reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
//===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The CodeGeneration pass takes a Scop created by ScopInfo and translates it
// back to LLVM-IR using the ISL code generator.
//
// The Scop describes the high level memory behavior of a control flow region.
// Transformation passes can update the schedule (execution order) of statements
// in the Scop. ISL is used to generate an abstract syntax tree that reflects
// the updated execution order. This clast is used to create new LLVM-IR that is
// computationally equivalent to the original control flow region, but executes
// its code in the new execution order defined by the changed schedule.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IRBuilder.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/PerfMonitor.h"
#include "polly/CodeGen/Utils.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ast.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-codegen"

static cl::opt<bool> Verify("polly-codegen-verify",
                            cl::desc("Verify the function generated by Polly"),
                            cl::Hidden, cl::init(false), cl::ZeroOrMore,
                            cl::cat(PollyCategory));

bool polly::PerfMonitoring;

static cl::opt<bool, true>
    XPerfMonitoring("polly-codegen-perf-monitoring",
                    cl::desc("Add run-time performance monitoring"), cl::Hidden,
                    cl::location(polly::PerfMonitoring), cl::init(false),
                    cl::ZeroOrMore, cl::cat(PollyCategory));

STATISTIC(ScopsProcessed, "Number of SCoP processed");
STATISTIC(CodegenedScops, "Number of successfully generated SCoPs");
STATISTIC(CodegenedAffineLoops,
          "Number of original affine loops in SCoPs that have been generated");
STATISTIC(CodegenedBoxedLoops,
          "Number of original boxed loops in SCoPs that have been generated");

namespace polly {

/// Mark a basic block unreachable.
///
/// Marks the basic block @p Block unreachable by equipping it with an
/// UnreachableInst.
void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) {
  auto *OrigTerminator = Block.getTerminator();
  Builder.SetInsertPoint(OrigTerminator);
  Builder.CreateUnreachable();
  OrigTerminator->eraseFromParent();
}
} // namespace polly

static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) {
  if (!Verify || !verifyFunction(F, &errs()))
    return;

  LLVM_DEBUG({
    errs() << "== ISL Codegen created an invalid function ==\n\n== The "
              "SCoP ==\n";
    errs() << S;
    errs() << "\n== The isl AST ==\n";
    AI.print(errs());
    errs() << "\n== The invalid function ==\n";
    F.print(errs());
  });

  llvm_unreachable("Polly generated function could not be verified. Add "
                   "-polly-codegen-verify=false to disable this assertion.");
}

// CodeGeneration adds a lot of BBs without updating the RegionInfo
// We make all created BBs belong to the scop's parent region without any
// nested structure to keep the RegionInfo verifier happy.
static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) {
  for (BasicBlock &BB : F) {
    if (RI.getRegionFor(&BB))
      continue;

    RI.setRegionFor(&BB, &ParentRegion);
  }
}

/// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from
/// @R.
///
/// CodeGeneration does not copy lifetime markers into the optimized SCoP,
/// which would leave the them only in the original path. This can transform
/// code such as
///
///     llvm.lifetime.start(%p)
///     llvm.lifetime.end(%p)
///
/// into
///
///     if (RTC) {
///       // generated code
///     } else {
///       // original code
///       llvm.lifetime.start(%p)
///     }
///     llvm.lifetime.end(%p)
///
/// The current StackColoring algorithm cannot handle if some, but not all,
/// paths from the end marker to the entry block cross the start marker. Same
/// for start markers that do not always cross the end markers. We avoid any
/// issues by removing all lifetime markers, even from the original code.
///
/// A better solution could be to hoist all llvm.lifetime.start to the split
/// node and all llvm.lifetime.end to the merge node, which should be
/// conservatively correct.
static void removeLifetimeMarkers(Region *R) {
  for (auto *BB : R->blocks()) {
    auto InstIt = BB->begin();
    auto InstEnd = BB->end();

    while (InstIt != InstEnd) {
      auto NextIt = InstIt;
      ++NextIt;

      if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) {
        switch (IT->getIntrinsicID()) {
        case Intrinsic::lifetime_start:
        case Intrinsic::lifetime_end:
          BB->getInstList().erase(InstIt);
          break;
        default:
          break;
        }
      }

      InstIt = NextIt;
    }
  }
}

static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT,
                    ScalarEvolution &SE, RegionInfo &RI) {
  // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen
  // reports itself to preserve DependenceInfo and IslAstInfo, we might get
  // those analysis that were computed by a different ScopInfo for a different
  // Scop structure. When the ScopInfo/Scop object is freed, there is a high
  // probability that the new ScopInfo/Scop object will be created at the same
  // heap position with the same address. Comparing whether the Scop or ScopInfo
  // address is the expected therefore is unreliable.
  // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo
  // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is
  // not freed before the destruction of those analyses which might happen after
  // the destruction of the Scop/ScopInfo they refer to.  Hence, the isl_ctx
  // will not be freed and its space not reused as long there is a
  // DependenceInfo or IslAstInfo around.
  IslAst &Ast = AI.getIslAst();
  if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) {
    LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n");
    return false;
  }

  // Check if we created an isl_ast root node, otherwise exit.
  isl_ast_node *AstRoot = Ast.getAst();
  if (!AstRoot)
    return false;

  // Collect statistics. Do it before we modify the IR to avoid having it any
  // influence on the result.
  auto ScopStats = S.getStatistics();
  ScopsProcessed++;

  auto &DL = S.getFunction().getParent()->getDataLayout();
  Region *R = &S.getRegion();
  assert(!R->isTopLevelRegion() && "Top level regions are not supported");

