reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
; RUN: opt -S -loop-vectorize -force-vector-width=8 -force-vector-interleave=1 < %s | FileCheck %s -check-prefix=VF8
; RUN: opt -S -loop-vectorize -force-vector-width=1 -force-vector-interleave=4 < %s | FileCheck %s -check-prefix=VF1

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

; Given a loop with an induction variable which is being
; truncated/extended using casts that had been proven to
; be redundant under a runtime test, we want to make sure
; that these casts, do not get vectorized/scalarized/widened. 
; This is the case for inductions whose SCEV expression is
; of the form "ExtTrunc(%phi) + %step", where "ExtTrunc"
; can be a result of the IR sequences we check below.
; 
; See also pr30654.
;

; Case1: Check the following induction pattern:
;
;  %p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
;  %sext = shl i32 %p.09, 24
;  %conv = ashr exact i32 %sext, 24
;  %add = add nsw i32 %conv, %step
; 
; This is the case in the following code:
;
; void doit1(int n, int step) {
;   int i;
;   char p = 0;
;   for (i = 0; i < n; i++) {
;      a[i] = p;
;      p = p + step;
;   }
; }
;
; The "ExtTrunc" IR sequence here is:
;  "%sext = shl i32 %p.09, 24"
;  "%conv = ashr exact i32 %sext, 24"
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.

; VF8-LABEL: @doit1
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:            

; VF1-LABEL: @doit1
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i32
; VF1: middle.block:            

@a = common local_unnamed_addr global [250 x i32] zeroinitializer, align 16

define void @doit1(i32 %n, i32 %step) {
entry:
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.lr.ph, label %for.end

for.body.lr.ph:
  %wide.trip.count = zext i32 %n to i64
  br label %for.body

for.body:
  %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
  %p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
  %sext = shl i32 %p.09, 24
  %conv = ashr exact i32 %sext, 24
  %arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
  store i32 %conv, i32* %arrayidx, align 4
  %add = add nsw i32 %conv, %step
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
  br i1 %exitcond, label %for.end.loopexit, label %for.body

for.end.loopexit:
  br label %for.end

for.end:
  ret void
}


; Case2: Another variant of the above pattern is where the induction variable
; is used only for address compuation (i.e. it is a GEP index) and therefore
; the induction is not vectorized but rather only the step is widened. 
;
; This is the case in the following code, where the induction variable 'w_ix' 
; is only used to access the array 'in':
;
; void doit2(int *in, int *out, size_t size, size_t step)
; {
;    int w_ix = 0;
;    for (size_t offset = 0; offset < size; ++offset)
;     {
;        int w = in[w_ix];
;        out[offset] = w;
;        w_ix += step;
;     }
; }
;
; The "ExtTrunc" IR sequence here is similar to the previous case:
;  "%sext = shl i64 %w_ix.012, 32
;  %idxprom = ashr exact i64 %sext, 32"
; We check that it does not appear in the vector loop body, whether
; we widen or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.

; VF8-LABEL: @doit2
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i64> 
; VF8: %{{.*}} = extractelement <8 x i64> %vec.ind
; VF8: middle.block:

; VF1-LABEL: @doit2
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i64
; VF1: middle.block:
;

define void @doit2(i32* nocapture readonly %in, i32* nocapture %out, i64 %size, i64 %step)  {
entry:
  %cmp9 = icmp eq i64 %size, 0
  br i1 %cmp9, label %for.cond.cleanup, label %for.body.lr.ph

for.body.lr.ph:
  br label %for.body

for.cond.cleanup.loopexit:
  br label %for.cond.cleanup

for.cond.cleanup:
  ret void

for.body:
  %w_ix.011 = phi i64 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
  %offset.010 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
  %sext = shl i64 %w_ix.011, 32
  %idxprom = ashr exact i64 %sext, 32
  %arrayidx = getelementptr inbounds i32, i32* %in, i64 %idxprom
  %0 = load i32, i32* %arrayidx, align 4
  %arrayidx1 = getelementptr inbounds i32, i32* %out, i64 %offset.010
  store i32 %0, i32* %arrayidx1, align 4
  %add = add i64 %idxprom, %step
  %inc = add nuw i64 %offset.010, 1
  %exitcond = icmp eq i64 %inc, %size
  br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}

; Case3: Lastly, check also the following induction pattern:
; 
;  %p.09 = phi i32 [ %val0, %scalar.ph ], [ %add, %for.body ]
;  %conv = and i32 %p.09, 255
;  %add = add nsw i32 %conv, %step
; 
; This is the case in the following code:
;
; int a[N];
; void doit3(int n, int step) {
;   int i;
;   unsigned char p = 0;
;   for (i = 0; i < n; i++) {
;      a[i] = p;
;      p = p + step;
;   }
; }
; 
; The "ExtTrunc" IR sequence here is:
;  "%conv = and i32 %p.09, 255".
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.

; VF8-LABEL: @doit3
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:            

; VF1-LABEL: @doit3
; VF1: vector.body:
; VF1-NOT: %{{.*}} = and i32 
; VF1: middle.block:            

define void @doit3(i32 %n, i32 %step) {
entry:
  %cmp7 = icmp sgt i32 %n, 0
  br i1 %cmp7, label %for.body.lr.ph, label %for.end

for.body.lr.ph:
  %wide.trip.count = zext i32 %n to i64
  br label %for.body

for.body:
  %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
  %p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
  %conv = and i32 %p.09, 255
  %arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
  store i32 %conv, i32* %arrayidx, align 4
  %add = add nsw i32 %conv, %step
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
  br i1 %exitcond, label %for.end.loopexit, label %for.body

for.end.loopexit:
  br label %for.end

for.end:
  ret void
}