reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
//===-- CodeGenTBAA.cpp - TBAA information for LLVM CodeGen ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the code that manages TBAA information and defines the TBAA policy
// for the optimizer to use. Relevant standards text includes:
//
//   C99 6.5p7
//   C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
//
//===----------------------------------------------------------------------===//

#include "CodeGenTBAA.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace clang;
using namespace CodeGen;

CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M,
                         const CodeGenOptions &CGO,
                         const LangOptions &Features, MangleContext &MContext)
  : Context(Ctx), Module(M), CodeGenOpts(CGO),
    Features(Features), MContext(MContext), MDHelper(M.getContext()),
    Root(nullptr), Char(nullptr)
{}

CodeGenTBAA::~CodeGenTBAA() {
}

llvm::MDNode *CodeGenTBAA::getRoot() {
  // Define the root of the tree. This identifies the tree, so that
  // if our LLVM IR is linked with LLVM IR from a different front-end
  // (or a different version of this front-end), their TBAA trees will
  // remain distinct, and the optimizer will treat them conservatively.
  if (!Root) {
    if (Features.CPlusPlus)
      Root = MDHelper.createTBAARoot("Simple C++ TBAA");
    else
      Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
  }

  return Root;
}

llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
                                                llvm::MDNode *Parent,
                                                uint64_t Size) {
  if (CodeGenOpts.NewStructPathTBAA) {
    llvm::Metadata *Id = MDHelper.createString(Name);
    return MDHelper.createTBAATypeNode(Parent, Size, Id);
  }
  return MDHelper.createTBAAScalarTypeNode(Name, Parent);
}

llvm::MDNode *CodeGenTBAA::getChar() {
  // Define the root of the tree for user-accessible memory. C and C++
  // give special powers to char and certain similar types. However,
  // these special powers only cover user-accessible memory, and doesn't
  // include things like vtables.
  if (!Char)
    Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);

  return Char;
}

static bool TypeHasMayAlias(QualType QTy) {
  // Tagged types have declarations, and therefore may have attributes.
  if (const TagType *TTy = dyn_cast<TagType>(QTy))
    return TTy->getDecl()->hasAttr<MayAliasAttr>();

  // Typedef types have declarations, and therefore may have attributes.
  if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) {
    if (TTy->getDecl()->hasAttr<MayAliasAttr>())
      return true;
    // Also, their underlying types may have relevant attributes.
    return TypeHasMayAlias(TTy->desugar());
  }

  return false;
}

/// Check if the given type is a valid base type to be used in access tags.
static bool isValidBaseType(QualType QTy) {
  if (QTy->isReferenceType())
    return false;
  if (const RecordType *TTy = QTy->getAs<RecordType>()) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    // Incomplete types are not valid base access types.
    if (!RD)
      return false;
    if (RD->hasFlexibleArrayMember())
      return false;
    // RD can be struct, union, class, interface or enum.
    // For now, we only handle struct and class.
    if (RD->isStruct() || RD->isClass())
      return true;
  }
  return false;
}

llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
  uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();

  // Handle builtin types.
  if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
    switch (BTy->getKind()) {
    // Character types are special and can alias anything.
    // In C++, this technically only includes "char" and "unsigned char",
    // and not "signed char". In C, it includes all three. For now,
    // the risk of exploiting this detail in C++ seems likely to outweigh
    // the benefit.
    case BuiltinType::Char_U:
    case BuiltinType::Char_S:
    case BuiltinType::UChar:
    case BuiltinType::SChar:
      return getChar();

    // Unsigned types can alias their corresponding signed types.
    case BuiltinType::UShort:
      return getTypeInfo(Context.ShortTy);
    case BuiltinType::UInt:
      return getTypeInfo(Context.IntTy);
    case BuiltinType::ULong:
      return getTypeInfo(Context.LongTy);
    case BuiltinType::ULongLong:
      return getTypeInfo(Context.LongLongTy);
    case BuiltinType::UInt128:
      return getTypeInfo(Context.Int128Ty);

