reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
; RUN: opt < %s -inline -inline-threshold=20 -S | FileCheck %s
; RUN: opt < %s -passes='cgscc(inline)' -inline-threshold=20 -S | FileCheck %s

define internal i32 @callee1(i32 %A, i32 %B) {
  %C = sdiv i32 %A, %B
  ret i32 %C
}

define i32 @caller1() {
; CHECK-LABEL: define i32 @caller1(
; CHECK-NEXT: ret i32 3

  %X = call i32 @callee1( i32 10, i32 3 )
  ret i32 %X
}

define i32 @caller2() {
; Check that we can constant-prop through instructions after inlining callee21
; to get constants in the inlined callsite to callee22.
; FIXME: Currently, the threshold is fixed at 20 because we don't perform
; *recursive* cost analysis to realize that the nested call site will definitely
; inline and be cheap. We should eventually do that and lower the threshold here
; to 1.
;
; CHECK-LABEL: @caller2(
; CHECK-NOT: call void @callee2
; CHECK: ret

  %x = call i32 @callee21(i32 42, i32 48)
  ret i32 %x
}

define i32 @callee21(i32 %x, i32 %y) {
  %sub = sub i32 %y, %x
  %result = call i32 @callee22(i32 %sub)
  ret i32 %result
}

declare i8* @getptr()

define i32 @callee22(i32 %x) {
  %icmp = icmp ugt i32 %x, 42
  br i1 %icmp, label %bb.true, label %bb.false
bb.true:
  ; This block musn't be counted in the inline cost.
  %x1 = add i32 %x, 1
  %x2 = add i32 %x1, 1
  %x3 = add i32 %x2, 1
  %x4 = add i32 %x3, 1
  %x5 = add i32 %x4, 1
  %x6 = add i32 %x5, 1
  %x7 = add i32 %x6, 1
  %x8 = add i32 %x7, 1

  ret i32 %x8
bb.false:
  ret i32 %x
}

define i32 @caller3() {
; Check that even if the expensive path is hidden behind several basic blocks,
; it doesn't count toward the inline cost when constant-prop proves those paths
; dead.
;
; CHECK-LABEL: @caller3(
; CHECK-NOT: call
; CHECK: ret i32 6

entry:
  %x = call i32 @callee3(i32 42, i32 48)
  ret i32 %x
}

define i32 @callee3(i32 %x, i32 %y) {
  %sub = sub i32 %y, %x
  %icmp = icmp ugt i32 %sub, 42
  br i1 %icmp, label %bb.true, label %bb.false

bb.true:
  %icmp2 = icmp ult i32 %sub, 64
  br i1 %icmp2, label %bb.true.true, label %bb.true.false

bb.true.true:
  ; This block musn't be counted in the inline cost.
  %x1 = add i32 %x, 1
  %x2 = add i32 %x1, 1
  %x3 = add i32 %x2, 1
  %x4 = add i32 %x3, 1
  %x5 = add i32 %x4, 1
  %x6 = add i32 %x5, 1
  %x7 = add i32 %x6, 1
  %x8 = add i32 %x7, 1
  br label %bb.merge

bb.true.false:
  ; This block musn't be counted in the inline cost.
  %y1 = add i32 %y, 1
  %y2 = add i32 %y1, 1
  %y3 = add i32 %y2, 1
  %y4 = add i32 %y3, 1
  %y5 = add i32 %y4, 1
  %y6 = add i32 %y5, 1
  %y7 = add i32 %y6, 1
  %y8 = add i32 %y7, 1
  br label %bb.merge

bb.merge:
  %result = phi i32 [ %x8, %bb.true.true ], [ %y8, %bb.true.false ]
  ret i32 %result

bb.false:
  ret i32 %sub
}

declare {i8, i1} @llvm.uadd.with.overflow.i8(i8 %a, i8 %b)

define i8 @caller4(i8 %z) {
; Check that we can constant fold through intrinsics such as the
; overflow-detecting arithmetic instrinsics. These are particularly important
; as they are used heavily in standard library code and generic C++ code where
; the arguments are oftent constant but complete generality is required.
;
; CHECK-LABEL: @caller4(
; CHECK-NOT: call
; CHECK: ret i8 -1

