reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a class to represent arbitrary precision
/// integral constant values and operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APINT_H
#define LLVM_ADT_APINT_H

#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>

namespace llvm {
class FoldingSetNodeID;
class StringRef;
class hash_code;
class raw_ostream;

template <typename T> class SmallVectorImpl;
template <typename T> class ArrayRef;
template <typename T> class Optional;

class APInt;

inline APInt operator-(APInt);

//===----------------------------------------------------------------------===//
//                              APInt Class
//===----------------------------------------------------------------------===//

/// Class for arbitrary precision integers.
///
/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
///   * All bit, byte, and word positions are zero-based.
///   * Once the bit width is set, it doesn't change except by the Truncate,
///     SignExtend, or ZeroExtend operations.
///   * All binary operators must be on APInt instances of the same bit width.
///     Attempting to use these operators on instances with different bit
///     widths will yield an assertion.
///   * The value is stored canonically as an unsigned value. For operations
///     where it makes a difference, there are both signed and unsigned variants
///     of the operation. For example, sdiv and udiv. However, because the bit
///     widths must be the same, operations such as Mul and Add produce the same
///     results regardless of whether the values are interpreted as signed or
///     not.
///   * In general, the class tries to follow the style of computation that LLVM
///     uses in its IR. This simplifies its use for LLVM.
///
class LLVM_NODISCARD APInt {
public:
  typedef uint64_t WordType;

  /// This enum is used to hold the constants we needed for APInt.
  enum : unsigned {
    /// Byte size of a word.
    APINT_WORD_SIZE = sizeof(WordType),
    /// Bits in a word.
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
  };

  enum class Rounding {
    DOWN,
    TOWARD_ZERO,
    UP,
  };

  static const WordType WORDTYPE_MAX = ~WordType(0);

private:
  /// This union is used to store the integer value. When the
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
  union {
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
  } U;

  unsigned BitWidth; ///< The number of bits in this APInt.

  friend struct DenseMapAPIntKeyInfo;

  friend class APSInt;

  /// Fast internal constructor
  ///
  /// This constructor is used only internally for speed of construction of
  /// temporaries. It is unsafe for general use so it is not public.
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
    U.pVal = val;
  }

  /// Determine if this APInt just has one word to store value.
  ///
  /// \returns true if the number of bits <= 64, false otherwise.
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }

  /// Determine which word a bit is in.
  ///
  /// \returns the word position for the specified bit position.
  static unsigned whichWord(unsigned bitPosition) {
    return bitPosition / APINT_BITS_PER_WORD;
  }

  /// Determine which bit in a word a bit is in.
  ///
  /// \returns the bit position in a word for the specified bit position
  /// in the APInt.
  static unsigned whichBit(unsigned bitPosition) {
    return bitPosition % APINT_BITS_PER_WORD;
  }

  /// Get a single bit mask.
  ///
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
  /// This method generates and returns a uint64_t (word) mask for a single
  /// bit at a specific bit position. This is used to mask the bit in the
  /// corresponding word.
  static uint64_t maskBit(unsigned bitPosition) {
    return 1ULL << whichBit(bitPosition);
  }

  /// Clear unused high order bits
  ///
  /// This method is used internally to clear the top "N" bits in the high order
  /// word that are not used by the APInt. This is needed after the most
  /// significant word is assigned a value to ensure that those bits are
  /// zero'd out.
  APInt &clearUnusedBits() {
    // Compute how many bits are used in the final word
    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;

    // Mask out the high bits.
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
    if (isSingleWord())
      U.VAL &= mask;
    else
      U.pVal[getNumWords() - 1] &= mask;
    return *this;
  }

  /// Get the word corresponding to a bit position
  /// \returns the corresponding word for the specified bit position.
  uint64_t getWord(unsigned bitPosition) const {
    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
  }

  /// Utility method to change the bit width of this APInt to new bit width,
  /// allocating and/or deallocating as necessary. There is no guarantee on the
  /// value of any bits upon return. Caller should populate the bits after.
  void reallocate(unsigned NewBitWidth);

  /// Convert a char array into an APInt
  ///
  /// \param radix 2, 8, 10, 16, or 36
  /// Converts a string into a number.  The string must be non-empty
  /// and well-formed as a number of the given base. The bit-width
  /// must be sufficient to hold the result.
  ///
  /// This is used by the constructors that take string arguments.
  ///
  /// StringRef::getAsInteger is superficially similar but (1) does
  /// not assume that the string is well-formed and (2) grows the
  /// result to hold the input.
  void fromString(unsigned numBits, StringRef str, uint8_t radix);

  /// An internal division function for dividing APInts.
  ///
  /// This is used by the toString method to divide by the radix. It simply
  /// provides a more convenient form of divide for internal use since KnuthDiv
  /// has specific constraints on its inputs. If those constraints are not met
  /// then it provides a simpler form of divide.
  static void divide(const WordType *LHS, unsigned lhsWords,
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
                     WordType *Remainder);

  /// out-of-line slow case for inline constructor
  void initSlowCase(uint64_t val, bool isSigned);

  /// shared code between two array constructors
  void initFromArray(ArrayRef<uint64_t> array);

  /// out-of-line slow case for inline copy constructor
  void initSlowCase(const APInt &that);

  /// out-of-line slow case for shl
  void shlSlowCase(unsigned ShiftAmt);

