reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
; REQUIRES: x86-registered-target

; Test devirtualization through the thin link and backend, ensuring that
; it is only applied when the type test corresponding to a devirtualization
; dominates an indirect call using the same vtable pointer. Indirect
; call promotion and inlining may introduce a guarded indirect call
; that can be promoted, which uses the same vtable address as the fallback
; indirect call that cannot be devirtualized.

; The code below illustrates the structure when we started with code like:
;
; class A {
;  public:
;   virtual int foo() { return 1; }
;   virtual int bar() { return 1; }
; };
; class B : public A {
;  public:
;   virtual int foo();
;   virtual int bar();
; };
;
; int foo(A *a) {
;   return a->foo(); // ICP profile says most calls are to B::foo()
; }
;
; int B::foo() {
;   return bar();
; }
;
; After the compile step, which will perform ICP and a round of inlining, we
; have something like:
; int foo(A *a) {
;   if (&a->foo() == B::foo())
;     return ((B*)a)->bar(); // Inlined from promoted direct call to B::foo()
;   else
;     return a->foo();
;
; The inlined code seqence will have a type test against "_ZTS1B",
; which will allow us to devirtualize indirect call ((B*)a)->bar() to B::bar();
; Both that type test and the one for the fallback a->foo() indirect call
; will use the same vtable pointer. Without a dominance check, we could
; incorrectly devirtualize a->foo() to B::foo();

; RUN: opt -thinlto-bc -thinlto-split-lto-unit -o %t.o %s

; Legacy PM
; RUN: llvm-lto2 run %t.o -save-temps -pass-remarks=. \
; RUN:   -o %t3 \
; RUN:   -r=%t.o,_Z3bazP1A,px \
; RUN:   -r=%t.o,_ZN1A3fooEv, \
; RUN:   -r=%t.o,_ZN1A3barEv, \
; RUN:   -r=%t.o,_ZN1B3fooEv, \
; RUN:   -r=%t.o,_ZN1B3barEv, \
; RUN:   -r=%t.o,_ZTV1A, \
; RUN:   -r=%t.o,_ZTV1B, \
; RUN:   -r=%t.o,_ZN1A3fooEv, \
; RUN:   -r=%t.o,_ZN1A3barEv, \
; RUN:   -r=%t.o,_ZN1B3fooEv, \
; RUN:   -r=%t.o,_ZN1B3barEv, \
; RUN:   -r=%t.o,_ZTV1A,px \
; RUN:   -r=%t.o,_ZTV1B,px 2>&1 | FileCheck %s --check-prefix=REMARK
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR

; New PM
; RUN: llvm-lto2 run %t.o -save-temps -use-new-pm -pass-remarks=. \
; RUN:   -o %t3 \
; RUN:   -r=%t.o,_Z3bazP1A,px \
; RUN:   -r=%t.o,_ZN1A3fooEv, \
; RUN:   -r=%t.o,_ZN1A3barEv, \
; RUN:   -r=%t.o,_ZN1B3fooEv, \
; RUN:   -r=%t.o,_ZN1B3barEv, \
; RUN:   -r=%t.o,_ZTV1A, \
; RUN:   -r=%t.o,_ZTV1B, \
; RUN:   -r=%t.o,_ZN1A3fooEv, \
; RUN:   -r=%t.o,_ZN1A3barEv, \
; RUN:   -r=%t.o,_ZN1B3fooEv, \
; RUN:   -r=%t.o,_ZN1B3barEv, \
; RUN:   -r=%t.o,_ZTV1A,px \
; RUN:   -r=%t.o,_ZTV1B,px 2>&1 | FileCheck %s --check-prefix=REMARK
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR

; We should only devirtualize the inlined call to bar().
; REMARK-NOT: single-impl: devirtualized a call to _ZN1B3fooEv
; REMARK: single-impl: devirtualized a call to _ZN1B3barEv
; REMARK-NOT: single-impl: devirtualized a call to _ZN1B3fooEv

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"

%class.A = type { i32 (...)** }
%class.B = type { %class.A }

@_ZTV1A = linkonce_odr hidden unnamed_addr constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%class.A*)* @_ZN1A3fooEv to i8*), i8* bitcast (i32 (%class.A*)* @_ZN1A3barEv to i8*)] }, align 8, !type !0
@_ZTV1B = hidden unnamed_addr constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%class.B*)* @_ZN1B3fooEv to i8*), i8* bitcast (i32 (%class.B*)* @_ZN1B3barEv to i8*)] }, align 8, !type !0, !type !1

define hidden i32 @_Z3bazP1A(%class.A* %a) local_unnamed_addr {
entry:
  %0 = bitcast %class.A* %a to i32 (%class.A*)***
  %vtable = load i32 (%class.A*)**, i32 (%class.A*)*** %0, align 8
  %1 = bitcast i32 (%class.A*)** %vtable to i8*
  %2 = tail call i1 @llvm.type.test(i8* %1, metadata !"_ZTS1A")
  tail call void @llvm.assume(i1 %2)
  %3 = load i32 (%class.A*)*, i32 (%class.A*)** %vtable, align 8
  ; This is the compare instruction inserted by ICP
  %4 = icmp eq i32 (%class.A*)* %3, bitcast (i32 (%class.B*)* @_ZN1B3fooEv to i32 (%class.A*)*)
  br i1 %4, label %if.true.direct_targ, label %if.false.orig_indirect

; This block contains the promoted and inlined call to B::foo();
; CHECK-IR: if.true.direct_targ:                              ; preds = %entry
if.true.direct_targ:                              ; preds = %entry
  %5 = bitcast %class.A* %a to %class.B*
  %6 = bitcast i32 (%class.A*)** %vtable to i8*
  %7 = tail call i1 @llvm.type.test(i8* %6, metadata !"_ZTS1B")
  tail call void @llvm.assume(i1 %7)
  %vfn.i1 = getelementptr inbounds i32 (%class.A*)*, i32 (%class.A*)** %vtable, i64 1
  %vfn.i = bitcast i32 (%class.A*)** %vfn.i1 to i32 (%class.B*)**
  %8 = load i32 (%class.B*)*, i32 (%class.B*)** %vfn.i, align 8
; Call to bar() can be devirtualized to call to B::bar(), since it was
; inlined from B::foo() after ICP introduced the guarded promotion.
; CHECK-IR: %call.i = tail call i32 @_ZN1B3barEv(%class.B* %3)
  %call.i = tail call i32 %8(%class.B* %5)
  br label %if.end.icp

; This block contains the fallback indirect call a->foo()
; CHECK-IR: if.false.orig_indirect:
if.false.orig_indirect:                           ; preds = %entry
; Fallback indirect call to foo() cannot be devirtualized.
; CHECK-IR: %call = tail call i32 %
  %call = tail call i32 %3(%class.A* nonnull %a)
  br label %if.end.icp

if.end.icp:                                       ; preds = %if.false.orig_indirect, %if.true.direct_targ
  %9 = phi i32 [ %call, %if.false.orig_indirect ], [ %call.i, %if.true.direct_targ ]
  ret i32 %9
}

declare i1 @llvm.type.test(i8*, metadata)

declare void @llvm.assume(i1)

declare dso_local i32 @_ZN1B3fooEv(%class.B* %this) unnamed_addr
declare dso_local i32 @_ZN1B3barEv(%class.B*) unnamed_addr
declare dso_local i32 @_ZN1A3barEv(%class.A* %this) unnamed_addr
declare dso_local i32 @_ZN1A3fooEv(%class.A* %this) unnamed_addr

!0 = !{i64 16, !"_ZTS1A"}
!1 = !{i64 16, !"_ZTS1B"}