextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we do not promote truncate when the dropped bits
; are of a different kind.
; CHECK-LABEL: @oneArgPromotionBlockTruncZExt
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i1 %arg1 to i32
; CHECK: [[ARG1TRUNC:%[a-zA-Z_0-9-]+]] = trunc i32 [[ARG1SEXT]] to i8
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i8 [[ARG1TRUNC]] to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionBlockTruncZExt(i1 %arg1, i8* %base) {
  %sextarg1 = sext i1 %arg1 to i32
  %trunc = trunc i32 %sextarg1 to i8
  %add = add nuw i8 %trunc, 1 
  %zextadd = zext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %zextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we are able to promote truncate when we know all the bits
; that are dropped.
; CHECK-LABEL: @oneArgPromotionPassTruncZExt
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i1 %arg1 to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionPassTruncZExt(i1 %arg1, i8* %base) {
  %sextarg1 = zext i1 %arg1 to i32
  %trunc = trunc i32 %sextarg1 to i8
  %add = add nuw i8 %trunc, 1 
  %zextadd = zext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %zextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}

; Check that we do not promote sext with zext.
; CHECK-LABEL: @oneArgPromotionBlockSExtZExt
; CHECK: [[ARG1SEXT:%[a-zA-Z_0-9-]+]] = sext i1 %arg1 to i8
; CHECK: [[ARG1ZEXT:%[a-zA-Z_0-9-]+]] = zext i8 [[ARG1SEXT]] to i64
; CHECK: [[PROMOTED:%[a-zA-Z_0-9-]+]] = add nuw i64 [[ARG1ZEXT]], 1
; CHECK: getelementptr inbounds i8, i8* %base, i64 [[PROMOTED]]
; CHECK: ret
define i8 @oneArgPromotionBlockSExtZExt(i1 %arg1, i8* %base) {
  %sextarg1 = sext i1 %arg1 to i8
  %add = add nuw i8 %sextarg1, 1 
  %zextadd = zext i8 %add to i64
  %arrayidx = getelementptr inbounds i8, i8* %base, i64 %zextadd
  %res = load i8, i8* %arrayidx
  ret i8 %res
}