reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
; We specify -mcpu explicitly to avoid instruction reordering that happens on
; some setups (e.g., Atom) from affecting the output.
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX

; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer
; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer
; arguments are caller-cleanup like normal arguments.

define void @sret1(i8* sret %x) nounwind {
entry:
; WIN32-LABEL:      _sret1:
; WIN32:      movb $42, ({{%e[abcd]x}})
; WIN32-NOT:  popl %eax
; WIN32:    {{retl$}}

; MINGW_X86-LABEL:  _sret1:
; MINGW_X86:  {{retl$}}

; CYGWIN-LABEL:     _sret1:
; CYGWIN:     retl $4

; LINUX-LABEL:      sret1:
; LINUX:      retl $4

  store i8 42, i8* %x, align 4
  ret void
}

define void @sret2(i8* sret %x, i8 %y) nounwind {
entry:
; WIN32-LABEL:      _sret2:
; WIN32:      movb {{.*}}, ({{%e[abcd]x}})
; WIN32-NOT:  popl %eax
; WIN32:    {{retl$}}

; MINGW_X86-LABEL:  _sret2:
; MINGW_X86:  {{retl$}}

; CYGWIN-LABEL:     _sret2:
; CYGWIN:     retl $4

; LINUX-LABEL:      sret2:
; LINUX:      retl $4

  store i8 %y, i8* %x
  ret void
}

define void @sret3(i8* sret %x, i8* %y) nounwind {
entry:
; WIN32-LABEL:      _sret3:
; WIN32:      movb $42, ([[REG1:%e[abcd]x]])
; WIN32-NOT:  movb $13, ([[REG1]])
; WIN32-NOT:  popl %eax
; WIN32:    {{retl$}}

; MINGW_X86-LABEL:  _sret3:
; MINGW_X86:  {{retl$}}

; CYGWIN-LABEL:     _sret3:
; CYGWIN:     retl $4

; LINUX-LABEL:      sret3:
; LINUX:      retl $4

  store i8 42, i8* %x
  store i8 13, i8* %y
  ret void
}

; PR15556
%struct.S4 = type { i32, i32, i32 }

define void @sret4(%struct.S4* noalias sret %agg.result) {
entry:
; WIN32-LABEL:     _sret4:
; WIN32:     movl $42, ({{%e[abcd]x}})
; WIN32-NOT: popl %eax
; WIN32:   {{retl$}}

; MINGW_X86-LABEL: _sret4:
; MINGW_X86: {{retl$}}

; CYGWIN-LABEL:    _sret4:
; CYGWIN:    retl $4

; LINUX-LABEL:     sret4:
; LINUX:     retl $4

  %x = getelementptr inbounds %struct.S4, %struct.S4* %agg.result, i32 0, i32 0
  store i32 42, i32* %x, align 4
  ret void
}

%struct.S5 = type { i32 }
%class.C5 = type { i8 }

define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) {
entry:
  %this.addr = alloca %class.C5*, align 4
  store %class.C5* %this, %class.C5** %this.addr, align 4
  %this1 = load %class.C5*, %class.C5** %this.addr
  %x = getelementptr inbounds %struct.S5, %struct.S5* %agg.result, i32 0, i32 0
  store i32 42, i32* %x, align 4
  ret void
; WIN32-LABEL:     {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; CYGWIN-LABEL:    {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; LINUX-LABEL:     {{^}}"?foo@C5@@QAE?AUS5@@XZ":

; The address of the return structure is passed as an implicit parameter.
; In the -O0 build, %eax is spilled at the beginning of the function, hence we
; should match both 4(%esp) and 8(%esp).
; WIN32:     {{[48]}}(%esp), [[REG:%e[abcd]x]]
; WIN32:     movl $42, ([[REG]])
; WIN32:     retl $4
}

define void @call_foo5() {
entry:
  %c = alloca %class.C5, align 1
  %s = alloca %struct.S5, align 4
  call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c)
; WIN32-LABEL:      {{^}}_call_foo5:
; MINGW_X86-LABEL:  {{^}}_call_foo5:
; CYGWIN-LABEL:     {{^}}_call_foo5:
; LINUX-LABEL:      {{^}}call_foo5:


; Load the address of the result and put it onto stack
; The this pointer goes to ECX.
; (through %ecx in the -O0 build).
; WIN32-DAG:  leal {{[0-9]*}}(%esp), %e{{[a-d]}}x
; WIN32-DAG:  {{leal [1-9]+\(%esp\)|movl %esp}}, %ecx
; WIN32-DAG:  {{pushl %e[a-d]x|movl %e[a-d]x, \(%esp\)}}
; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ"
; WIN32:      retl
  ret void
}


%struct.test6 = type { i32, i32, i32 }
define void @test6_f(%struct.test6* %x) nounwind {
; WIN32-LABEL: _test6_f:
; MINGW_X86-LABEL: _test6_f:
; CYGWIN-LABEL: _test6_f:
; LINUX-LABEL: test6_f:

; The %x argument is moved to %ecx. It will be the this pointer.
; WIN32-DAG: movl    {{16|20}}(%esp), %ecx


; The sret pointer is (%esp)
; WIN32-DAG:      {{leal 4\(%esp\)|movl %esp}}, %eax
; WIN32-DAG:      {{pushl   %eax|movl %eax, \(%esp\)}}

; The sret pointer is %ecx
; The %x argument is moved to (%esp). It will be the this pointer.
; MINGW_X86-DAG:  {{leal 4\(%esp\)|movl %esp}}, %ecx
; MINGW_X86-DAG: {{pushl   16\(%esp\)|movl %eax, \(%esp\)}}
; MINGW_X86-NEXT: calll   _test6_g

; CYGWIN-DAG:  {{leal 4\(%esp\)|movl %esp}}, %ecx
; CYGWIN-DAG:  {{pushl   16\(%esp\)|movl %eax, \(%esp\)}}
; CYGWIN-NEXT: calll   _test6_g

  %tmp = alloca %struct.test6, align 4
  call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x)
  ret void
}
declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*)

; Flipping the parameters at the IR level generates the same code.
%struct.test7 = type { i32, i32, i32 }
define void @test7_f(%struct.test7* %x) nounwind {
; WIN32-LABEL: _test7_f:
; MINGW_X86-LABEL: _test7_f:
; CYGWIN-LABEL: _test7_f:
; LINUX-LABEL: test7_f:

; The %x argument is moved to %ecx on all OSs. It will be the this pointer.
; WIN32:      movl    {{16|20}}(%esp), %ecx
; MINGW_X86:  movl    {{16|20}}(%esp), %ecx
; CYGWIN:     movl    {{16|20}}(%esp), %ecx

; The sret pointer is (%esp)
; WIN32:      {{leal 4\(%esp\)|movl %esp}}, %eax
; WIN32-NEXT:     {{pushl   %eax|movl %eax, \(%esp\)}}
; MINGW_X86:      {{leal 4\(%esp\)|movl %esp}}, %eax
; MINGW_X86-NEXT: {{pushl   %eax|movl %eax, \(%esp\)}}
; CYGWIN:      {{leal 4\(%esp\)|movl %esp}}, %eax
; CYGWIN-NEXT: {{pushl   %eax|movl %eax, \(%esp\)}}

  %tmp = alloca %struct.test7, align 4
  call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp)
  ret void
}

define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) {
  %s = getelementptr %struct.test7, %struct.test7* %in, i32 0, i32 0
  %d = getelementptr %struct.test7, %struct.test7* %out, i32 0, i32 0
  %v = load i32, i32* %s
  store i32 %v, i32* %d
  call void @clobber_eax()
  ret void

; Make sure we return the second parameter in %eax.
; WIN32-LABEL: _test7_g:
; WIN32: calll _clobber_eax
; WIN32: movl {{.*}}, %eax
; WIN32: retl
}

declare void @clobber_eax()

; Test what happens if the first parameter has to be split by codegen.
; Realistically, no frontend will generate code like this, but here it is for
; completeness.
define void @test8_f(i64 inreg %a, i64* sret %out) {
  store i64 %a, i64* %out
  call void @clobber_eax()
  ret void

; WIN32-LABEL: _test8_f:
; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]]
; WIN32-DAG: movl {{%e[abcd]x}}, 4(%[[out]])
; WIN32-DAG: movl {{%e[abcd]x}}, (%[[out]])
; WIN32: calll _clobber_eax
; WIN32: movl {{.*}}, %eax
; WIN32: retl
}