entry:
  %x = call i8 @callee4(i8 254, i8 14, i8 %z)
  ret i8 %x
}

define i8 @callee4(i8 %x, i8 %y, i8 %z) {
  %uadd = call {i8, i1} @llvm.uadd.with.overflow.i8(i8 %x, i8 %y)
  %o = extractvalue {i8, i1} %uadd, 1
  br i1 %o, label %bb.true, label %bb.false

bb.true:
  ret i8 -1

bb.false:
  ; This block musn't be counted in the inline cost.
  %z1 = add i8 %z, 1
  %z2 = add i8 %z1, 1
  %z3 = add i8 %z2, 1
  %z4 = add i8 %z3, 1
  %z5 = add i8 %z4, 1
  %z6 = add i8 %z5, 1
  %z7 = add i8 %z6, 1
  %z8 = add i8 %z7, 1
  ret i8 %z8
}

define i64 @caller5(i64 %y) {
; Check that we can round trip constants through various kinds of casts etc w/o
; losing track of the constant prop in the inline cost analysis.
;
; CHECK-LABEL: @caller5(
; CHECK-NOT: call
; CHECK: ret i64 -1

entry:
  %x = call i64 @callee5(i64 42, i64 %y)
  ret i64 %x
}

define i64 @callee5(i64 %x, i64 %y) {
  %inttoptr = inttoptr i64 %x to i8*
  %bitcast = bitcast i8* %inttoptr to i32*
  %ptrtoint = ptrtoint i32* %bitcast to i64
  %trunc = trunc i64 %ptrtoint to i32
  %zext = zext i32 %trunc to i64
  %cmp = icmp eq i64 %zext, 42
  br i1 %cmp, label %bb.true, label %bb.false

bb.true:
  ret i64 -1

bb.false:
  ; This block musn't be counted in the inline cost.
  %y1 = add i64 %y, 1
  %y2 = add i64 %y1, 1
  %y3 = add i64 %y2, 1
  %y4 = add i64 %y3, 1
  %y5 = add i64 %y4, 1
  %y6 = add i64 %y5, 1
  %y7 = add i64 %y6, 1
  %y8 = add i64 %y7, 1
  ret i64 %y8
}

define float @caller6() {
; Check that we can constant-prop through fcmp instructions
;
; CHECK-LABEL: @caller6(
; CHECK-NOT: call
; CHECK: ret
  %x = call float @callee6(float 42.0)
  ret float %x
}

define float @callee6(float %x) {
  %icmp = fcmp ugt float %x, 42.0
  br i1 %icmp, label %bb.true, label %bb.false

bb.true:
  ; This block musn't be counted in the inline cost.
  %x1 = fadd float %x, 1.0
  %x2 = fadd float %x1, 1.0
  %x3 = fadd float %x2, 1.0
  %x4 = fadd float %x3, 1.0
  %x5 = fadd float %x4, 1.0
  %x6 = fadd float %x5, 1.0
  %x7 = fadd float %x6, 1.0
  %x8 = fadd float %x7, 1.0
  ret float %x8

bb.false:
  ret float %x
}



define i32 @PR13412.main() {
; This is a somewhat complicated three layer subprogram that was reported to
; compute the wrong value for a branch due to assuming that an argument
; mid-inline couldn't be equal to another pointer.
;
; After inlining, the branch should point directly to the exit block, not to
; the intermediate block.
; CHECK: @PR13412.main
; CHECK: br i1 true, label %[[TRUE_DEST:.*]], label %[[FALSE_DEST:.*]]
; CHECK: [[FALSE_DEST]]:
; CHECK-NEXT: call void @PR13412.fail()
; CHECK: [[TRUE_DEST]]:
; CHECK-NEXT: ret i32 0

entry:
  %i1 = alloca i64
  store i64 0, i64* %i1
  %arraydecay = bitcast i64* %i1 to i32*
  %call = call i1 @PR13412.first(i32* %arraydecay, i32* %arraydecay)
  br i1 %call, label %cond.end, label %cond.false