    // Treat all other builtin types as distinct types. This includes
    // treating wchar_t, char16_t, and char32_t as distinct from their
    // "underlying types".
    default:
      return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
    }
  }

  // C++1z [basic.lval]p10: "If a program attempts to access the stored value of
  // an object through a glvalue of other than one of the following types the
  // behavior is undefined: [...] a char, unsigned char, or std::byte type."
  if (Ty->isStdByteType())
    return getChar();

  // Handle pointers and references.
  // TODO: Implement C++'s type "similarity" and consider dis-"similar"
  // pointers distinct.
  if (Ty->isPointerType() || Ty->isReferenceType())
    return createScalarTypeNode("any pointer", getChar(), Size);

  // Accesses to arrays are accesses to objects of their element types.
  if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType())
    return getTypeInfo(cast<ArrayType>(Ty)->getElementType());

  // Enum types are distinct types. In C++ they have "underlying types",
  // however they aren't related for TBAA.
  if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
    // In C++ mode, types have linkage, so we can rely on the ODR and
    // on their mangled names, if they're external.
    // TODO: Is there a way to get a program-wide unique name for a
    // decl with local linkage or no linkage?
    if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible())
      return getChar();

    SmallString<256> OutName;
    llvm::raw_svector_ostream Out(OutName);
    MContext.mangleTypeName(QualType(ETy, 0), Out);
    return createScalarTypeNode(OutName, getChar(), Size);
  }

  // For now, handle any other kind of type conservatively.
  return getChar();
}

llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
  // At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
  if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
    return nullptr;

  // If the type has the may_alias attribute (even on a typedef), it is
  // effectively in the general char alias class.
  if (TypeHasMayAlias(QTy))
    return getChar();

  // We need this function to not fall back to returning the "omnipotent char"
  // type node for aggregate and union types. Otherwise, any dereference of an
  // aggregate will result into the may-alias access descriptor, meaning all
  // subsequent accesses to direct and indirect members of that aggregate will
  // be considered may-alias too.
  // TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function.
  if (isValidBaseType(QTy))
    return getBaseTypeInfo(QTy);

  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
  if (llvm::MDNode *N = MetadataCache[Ty])
    return N;

  // Note that the following helper call is allowed to add new nodes to the
  // cache, which invalidates all its previously obtained iterators. So we
  // first generate the node for the type and then add that node to the cache.
  llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
  return MetadataCache[Ty] = TypeNode;
}

TBAAAccessInfo CodeGenTBAA::getAccessInfo(QualType AccessType) {
  // Pointee values may have incomplete types, but they shall never be
  // dereferenced.
  if (AccessType->isIncompleteType())
    return TBAAAccessInfo::getIncompleteInfo();

  if (TypeHasMayAlias(AccessType))
    return TBAAAccessInfo::getMayAliasInfo();

  uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
  return TBAAAccessInfo(getTypeInfo(AccessType), Size);
}

TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
  llvm::DataLayout DL(&Module);
  unsigned Size = DL.getPointerTypeSize(VTablePtrType);
  return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
                        Size);
}

bool
CodeGenTBAA::CollectFields(uint64_t BaseOffset,
                           QualType QTy,
                           SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
                             Fields,
                           bool MayAlias) {
  /* Things not handled yet include: C++ base classes, bitfields, */

  if (const RecordType *TTy = QTy->getAs<RecordType>()) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    if (RD->hasFlexibleArrayMember())
      return false;

    // TODO: Handle C++ base classes.
    if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
      if (Decl->bases_begin() != Decl->bases_end())
        return false;

    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(),
         e = RD->field_end(); i != e; ++i, ++idx) {
      if ((*i)->isZeroSize(Context) || (*i)->isUnnamedBitfield())
        continue;
      uint64_t Offset = BaseOffset +
                        Layout.getFieldOffset(idx) / Context.getCharWidth();
      QualType FieldQTy = i->getType();
      if (!CollectFields(Offset, FieldQTy, Fields,
                         MayAlias || TypeHasMayAlias(FieldQTy)))
        return false;
    }
    return true;
  }