  /// out-of-line slow case for lshr.
  void lshrSlowCase(unsigned ShiftAmt);

  /// out-of-line slow case for ashr.
  void ashrSlowCase(unsigned ShiftAmt);

  /// out-of-line slow case for operator=
  void AssignSlowCase(const APInt &RHS);

  /// out-of-line slow case for operator==
  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;

  /// out-of-line slow case for countLeadingZeros
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;

  /// out-of-line slow case for countLeadingOnes.
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;

  /// out-of-line slow case for countTrailingZeros.
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;

  /// out-of-line slow case for countTrailingOnes
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;

  /// out-of-line slow case for countPopulation
  unsigned countPopulationSlowCase() const LLVM_READONLY;

  /// out-of-line slow case for intersects.
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;

  /// out-of-line slow case for isSubsetOf.
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;

  /// out-of-line slow case for setBits.
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);

  /// out-of-line slow case for flipAllBits.
  void flipAllBitsSlowCase();

  /// out-of-line slow case for operator&=.
  void AndAssignSlowCase(const APInt& RHS);

  /// out-of-line slow case for operator|=.
  void OrAssignSlowCase(const APInt& RHS);

  /// out-of-line slow case for operator^=.
  void XorAssignSlowCase(const APInt& RHS);

  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
  /// to, or greater than RHS.
  int compare(const APInt &RHS) const LLVM_READONLY;

  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
  /// to, or greater than RHS.
  int compareSigned(const APInt &RHS) const LLVM_READONLY;

public:
  /// \name Constructors
  /// @{

  /// Create a new APInt of numBits width, initialized as val.
  ///
  /// If isSigned is true then val is treated as if it were a signed value
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
  /// the range of val are zero filled).
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param val the initial value of the APInt
  /// \param isSigned how to treat signedness of val
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
      : BitWidth(numBits) {
    assert(BitWidth && "bitwidth too small");
    if (isSingleWord()) {
      U.VAL = val;
      clearUnusedBits();
    } else {
      initSlowCase(val, isSigned);
    }
  }

  /// Construct an APInt of numBits width, initialized as bigVal[].
  ///
  /// Note that bigVal.size() can be smaller or larger than the corresponding
  /// bit width but any extraneous bits will be dropped.
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param bigVal a sequence of words to form the initial value of the APInt
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);

  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
  /// deprecated because this constructor is prone to ambiguity with the
  /// APInt(unsigned, uint64_t, bool) constructor.
  ///
  /// If this overload is ever deleted, care should be taken to prevent calls
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
  /// constructor.
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);

  /// Construct an APInt from a string representation.
  ///
  /// This constructor interprets the string \p str in the given radix. The
  /// interpretation stops when the first character that is not suitable for the
  /// radix is encountered, or the end of the string. Acceptable radix values
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
  /// string to require more bits than numBits.
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param str the string to be interpreted
  /// \param radix the radix to use for the conversion
  APInt(unsigned numBits, StringRef str, uint8_t radix);

  /// Simply makes *this a copy of that.
  /// Copy Constructor.
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
    if (isSingleWord())
      U.VAL = that.U.VAL;
    else
      initSlowCase(that);
  }

  /// Move Constructor.
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
    memcpy(&U, &that.U, sizeof(U));
    that.BitWidth = 0;
  }

  /// Destructor.
  ~APInt() {
    if (needsCleanup())
      delete[] U.pVal;
  }

  /// Default constructor that creates an uninteresting APInt
  /// representing a 1-bit zero value.
  ///
  /// This is useful for object deserialization (pair this with the static
  ///  method Read).
  explicit APInt() : BitWidth(1) { U.VAL = 0; }

  /// Returns whether this instance allocated memory.
  bool needsCleanup() const { return !isSingleWord(); }

  /// Used to insert APInt objects, or objects that contain APInt objects, into
  ///  FoldingSets.
  void Profile(FoldingSetNodeID &id) const;

  /// @}
  /// \name Value Tests
  /// @{

  /// Determine sign of this APInt.
  ///
  /// This tests the high bit of this APInt to determine if it is set.
  ///
  /// \returns true if this APInt is negative, false otherwise
  bool isNegative() const { return (*this)[BitWidth - 1]; }

  /// Determine if this APInt Value is non-negative (>= 0)
  ///
  /// This tests the high bit of the APInt to determine if it is unset.
  bool isNonNegative() const { return !isNegative(); }

  /// Determine if sign bit of this APInt is set.
  ///
  /// This tests the high bit of this APInt to determine if it is set.
  ///
  /// \returns true if this APInt has its sign bit set, false otherwise.
  bool isSignBitSet() const { return (*this)[BitWidth-1]; }

  /// Determine if sign bit of this APInt is clear.
  ///
  /// This tests the high bit of this APInt to determine if it is clear.
  ///
  /// \returns true if this APInt has its sign bit clear, false otherwise.
  bool isSignBitClear() const { return !isSignBitSet(); }

  /// Determine if this APInt Value is positive.
  ///
  /// This tests if the value of this APInt is positive (> 0). Note
  /// that 0 is not a positive value.
  ///
  /// \returns true if this APInt is positive.
  bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }

  /// Determine if all bits are set
  ///
  /// This checks to see if the value has all bits of the APInt are set or not.
  bool isAllOnesValue() const {
    if (isSingleWord())
      return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
    return countTrailingOnesSlowCase() == BitWidth;
  }

