reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -S 2>&1 | FileCheck %s
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -mattr=+avx512f -S 2>&1 | FileCheck %s --check-prefix=AVX512F
; REQUIRES: asserts

@a = global [1024 x i8] zeroinitializer, align 16
@b = global [1024 x i8] zeroinitializer, align 16

define i32 @foo() {
; This function has a loop of SAD pattern. Here we check when VF = 16 the
; register usage doesn't exceed 16.
;
; CHECK-LABEL: foo
; CHECK:      LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
; CHECK:      LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item

entry:
  br label %for.body

for.cond.cleanup:
  %add.lcssa = phi i32 [ %add, %for.body ]
  ret i32 %add.lcssa

for.body:
  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  %s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
  %arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %indvars.iv
  %0 = load i8, i8* %arrayidx, align 1
  %conv = zext i8 %0 to i32
  %arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %indvars.iv
  %1 = load i8, i8* %arrayidx2, align 1
  %conv3 = zext i8 %1 to i32
  %sub = sub nsw i32 %conv, %conv3
  %ispos = icmp sgt i32 %sub, -1
  %neg = sub nsw i32 0, %sub
  %2 = select i1 %ispos, i32 %sub, i32 %neg
  %add = add nsw i32 %2, %s.015
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, 1024
  br i1 %exitcond, label %for.cond.cleanup, label %for.body
}

define i32 @goo() {
; For indvars.iv used in a computating chain only feeding into getelementptr or cmp,
; it will not have vector version and the vector register usage will not exceed the
; available vector register number.
; CHECK-LABEL: goo
; CHECK:      LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
; CHECK:      LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
entry:
  br label %for.body

for.cond.cleanup:                                 ; preds = %for.body
  %add.lcssa = phi i32 [ %add, %for.body ]
  ret i32 %add.lcssa

for.body:                                         ; preds = %for.body, %entry
  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  %s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
  %tmp1 = add nsw i64 %indvars.iv, 3
  %arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %tmp1
  %tmp = load i8, i8* %arrayidx, align 1
  %conv = zext i8 %tmp to i32
  %tmp2 = add nsw i64 %indvars.iv, 2
  %arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %tmp2
  %tmp3 = load i8, i8* %arrayidx2, align 1
  %conv3 = zext i8 %tmp3 to i32
  %sub = sub nsw i32 %conv, %conv3
  %ispos = icmp sgt i32 %sub, -1
  %neg = sub nsw i32 0, %sub
  %tmp4 = select i1 %ispos, i32 %sub, i32 %neg
  %add = add nsw i32 %tmp4, %s.015
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, 1024
  br i1 %exitcond, label %for.cond.cleanup, label %for.body
}

define i64 @bar(i64* nocapture %a) {
; CHECK-LABEL: bar
; CHECK:       LV(REG): VF = 2
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 1 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item

entry:
  br label %for.body

for.cond.cleanup:
  %add2.lcssa = phi i64 [ %add2, %for.body ]
  ret i64 %add2.lcssa

for.body:
  %i.012 = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %s.011 = phi i64 [ 0, %entry ], [ %add2, %for.body ]
  %arrayidx = getelementptr inbounds i64, i64* %a, i64 %i.012
  %0 = load i64, i64* %arrayidx, align 8
  %add = add nsw i64 %0, %i.012
  store i64 %add, i64* %arrayidx, align 8
  %add2 = add nsw i64 %add, %s.011
  %inc = add nuw nsw i64 %i.012, 1
  %exitcond = icmp eq i64 %inc, 1024
  br i1 %exitcond, label %for.cond.cleanup, label %for.body
}

@d = external global [0 x i64], align 8
@e = external global [0 x i32], align 4
@c = external global [0 x i32], align 4

define void @hoo(i32 %n) {
; For c[i] = e[d[i]] in the loop, e[d[i]] is not consecutive but its index %tmp can
; be gathered into a vector. For VF == 16, the vector version of %tmp will be <16 x i64>
; so the max usage of AVX512 vector register will be 2.
; AVX512F-LABEL: bar
; AVX512F:       LV(REG): VF = 16
; AVX512F-CHECK: LV(REG): Found max usage: 2 item
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::VectorRC, 2 registers
; AVX512F-CHECK: LV(REG): Found invariant usage: 0 item

entry:
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  %arrayidx = getelementptr inbounds [0 x i64], [0 x i64]* @d, i64 0, i64 %indvars.iv
  %tmp = load i64, i64* %arrayidx, align 8
  %arrayidx1 = getelementptr inbounds [0 x i32], [0 x i32]* @e, i64 0, i64 %tmp
  %tmp1 = load i32, i32* %arrayidx1, align 4
  %arrayidx3 = getelementptr inbounds [0 x i32], [0 x i32]* @c, i64 0, i64 %indvars.iv
  store i32 %tmp1, i32* %arrayidx3, align 4
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, 10000
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}