  ScopAnnotator Annotator;

  simplifyRegion(R, &DT, &LI, &RI);
  assert(R->isSimple());
  BasicBlock *EnteringBB = S.getEnteringBlock();
  assert(EnteringBB);
  PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);

  // Only build the run-time condition and parameters _after_ having
  // introduced the conditional branch. This is important as the conditional
  // branch will guard the original scop from new induction variables that
  // the SCEVExpander may introduce while code generating the parameters and
  // which may introduce scalar dependences that prevent us from correctly
  // code generating this scop.
  BBPair StartExitBlocks =
      std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI));
  BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
  BasicBlock *ExitBlock = std::get<1>(StartExitBlocks);

  removeLifetimeMarkers(R);
  auto *SplitBlock = StartBlock->getSinglePredecessor();

  IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock);

  // All arrays must have their base pointers known before
  // ScopAnnotator::buildAliasScopes.
  NodeBuilder.allocateNewArrays(StartExitBlocks);
  Annotator.buildAliasScopes(S);

  if (PerfMonitoring) {
    PerfMonitor P(S, EnteringBB->getParent()->getParent());
    P.initialize();
    P.insertRegionStart(SplitBlock->getTerminator());

    BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor();
    P.insertRegionEnd(MergeBlock->getTerminator());
  }

  // First generate code for the hoisted invariant loads and transitively the
  // parameters they reference. Afterwards, for the remaining parameters that
  // might reference the hoisted loads. Finally, build the runtime check
  // that might reference both hoisted loads as well as parameters.
  // If the hoisting fails we have to bail and execute the original code.
  Builder.SetInsertPoint(SplitBlock->getTerminator());
  if (!NodeBuilder.preloadInvariantLoads()) {
    // Patch the introduced branch condition to ensure that we always execute
    // the original SCoP.
    auto *FalseI1 = Builder.getFalse();
    auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
    SplitBBTerm->setOperand(0, FalseI1);

    // Since the other branch is hence ignored we mark it as unreachable and
    // adjust the dominator tree accordingly.
    auto *ExitingBlock = StartBlock->getUniqueSuccessor();
    assert(ExitingBlock);
    auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
    assert(MergeBlock);
    markBlockUnreachable(*StartBlock, Builder);
    markBlockUnreachable(*ExitingBlock, Builder);
    auto *ExitingBB = S.getExitingBlock();
    assert(ExitingBB);
    DT.changeImmediateDominator(MergeBlock, ExitingBB);
    DT.eraseNode(ExitingBlock);

    isl_ast_node_free(AstRoot);
  } else {
    NodeBuilder.addParameters(S.getContext().release());
    Value *RTC = NodeBuilder.createRTC(AI.getRunCondition());

    Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);

    // Explicitly set the insert point to the end of the block to avoid that a
    // split at the builder's current
    // insert position would move the malloc calls to the wrong BasicBlock.
    // Ideally we would just split the block during allocation of the new
    // arrays, but this would break the assumption that there are no blocks
    // between polly.start and polly.exiting (at this point).
    Builder.SetInsertPoint(StartBlock->getTerminator());

    NodeBuilder.create(AstRoot);
    NodeBuilder.finalize();
    fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI);

    CodegenedScops++;
    CodegenedAffineLoops += ScopStats.NumAffineLoops;
    CodegenedBoxedLoops += ScopStats.NumBoxedLoops;
  }

  Function *F = EnteringBB->getParent();
  verifyGeneratedFunction(S, *F, AI);
  for (auto *SubF : NodeBuilder.getParallelSubfunctions())
    verifyGeneratedFunction(S, *SubF, AI);

  // Mark the function such that we run additional cleanup passes on this
  // function (e.g. mem2reg to rediscover phi nodes).
  F->addFnAttr("polly-optimized");
  return true;
}

namespace {

class CodeGeneration : public ScopPass {
public:
  static char ID;

  /// The data layout used.
  const DataLayout *DL;

  /// @name The analysis passes we need to generate code.
  ///
  ///{
  LoopInfo *LI;
  IslAstInfo *AI;
  DominatorTree *DT;
  ScalarEvolution *SE;
  RegionInfo *RI;
  ///}

  CodeGeneration() : ScopPass(ID) {}

  /// Generate LLVM-IR for the SCoP @p S.
  bool runOnScop(Scop &S) override {
    // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration.
    if (S.isToBeSkipped())
      return false;

    AI = &getAnalysis<IslAstInfoWrapperPass>().getAI();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    DL = &S.getFunction().getParent()->getDataLayout();
    RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
    return CodeGen(S, *AI, *LI, *DT, *SE, *RI);
  }

  /// Register all analyses and transformation required.
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    ScopPass::getAnalysisUsage(AU);

    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<IslAstInfoWrapperPass>();
    AU.addRequired<RegionInfoPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<ScopDetectionWrapperPass>();
    AU.addRequired<ScopInfoRegionPass>();
    AU.addRequired<LoopInfoWrapperPass>();

    AU.addPreserved<DependenceInfo>();
    AU.addPreserved<IslAstInfoWrapperPass>();

    // FIXME: We do not yet add regions for the newly generated code to the
    //        region tree.
  }
};
} // namespace

PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM,
                                          ScopStandardAnalysisResults &AR,
                                          SPMUpdater &U) {
  auto &AI = SAM.getResult<IslAstAnalysis>(S, AR);
  if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) {
    U.invalidateScop(S);
    return PreservedAnalyses::none();
  }

  return PreservedAnalyses::all();
}

char CodeGeneration::ID = 1;

Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }

INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen",
                      "Polly - Create LLVM-IR from SCoPs", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_END(CodeGeneration, "polly-codegen",
                    "Polly - Create LLVM-IR from SCoPs", false, false)