reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS
; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR
;
; <rdar://problem/14477220>

%class.Complex = type { float, float }


; Check that independent slices leads to independent loads then the slices leads to
; different register file.
;
; The layout is:
; LSB 0 1 2 3 | 4 5 6 7 MSB
;       Low      High
; The base address points to 0 and is 8-bytes aligned.
; Low slice starts at 0 (base) and is 8-bytes aligned.
; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned.
;
; STRESS-LABEL: t1:
; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]]
; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
; Add low slice: out[out_start].real, this is base + 0.
; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
; Add high slice: out[out_start].imm, this is base + 4.
; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
; Swap Imm and Real.
; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
; Put the results back into out[out_start].
; STRESS-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
;
; Same for REGULAR, we eliminate register bank copy with each slices.
; REGULAR-LABEL: t1:
; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]]
; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
; Add low slice: out[out_start].real, this is base + 0.
; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
; Add high slice: out[out_start].imm, this is base + 4.
; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
; Swap Imm and Real.
; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
; Put the results back into out[out_start].
; REGULAR-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
define void @t1(%class.Complex* nocapture %out, i64 %out_start) {
entry:
  %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start
  %tmp = bitcast %class.Complex* %arrayidx to i64*
  %tmp1 = load i64, i64* %tmp, align 8
  %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32
  %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float
  %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32
  %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32
  %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float
  %add = add i64 %out_start, 8
  %arrayidx2 = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %add
  %i.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 0
  %tmp4 = load float, float* %i.i, align 4
  %add.i = fadd float %tmp4, %tmp2
  %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0
  %r.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 1
  %tmp5 = load float, float* %r.i, align 4
  %add5.i = fadd float %tmp5, %tmp3
  %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1
  %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>*
  store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4
  ret void
}

; Function Attrs: nounwind
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i1) #1

; Function Attrs: nounwind
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)

; Function Attrs: nounwind
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)

; Check that we do not read outside of the chunk of bits of the original loads.
;
; The 64-bits should have been split in one 32-bits and one 16-bits slices.
; The 16-bits should be zero extended to match the final type.
;
; The memory layout is:
; LSB 0 1 2 3 | 4 5 | 6 7 MSB
;      Low            High
; The base address points to 0 and is 8-bytes aligned.
; Low slice starts at 0 (base) and is 8-bytes aligned.
; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned.
;
; STRESS-LABEL: t2:
; STRESS: movzwl 6([[BASE:[^)]+]]), %eax
; STRESS-NEXT: addl ([[BASE]]), %eax
; STRESS-NEXT: ret
;
; For the REGULAR heuristic, this is not profitable to slice things that are not
; next to each other in memory. Here we have a hole with bytes #4-5.
; REGULAR-LABEL: t2:
; REGULAR: shrq $48
define i32 @t2(%class.Complex* nocapture %out, i64 %out_start) {
  %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start
  %bitcast = bitcast %class.Complex* %arrayidx to i64*
  %chunk64 = load i64, i64* %bitcast, align 8
  %slice32_low = trunc i64 %chunk64 to i32
  %shift48 = lshr i64 %chunk64, 48
  %slice32_high = trunc i64 %shift48 to i32
  %res = add i32 %slice32_high, %slice32_low
  ret i32 %res
}

; Check that we do not optimize overlapping slices.
;
; The 64-bits should NOT have been split in as slices are overlapping.
; First slice uses bytes numbered 0 to 3.
; Second slice uses bytes numbered 6 and 7.
; Third slice uses bytes numbered 4 to 7.
;
; STRESS-LABEL: t3:
; STRESS: shrq $48
; STRESS: shrq $32
;
; REGULAR-LABEL: t3:
; REGULAR: shrq $48
; REGULAR: shrq $32
define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) {
  %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start
  %bitcast = bitcast %class.Complex* %arrayidx to i64*
  %chunk64 = load i64, i64* %bitcast, align 8
  %slice32_low = trunc i64 %chunk64 to i32
  %shift48 = lshr i64 %chunk64, 48
  %slice32_high = trunc i64 %shift48 to i32
  %shift32 = lshr i64 %chunk64, 32
  %slice32_lowhigh = trunc i64 %shift32 to i32
  %tmpres = add i32 %slice32_high, %slice32_low
  %res = add i32 %slice32_lowhigh, %tmpres
  ret i32 %res
}