  /// Determine if all bits are clear
  ///
  /// This checks to see if the value has all bits of the APInt are clear or
  /// not.
  bool isNullValue() const { return !*this; }

  /// Determine if this is a value of 1.
  ///
  /// This checks to see if the value of this APInt is one.
  bool isOneValue() const {
    if (isSingleWord())
      return U.VAL == 1;
    return countLeadingZerosSlowCase() == BitWidth - 1;
  }

  /// Determine if this is the largest unsigned value.
  ///
  /// This checks to see if the value of this APInt is the maximum unsigned
  /// value for the APInt's bit width.
  bool isMaxValue() const { return isAllOnesValue(); }

  /// Determine if this is the largest signed value.
  ///
  /// This checks to see if the value of this APInt is the maximum signed
  /// value for the APInt's bit width.
  bool isMaxSignedValue() const {
    if (isSingleWord())
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
  }

  /// Determine if this is the smallest unsigned value.
  ///
  /// This checks to see if the value of this APInt is the minimum unsigned
  /// value for the APInt's bit width.
  bool isMinValue() const { return isNullValue(); }

  /// Determine if this is the smallest signed value.
  ///
  /// This checks to see if the value of this APInt is the minimum signed
  /// value for the APInt's bit width.
  bool isMinSignedValue() const {
    if (isSingleWord())
      return U.VAL == (WordType(1) << (BitWidth - 1));
    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
  }

  /// Check if this APInt has an N-bits unsigned integer value.
  bool isIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    return getActiveBits() <= N;
  }

  /// Check if this APInt has an N-bits signed integer value.
  bool isSignedIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    return getMinSignedBits() <= N;
  }

  /// Check if this APInt's value is a power of two greater than zero.
  ///
  /// \returns true if the argument APInt value is a power of two > 0.
  bool isPowerOf2() const {
    if (isSingleWord())
      return isPowerOf2_64(U.VAL);
    return countPopulationSlowCase() == 1;
  }

  /// Check if the APInt's value is returned by getSignMask.
  ///
  /// \returns true if this is the value returned by getSignMask.
  bool isSignMask() const { return isMinSignedValue(); }

  /// Convert APInt to a boolean value.
  ///
  /// This converts the APInt to a boolean value as a test against zero.
  bool getBoolValue() const { return !!*this; }

  /// If this value is smaller than the specified limit, return it, otherwise
  /// return the limit value.  This causes the value to saturate to the limit.
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
    return ugt(Limit) ? Limit : getZExtValue();
  }

  /// Check if the APInt consists of a repeated bit pattern.
  ///
  /// e.g. 0x01010101 satisfies isSplat(8).
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
  /// width without remainder.
  bool isSplat(unsigned SplatSizeInBits) const;

  /// \returns true if this APInt value is a sequence of \param numBits ones
  /// starting at the least significant bit with the remainder zero.
  bool isMask(unsigned numBits) const {
    assert(numBits != 0 && "numBits must be non-zero");
    assert(numBits <= BitWidth && "numBits out of range");
    if (isSingleWord())
      return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
    unsigned Ones = countTrailingOnesSlowCase();
    return (numBits == Ones) &&
           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
  }

  /// \returns true if this APInt is a non-empty sequence of ones starting at
  /// the least significant bit with the remainder zero.
  /// Ex. isMask(0x0000FFFFU) == true.
  bool isMask() const {
    if (isSingleWord())
      return isMask_64(U.VAL);
    unsigned Ones = countTrailingOnesSlowCase();
    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
  }

  /// Return true if this APInt value contains a sequence of ones with
  /// the remainder zero.
  bool isShiftedMask() const {
    if (isSingleWord())
      return isShiftedMask_64(U.VAL);
    unsigned Ones = countPopulationSlowCase();
    unsigned LeadZ = countLeadingZerosSlowCase();
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
  }

  /// @}
  /// \name Value Generators
  /// @{

  /// Gets maximum unsigned value of APInt for specific bit width.
  static APInt getMaxValue(unsigned numBits) {
    return getAllOnesValue(numBits);
  }

  /// Gets maximum signed value of APInt for a specific bit width.
  static APInt getSignedMaxValue(unsigned numBits) {
    APInt API = getAllOnesValue(numBits);
    API.clearBit(numBits - 1);
    return API;
  }

  /// Gets minimum unsigned value of APInt for a specific bit width.
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }

  /// Gets minimum signed value of APInt for a specific bit width.
  static APInt getSignedMinValue(unsigned numBits) {
    APInt API(numBits, 0);
    API.setBit(numBits - 1);
    return API;
  }

  /// Get the SignMask for a specific bit width.
  ///
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
  /// readability when we want to get a SignMask.
  static APInt getSignMask(unsigned BitWidth) {
    return getSignedMinValue(BitWidth);
  }

  /// Get the all-ones value.
  ///
  /// \returns the all-ones value for an APInt of the specified bit-width.
  static APInt getAllOnesValue(unsigned numBits) {
    return APInt(numBits, WORDTYPE_MAX, true);
  }

  /// Get the '0' value.
  ///
  /// \returns the '0' value for an APInt of the specified bit-width.
  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }

  /// Compute an APInt containing numBits highbits from this APInt.
  ///
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the low bits and right shift to the least significant bit.
  ///
  /// \returns the high "numBits" bits of this APInt.
  APInt getHiBits(unsigned numBits) const;