  /* Otherwise, treat whatever it is as a field. */
  uint64_t Offset = BaseOffset;
  uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
  llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
  llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
  Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
  return true;
}

llvm::MDNode *
CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();

  if (llvm::MDNode *N = StructMetadataCache[Ty])
    return N;

  SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
  if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
    return MDHelper.createTBAAStructNode(Fields);

  // For now, handle any other kind of type conservatively.
  return StructMetadataCache[Ty] = nullptr;
}

llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
  if (auto *TTy = dyn_cast<RecordType>(Ty)) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
    for (FieldDecl *Field : RD->fields()) {
      if (Field->isZeroSize(Context) || Field->isUnnamedBitfield())
        continue;
      QualType FieldQTy = Field->getType();
      llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ?
          getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy);
      if (!TypeNode)
        return BaseTypeMetadataCache[Ty] = nullptr;

      uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
      uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
      uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
      Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
                                                        TypeNode));
    }

    SmallString<256> OutName;
    if (Features.CPlusPlus) {
      // Don't use the mangler for C code.
      llvm::raw_svector_ostream Out(OutName);
      MContext.mangleTypeName(QualType(Ty, 0), Out);
    } else {
      OutName = RD->getName();
    }

    if (CodeGenOpts.NewStructPathTBAA) {
      llvm::MDNode *Parent = getChar();
      uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
      llvm::Metadata *Id = MDHelper.createString(OutName);
      return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
    }

    // Create the struct type node with a vector of pairs (offset, type).
    SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
    for (const auto &Field : Fields)
        OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
    return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
  }

  return nullptr;
}

llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
  if (!isValidBaseType(QTy))
    return nullptr;

  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
  if (llvm::MDNode *N = BaseTypeMetadataCache[Ty])
    return N;

  // Note that the following helper call is allowed to add new nodes to the
  // cache, which invalidates all its previously obtained iterators. So we
  // first generate the node for the type and then add that node to the cache.
  llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
  return BaseTypeMetadataCache[Ty] = TypeNode;
}

llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
  assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");

  if (Info.isMayAlias())
    Info = TBAAAccessInfo(getChar(), Info.Size);

  if (!Info.AccessType)
    return nullptr;

  if (!CodeGenOpts.StructPathTBAA)
    Info = TBAAAccessInfo(Info.AccessType, Info.Size);

  llvm::MDNode *&N = AccessTagMetadataCache[Info];
  if (N)
    return N;

  if (!Info.BaseType) {
    Info.BaseType = Info.AccessType;
    assert(!Info.Offset && "Nonzero offset for an access with no base type!");
  }
  if (CodeGenOpts.NewStructPathTBAA) {
    return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
                                            Info.Offset, Info.Size);
  }
  return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
                                              Info.Offset);
}

TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
                                                 TBAAAccessInfo TargetInfo) {
  if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();
  return TargetInfo;
}

TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
                                                 TBAAAccessInfo InfoB) {
  if (InfoA == InfoB)
    return InfoA;

  if (!InfoA || !InfoB)
    return TBAAAccessInfo();

  if (InfoA.isMayAlias() || InfoB.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();

  // TODO: Implement the rest of the logic here. For example, two accesses
  // with same final access types result in an access to an object of that final
  // access type regardless of their base types.
  return TBAAAccessInfo::getMayAliasInfo();
}

TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
                                            TBAAAccessInfo SrcInfo) {
  if (DestInfo == SrcInfo)
    return DestInfo;

  if (!DestInfo || !SrcInfo)
    return TBAAAccessInfo();

  if (DestInfo.isMayAlias() || SrcInfo.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();

  // TODO: Implement the rest of the logic here. For example, two accesses
  // with same final access types result in an access to an object of that final
  // access type regardless of their base types.
  return TBAAAccessInfo::getMayAliasInfo();
}