cond.false:
  call void @PR13412.fail()
  br label %cond.end

cond.end:
  ret i32 0
}

define internal i1 @PR13412.first(i32* %a, i32* %b) {
entry:
  %call = call i32* @PR13412.second(i32* %a, i32* %b)
  %cmp = icmp eq i32* %call, %b
  ret i1 %cmp
}

declare void @PR13412.fail()

define internal i32* @PR13412.second(i32* %a, i32* %b) {
entry:
  %sub.ptr.lhs.cast = ptrtoint i32* %b to i64
  %sub.ptr.rhs.cast = ptrtoint i32* %a to i64
  %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, %sub.ptr.rhs.cast
  %sub.ptr.div = ashr exact i64 %sub.ptr.sub, 2
  %cmp = icmp ugt i64 %sub.ptr.div, 1
  br i1 %cmp, label %if.then, label %if.end3

if.then:
  %0 = load i32, i32* %a
  %1 = load i32, i32* %b
  %cmp1 = icmp eq i32 %0, %1
  br i1 %cmp1, label %return, label %if.end3

if.end3:
  br label %return

return:
  %retval.0 = phi i32* [ %b, %if.end3 ], [ %a, %if.then ]
  ret i32* %retval.0
}

declare i32 @PR28802.external(i32 returned %p1)

define internal i32 @PR28802.callee() {
entry:
  br label %cont

cont:
  %0 = phi i32 [ 0, %entry ]
  %call = call i32 @PR28802.external(i32 %0)
  ret i32 %call
}

define i32 @PR28802() {
entry:
  %call = call i32 @PR28802.callee()
  ret i32 %call
}

; CHECK-LABEL: define i32 @PR28802(
; CHECK: %[[call:.*]] = call i32 @PR28802.external(i32 0)
; CHECK: ret i32 %[[call]]

define internal i32 @PR28848.callee(i32 %p2, i1 %c) {
entry:
  br i1 %c, label %cond.end, label %cond.true

cond.true:
  br label %cond.end

cond.end:
  %cond = phi i32 [ 0, %cond.true ], [ %p2, %entry ]
  %or = or i32 %cond, %p2
  ret i32 %or
}

define i32 @PR28848() {
entry:
  %call = call i32 @PR28848.callee(i32 0, i1 false)
  ret i32 %call
}
; CHECK-LABEL: define i32 @PR28848(
; CHECK: ret i32 0

define internal void @callee7(i16 %param1, i16 %param2) {
entry:
  br label %bb

bb:
  %phi = phi i16 [ %param2, %entry ]
  %add = add i16 %phi, %param1
  ret void
}

declare i16 @caller7.external(i16 returned)

define void @caller7() {
bb1:
  %call = call i16 @caller7.external(i16 1)
  call void @callee7(i16 0, i16 %call)
  ret void
}
; CHECK-LABEL: define void @caller7(
; CHECK: %call = call i16 @caller7.external(i16 1)
; CHECK-NEXT: ret void

define float @caller8(float %y) {
; Check that we can constant-prop through fneg instructions
;
; CHECK-LABEL: @caller8(
; CHECK-NOT: call
; CHECK: ret
  %x = call float @callee8(float -42.0, float %y)
  ret float %x
}

define float @callee8(float %x, float %y) {
  %neg = fneg float %x
  %icmp = fcmp ugt float %neg, 42.0
  br i1 %icmp, label %bb.true, label %bb.false

bb.true:
  ; This block musn't be counted in the inline cost.
  %y1 = fadd float %y, 1.0
  %y2 = fadd float %y1, 1.0
  %y3 = fadd float %y2, 1.0
  %y4 = fadd float %y3, 1.0
  %y5 = fadd float %y4, 1.0
  %y6 = fadd float %y5, 1.0
  %y7 = fadd float %y6, 1.0
  %y8 = fadd float %y7, 1.0
  ret float %y8

bb.false:
  ret float %x
}