  /// Compute an APInt containing numBits lowbits from this APInt.
  ///
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the high bits.
  ///
  /// \returns the low "numBits" bits of this APInt.
  APInt getLoBits(unsigned numBits) const;

  /// Return an APInt with exactly one bit set in the result.
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    APInt Res(numBits, 0);
    Res.setBit(BitNo);
    return Res;
  }

  /// Get a value with a block of bits set.
  ///
  /// Constructs an APInt value that has a contiguous range of bits set. The
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
  ///
  /// \param numBits the intended bit width of the result
  /// \param loBit the index of the lowest bit set.
  /// \param hiBit the index of the highest bit set.
  ///
  /// \returns An APInt value with the requested bits set.
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    APInt Res(numBits, 0);
    Res.setBits(loBit, hiBit);
    return Res;
  }

  /// Get a value with upper bits starting at loBit set.
  ///
  /// Constructs an APInt value that has a contiguous range of bits set. The
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
  /// bits will be zero. For example, with parameters(32, 12) you would get
  /// 0xFFFFF000.
  ///
  /// \param numBits the intended bit width of the result
  /// \param loBit the index of the lowest bit to set.
  ///
  /// \returns An APInt value with the requested bits set.
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
    APInt Res(numBits, 0);
    Res.setBitsFrom(loBit);
    return Res;
  }

  /// Get a value with high bits set
  ///
  /// Constructs an APInt value that has the top hiBitsSet bits set.
  ///
  /// \param numBits the bitwidth of the result
  /// \param hiBitsSet the number of high-order bits set in the result.
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    APInt Res(numBits, 0);
    Res.setHighBits(hiBitsSet);
    return Res;
  }

  /// Get a value with low bits set
  ///
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
  ///
  /// \param numBits the bitwidth of the result
  /// \param loBitsSet the number of low-order bits set in the result.
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    APInt Res(numBits, 0);
    Res.setLowBits(loBitsSet);
    return Res;
  }

  /// Return a value containing V broadcasted over NewLen bits.
  static APInt getSplat(unsigned NewLen, const APInt &V);

  /// Determine if two APInts have the same value, after zero-extending
  /// one of them (if needed!) to ensure that the bit-widths match.
  static bool isSameValue(const APInt &I1, const APInt &I2) {
    if (I1.getBitWidth() == I2.getBitWidth())
      return I1 == I2;

    if (I1.getBitWidth() > I2.getBitWidth())
      return I1 == I2.zext(I1.getBitWidth());

    return I1.zext(I2.getBitWidth()) == I2;
  }

  /// Overload to compute a hash_code for an APInt value.
  friend hash_code hash_value(const APInt &Arg);

  /// This function returns a pointer to the internal storage of the APInt.
  /// This is useful for writing out the APInt in binary form without any
  /// conversions.
  const uint64_t *getRawData() const {
    if (isSingleWord())
      return &U.VAL;
    return &U.pVal[0];
  }

  /// @}
  /// \name Unary Operators
  /// @{

  /// Postfix increment operator.
  ///
  /// Increments *this by 1.
  ///
  /// \returns a new APInt value representing the original value of *this.
  const APInt operator++(int) {
    APInt API(*this);
    ++(*this);
    return API;
  }

  /// Prefix increment operator.
  ///
  /// \returns *this incremented by one
  APInt &operator++();

  /// Postfix decrement operator.
  ///
  /// Decrements *this by 1.
  ///
  /// \returns a new APInt value representing the original value of *this.
  const APInt operator--(int) {
    APInt API(*this);
    --(*this);
    return API;
  }

  /// Prefix decrement operator.
  ///
  /// \returns *this decremented by one.
  APInt &operator--();

  /// Logical negation operator.
  ///
  /// Performs logical negation operation on this APInt.
  ///
  /// \returns true if *this is zero, false otherwise.
  bool operator!() const {
    if (isSingleWord())
      return U.VAL == 0;
    return countLeadingZerosSlowCase() == BitWidth;
  }

  /// @}
  /// \name Assignment Operators
  /// @{

  /// Copy assignment operator.
  ///
  /// \returns *this after assignment of RHS.
  APInt &operator=(const APInt &RHS) {
    // If the bitwidths are the same, we can avoid mucking with memory
    if (isSingleWord() && RHS.isSingleWord()) {
      U.VAL = RHS.U.VAL;
      BitWidth = RHS.BitWidth;
      return clearUnusedBits();
    }

    AssignSlowCase(RHS);
    return *this;
  }

  /// Move assignment operator.
  APInt &operator=(APInt &&that) {
#ifdef _MSC_VER
    // The MSVC std::shuffle implementation still does self-assignment.
    if (this == &that)
      return *this;
#endif
    assert(this != &that && "Self-move not supported");
    if (!isSingleWord())
      delete[] U.pVal;

    // Use memcpy so that type based alias analysis sees both VAL and pVal
    // as modified.
    memcpy(&U, &that.U, sizeof(U));

    BitWidth = that.BitWidth;
    that.BitWidth = 0;

    return *this;
  }

  /// Assignment operator.
  ///
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
  /// the bit width, the excess bits are truncated. If the bit width is larger
  /// than 64, the value is zero filled in the unspecified high order bits.
  ///
  /// \returns *this after assignment of RHS value.
  APInt &operator=(uint64_t RHS) {
    if (isSingleWord()) {
      U.VAL = RHS;
      clearUnusedBits();
    } else {
      U.pVal[0] = RHS;
      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    }
    return *this;
  }

  /// Bitwise AND assignment operator.
  ///
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
  /// assigned to *this.
  ///
  /// \returns *this after ANDing with RHS.
  APInt &operator&=(const APInt &RHS) {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      U.VAL &= RHS.U.VAL;
    else
      AndAssignSlowCase(RHS);
    return *this;
  }

  /// Bitwise AND assignment operator.
  ///
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
  /// logically zero-extended or truncated to match the bit-width of
  /// the LHS.
  APInt &operator&=(uint64_t RHS) {
    if (isSingleWord()) {
      U.VAL &= RHS;
      return *this;
    }
    U.pVal[0] &= RHS;
    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    return *this;
  }

  /// Bitwise OR assignment operator.
  ///
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
  /// assigned *this;
  ///
  /// \returns *this after ORing with RHS.
  APInt &operator|=(const APInt &RHS) {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      U.VAL |= RHS.U.VAL;
    else
      OrAssignSlowCase(RHS);
    return *this;
  }

  /// Bitwise OR assignment operator.
  ///
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
  /// logically zero-extended or truncated to match the bit-width of
  /// the LHS.
  APInt &operator|=(uint64_t RHS) {
    if (isSingleWord()) {
      U.VAL |= RHS;
      clearUnusedBits();
    } else {
      U.pVal[0] |= RHS;
    }
    return *this;
  }

  /// Bitwise XOR assignment operator.
  ///
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
  /// assigned to *this.
  ///
  /// \returns *this after XORing with RHS.
  APInt &operator^=(const APInt &RHS) {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      U.VAL ^= RHS.U.VAL;
    else
      XorAssignSlowCase(RHS);
    return *this;
  }

  /// Bitwise XOR assignment operator.
  ///
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
  /// logically zero-extended or truncated to match the bit-width of
  /// the LHS.
  APInt &operator^=(uint64_t RHS) {
    if (isSingleWord()) {
      U.VAL ^= RHS;
      clearUnusedBits();
    } else {
      U.pVal[0] ^= RHS;
    }
    return *this;
  }

  /// Multiplication assignment operator.
  ///
  /// Multiplies this APInt by RHS and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator*=(const APInt &RHS);
  APInt &operator*=(uint64_t RHS);

  /// Addition assignment operator.
  ///
  /// Adds RHS to *this and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator+=(const APInt &RHS);
  APInt &operator+=(uint64_t RHS);

  /// Subtraction assignment operator.
  ///
  /// Subtracts RHS from *this and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator-=(const APInt &RHS);
  APInt &operator-=(uint64_t RHS);

  /// Left-shift assignment function.
  ///
  /// Shifts *this left by shiftAmt and assigns the result to *this.
  ///
  /// \returns *this after shifting left by ShiftAmt
  APInt &operator<<=(unsigned ShiftAmt) {
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    if (isSingleWord()) {
      if (ShiftAmt == BitWidth)
        U.VAL = 0;
      else
        U.VAL <<= ShiftAmt;
      return clearUnusedBits();
    }
    shlSlowCase(ShiftAmt);
    return *this;
  }

  /// Left-shift assignment function.
  ///
  /// Shifts *this left by shiftAmt and assigns the result to *this.
  ///
  /// \returns *this after shifting left by ShiftAmt
  APInt &operator<<=(const APInt &ShiftAmt);

  /// @}
  /// \name Binary Operators
  /// @{

  /// Multiplication operator.
  ///
  /// Multiplies this APInt by RHS and returns the result.
  APInt operator*(const APInt &RHS) const;

  /// Left logical shift operator.
  ///
  /// Shifts this APInt left by \p Bits and returns the result.
  APInt operator<<(unsigned Bits) const { return shl(Bits); }

  /// Left logical shift operator.
  ///
  /// Shifts this APInt left by \p Bits and returns the result.
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }

  /// Arithmetic right-shift function.
  ///
  /// Arithmetic right-shift this APInt by shiftAmt.
  APInt ashr(unsigned ShiftAmt) const {
    APInt R(*this);
    R.ashrInPlace(ShiftAmt);
    return R;
  }

  /// Arithmetic right-shift this APInt by ShiftAmt in place.
  void ashrInPlace(unsigned ShiftAmt) {
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    if (isSingleWord()) {
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
      if (ShiftAmt == BitWidth)
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
      else
        U.VAL = SExtVAL >> ShiftAmt;
      clearUnusedBits();
      return;
    }
    ashrSlowCase(ShiftAmt);
  }

  /// Logical right-shift function.
  ///
  /// Logical right-shift this APInt by shiftAmt.
  APInt lshr(unsigned shiftAmt) const {
    APInt R(*this);
    R.lshrInPlace(shiftAmt);
    return R;
  }

  /// Logical right-shift this APInt by ShiftAmt in place.
  void lshrInPlace(unsigned ShiftAmt) {
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    if (isSingleWord()) {
      if (ShiftAmt == BitWidth)
        U.VAL = 0;
      else
        U.VAL >>= ShiftAmt;
      return;
    }
    lshrSlowCase(ShiftAmt);
  }

  /// Left-shift function.
  ///
  /// Left-shift this APInt by shiftAmt.
  APInt shl(unsigned shiftAmt) const {
    APInt R(*this);
    R <<= shiftAmt;
    return R;
  }

  /// Rotate left by rotateAmt.
  APInt rotl(unsigned rotateAmt) const;

  /// Rotate right by rotateAmt.
  APInt rotr(unsigned rotateAmt) const;

  /// Arithmetic right-shift function.
  ///
  /// Arithmetic right-shift this APInt by shiftAmt.
  APInt ashr(const APInt &ShiftAmt) const {
    APInt R(*this);
    R.ashrInPlace(ShiftAmt);
    return R;
  }

  /// Arithmetic right-shift this APInt by shiftAmt in place.
  void ashrInPlace(const APInt &shiftAmt);

  /// Logical right-shift function.
  ///
  /// Logical right-shift this APInt by shiftAmt.
  APInt lshr(const APInt &ShiftAmt) const {
    APInt R(*this);
    R.lshrInPlace(ShiftAmt);
    return R;
  }

  /// Logical right-shift this APInt by ShiftAmt in place.
  void lshrInPlace(const APInt &ShiftAmt);

  /// Left-shift function.
  ///
  /// Left-shift this APInt by shiftAmt.
  APInt shl(const APInt &ShiftAmt) const {
    APInt R(*this);
    R <<= ShiftAmt;
    return R;
  }

  /// Rotate left by rotateAmt.
  APInt rotl(const APInt &rotateAmt) const;

  /// Rotate right by rotateAmt.
  APInt rotr(const APInt &rotateAmt) const;

  /// Unsigned division operation.
  ///
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
  /// RHS are treated as unsigned quantities for purposes of this division.
  ///
  /// \returns a new APInt value containing the division result, rounded towards
  /// zero.
  APInt udiv(const APInt &RHS) const;
  APInt udiv(uint64_t RHS) const;

  /// Signed division function for APInt.
  ///
  /// Signed divide this APInt by APInt RHS.
  ///
  /// The result is rounded towards zero.
  APInt sdiv(const APInt &RHS) const;
  APInt sdiv(int64_t RHS) const;

  /// Unsigned remainder operation.
  ///
  /// Perform an unsigned remainder operation on this APInt with RHS being the
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
  /// of this operation. Note that this is a true remainder operation and not a
  /// modulo operation because the sign follows the sign of the dividend which
  /// is *this.
  ///
  /// \returns a new APInt value containing the remainder result
  APInt urem(const APInt &RHS) const;
  uint64_t urem(uint64_t RHS) const;

  /// Function for signed remainder operation.
  ///
  /// Signed remainder operation on APInt.
  APInt srem(const APInt &RHS) const;
  int64_t srem(int64_t RHS) const;

  /// Dual division/remainder interface.
  ///
  /// Sometimes it is convenient to divide two APInt values and obtain both the
  /// quotient and remainder. This function does both operations in the same
  /// computation making it a little more efficient. The pair of input arguments
  /// may overlap with the pair of output arguments. It is safe to call
  /// udivrem(X, Y, X, Y), for example.
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
                      APInt &Remainder);
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
                      uint64_t &Remainder);

  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
                      APInt &Remainder);
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
                      int64_t &Remainder);

  // Operations that return overflow indicators.
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;

  // Operations that saturate
  APInt sadd_sat(const APInt &RHS) const;
  APInt uadd_sat(const APInt &RHS) const;
  APInt ssub_sat(const APInt &RHS) const;
  APInt usub_sat(const APInt &RHS) const;
  APInt smul_sat(const APInt &RHS) const;
  APInt umul_sat(const APInt &RHS) const;
  APInt sshl_sat(const APInt &RHS) const;
  APInt ushl_sat(const APInt &RHS) const;

  /// Array-indexing support.
  ///
  /// \returns the bit value at bitPosition
  bool operator[](unsigned bitPosition) const {
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
  }

  /// @}
  /// \name Comparison Operators
  /// @{

  /// Equality operator.
  ///
  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  bool operator==(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    if (isSingleWord())
      return U.VAL == RHS.U.VAL;
    return EqualSlowCase(RHS);
  }

  /// Equality operator.
  ///
  /// Compares this APInt with a uint64_t for the validity of the equality
  /// relationship.
  ///
  /// \returns true if *this == Val
  bool operator==(uint64_t Val) const {
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
  }

  /// Equality comparison.
  ///
  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  ///
  /// \returns true if *this == Val
  bool eq(const APInt &RHS) const { return (*this) == RHS; }

  /// Inequality operator.
  ///
  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }

  /// Inequality operator.
  ///
  /// Compares this APInt with a uint64_t for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }

  /// Inequality comparison
  ///
  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }

  /// Unsigned less than comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when both are considered unsigned.
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }

  /// Unsigned less than comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when considered unsigned.
  bool ult(uint64_t RHS) const {
    // Only need to check active bits if not a single word.
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
  }

  /// Signed less than comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when both are considered signed.
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }

  /// Signed less than comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when considered signed.
  bool slt(int64_t RHS) const {
    return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
                                                        : getSExtValue() < RHS;
  }

  /// Unsigned less or equal comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when both are considered unsigned.
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }

  /// Unsigned less or equal comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when considered unsigned.
  bool ule(uint64_t RHS) const { return !ugt(RHS); }

  /// Signed less or equal comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when both are considered signed.
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }

  /// Signed less or equal comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for the
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when considered signed.
  bool sle(uint64_t RHS) const { return !sgt(RHS); }

  /// Unsigned greather than comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when both are considered unsigned.
  bool ugt(const APInt &RHS) const { return !ule(RHS); }

  /// Unsigned greater than comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when considered unsigned.
  bool ugt(uint64_t RHS) const {
    // Only need to check active bits if not a single word.
    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
  }

  /// Signed greather than comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for the
  /// validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when both are considered signed.
  bool sgt(const APInt &RHS) const { return !sle(RHS); }

  /// Signed greater than comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when considered signed.
  bool sgt(int64_t RHS) const {
    return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
                                                        : getSExtValue() > RHS;
  }

  /// Unsigned greater or equal comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when both are considered unsigned.
  bool uge(const APInt &RHS) const { return !ult(RHS); }

  /// Unsigned greater or equal comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when considered unsigned.
  bool uge(uint64_t RHS) const { return !ult(RHS); }

  /// Signed greater or equal comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when both are considered signed.
  bool sge(const APInt &RHS) const { return !slt(RHS); }

  /// Signed greater or equal comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when considered signed.
  bool sge(int64_t RHS) const { return !slt(RHS); }

  /// This operation tests if there are any pairs of corresponding bits
  /// between this APInt and RHS that are both set.
  bool intersects(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return (U.VAL & RHS.U.VAL) != 0;
    return intersectsSlowCase(RHS);
  }

  /// This operation checks that all bits set in this APInt are also set in RHS.
  bool isSubsetOf(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return (U.VAL & ~RHS.U.VAL) == 0;
    return isSubsetOfSlowCase(RHS);
  }

  /// @}
  /// \name Resizing Operators
  /// @{

  /// Truncate to new width.
  ///
  /// Truncate the APInt to a specified width. It is an error to specify a width
  /// that is greater than or equal to the current width.
  APInt trunc(unsigned width) const;

  /// Sign extend to a new width.
  ///
  /// This operation sign extends the APInt to a new width. If the high order
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
  /// It is an error to specify a width that is less than or equal to the
  /// current width.
  APInt sext(unsigned width) const;

  /// Zero extend to a new width.
  ///
  /// This operation zero extends the APInt to a new width. The high order bits
  /// are filled with 0 bits.  It is an error to specify a width that is less
  /// than or equal to the current width.
  APInt zext(unsigned width) const;

  /// Sign extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is sign
  /// extended, truncated, or left alone to make it that width.
  APInt sextOrTrunc(unsigned width) const;

  /// Zero extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is zero
  /// extended, truncated, or left alone to make it that width.
  APInt zextOrTrunc(unsigned width) const;

  /// Sign extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is sign
  /// extended, or left alone to make it that width.
  APInt sextOrSelf(unsigned width) const;

  /// Zero extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is zero
  /// extended, or left alone to make it that width.
  APInt zextOrSelf(unsigned width) const;

  /// @}
  /// \name Bit Manipulation Operators
  /// @{

  /// Set every bit to 1.
  void setAllBits() {
    if (isSingleWord())
      U.VAL = WORDTYPE_MAX;
    else
      // Set all the bits in all the words.
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
    // Clear the unused ones
    clearUnusedBits();
  }

  /// Set a given bit to 1.
  ///
  /// Set the given bit to 1 whose position is given as "bitPosition".
  void setBit(unsigned BitPosition) {
    assert(BitPosition < BitWidth && "BitPosition out of range");
    WordType Mask = maskBit(BitPosition);
    if (isSingleWord())
      U.VAL |= Mask;
    else
      U.pVal[whichWord(BitPosition)] |= Mask;
  }

  /// Set the sign bit to 1.
  void setSignBit() {
    setBit(BitWidth - 1);
  }

  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
  void setBits(unsigned loBit, unsigned hiBit) {
    assert(hiBit <= BitWidth && "hiBit out of range");
    assert(loBit <= BitWidth && "loBit out of range");
    assert(loBit <= hiBit && "loBit greater than hiBit");
    if (loBit == hiBit)
      return;
    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
      mask <<= loBit;
      if (isSingleWord())
        U.VAL |= mask;
      else
        U.pVal[0] |= mask;
    } else {
      setBitsSlowCase(loBit, hiBit);
    }
  }

  /// Set the top bits starting from loBit.
  void setBitsFrom(unsigned loBit) {
    return setBits(loBit, BitWidth);
  }

  /// Set the bottom loBits bits.
  void setLowBits(unsigned loBits) {
    return setBits(0, loBits);
  }

  /// Set the top hiBits bits.
  void setHighBits(unsigned hiBits) {
    return setBits(BitWidth - hiBits, BitWidth);
  }

  /// Set every bit to 0.
  void clearAllBits() {
    if (isSingleWord())
      U.VAL = 0;
    else
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
  }

  /// Set a given bit to 0.
  ///
  /// Set the given bit to 0 whose position is given as "bitPosition".
  void clearBit(unsigned BitPosition) {
    assert(BitPosition < BitWidth && "BitPosition out of range");
    WordType Mask = ~maskBit(BitPosition);
    if (isSingleWord())
      U.VAL &= Mask;
    else
      U.pVal[whichWord(BitPosition)] &= Mask;
  }

  /// Set bottom loBits bits to 0.
  void clearLowBits(unsigned loBits) {
    assert(loBits <= BitWidth && "More bits than bitwidth");
    APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
    *this &= Keep;
  }

  /// Set the sign bit to 0.
  void clearSignBit() {
    clearBit(BitWidth - 1);
  }

  /// Toggle every bit to its opposite value.
  void flipAllBits() {
    if (isSingleWord()) {
      U.VAL ^= WORDTYPE_MAX;
      clearUnusedBits();
    } else {
      flipAllBitsSlowCase();
    }
  }

  /// Toggles a given bit to its opposite value.
  ///
  /// Toggle a given bit to its opposite value whose position is given
  /// as "bitPosition".
  void flipBit(unsigned bitPosition);

  /// Negate this APInt in place.
  void negate() {
    flipAllBits();
    ++(*this);
  }

  /// Insert the bits from a smaller APInt starting at bitPosition.
  void insertBits(const APInt &SubBits, unsigned bitPosition);
  void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);

  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
  uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;

  /// @}
  /// \name Value Characterization Functions
  /// @{

  /// Return the number of bits in the APInt.
  unsigned getBitWidth() const { return BitWidth; }

  /// Get the number of words.
  ///
  /// Here one word's bitwidth equals to that of uint64_t.
  ///
  /// \returns the number of words to hold the integer value of this APInt.
  unsigned getNumWords() const { return getNumWords(BitWidth); }

  /// Get the number of words.
  ///
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
  ///
  /// \returns the number of words to hold the integer value with a given bit
  /// width.
  static unsigned getNumWords(unsigned BitWidth) {
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
  }

  /// Compute the number of active bits in the value
  ///
  /// This function returns the number of active bits which is defined as the
  /// bit width minus the number of leading zeros. This is used in several
  /// computations to see how "wide" the value is.
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }

  /// Compute the number of active words in the value of this APInt.
  ///
  /// This is used in conjunction with getActiveData to extract the raw value of
  /// the APInt.
  unsigned getActiveWords() const {
    unsigned numActiveBits = getActiveBits();
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
  }

  /// Get the minimum bit size for this signed APInt
  ///
  /// Computes the minimum bit width for this APInt while considering it to be a
  /// signed (and probably negative) value. If the value is not negative, this
  /// function returns the same value as getActiveBits()+1. Otherwise, it
  /// returns the smallest bit width that will retain the negative value. For
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
  /// for -1, this function will always return 1.
  unsigned getMinSignedBits() const {
    if (isNegative())
      return BitWidth - countLeadingOnes() + 1;
    return getActiveBits() + 1;
  }

  /// Get zero extended value
  ///
  /// This method attempts to return the value of this APInt as a zero extended
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
  /// uint64_t. Otherwise an assertion will result.
  uint64_t getZExtValue() const {
    if (isSingleWord())
      return U.VAL;
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
    return U.pVal[0];
  }

  /// Get sign extended value
  ///
  /// This method attempts to return the value of this APInt as a sign extended
  /// int64_t. The bit width must be <= 64 or the value must fit within an
  /// int64_t. Otherwise an assertion will result.
  int64_t getSExtValue() const {
    if (isSingleWord())
      return SignExtend64(U.VAL, BitWidth);
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    return int64_t(U.pVal[0]);
  }

  /// Get bits required for string value.
  ///
  /// This method determines how many bits are required to hold the APInt
  /// equivalent of the string given by \p str.
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);

  /// The APInt version of the countLeadingZeros functions in
  ///   MathExtras.h.
  ///
  /// It counts the number of zeros from the most significant bit to the first
  /// one bit.
  ///
  /// \returns BitWidth if the value is zero, otherwise returns the number of
  ///   zeros from the most significant bit to the first one bits.
  unsigned countLeadingZeros() const {
    if (isSingleWord()) {
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
    }
    return countLeadingZerosSlowCase();
  }

  /// Count the number of leading one bits.
  ///
  /// This function is an APInt version of the countLeadingOnes
  /// functions in MathExtras.h. It counts the number of ones from the most
  /// significant bit to the first zero bit.
  ///
  /// \returns 0 if the high order bit is not set, otherwise returns the number
  /// of 1 bits from the most significant to the least
  unsigned countLeadingOnes() const {
    if (isSingleWord())
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
    return countLeadingOnesSlowCase();
  }

  /// Computes the number of leading bits of this APInt that are equal to its
  /// sign bit.
  unsigned getNumSignBits() const {
    return isNegative() ? countLeadingOnes() : countLeadingZeros();
  }

  /// Count the number of trailing zero bits.
  ///
  /// This function is an APInt version of the countTrailingZeros
  /// functions in MathExtras.h. It counts the number of zeros from the least
  /// significant bit to the first set bit.
  ///
  /// \returns BitWidth if the value is zero, otherwise returns the number of
  /// zeros from the least significant bit to the first one bit.
  unsigned countTrailingZeros() const {
    if (isSingleWord())
      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
    return countTrailingZerosSlowCase();
  }

  /// Count the number of trailing one bits.
  ///
  /// This function is an APInt version of the countTrailingOnes
  /// functions in MathExtras.h. It counts the number of ones from the least
  /// significant bit to the first zero bit.
  ///
  /// \returns BitWidth if the value is all ones, otherwise returns the number
  /// of ones from the least significant bit to the first zero bit.
  unsigned countTrailingOnes() const {
    if (isSingleWord())
      return llvm::countTrailingOnes(U.VAL);
    return countTrailingOnesSlowCase();
  }

  /// Count the number of bits set.
  ///
  /// This function is an APInt version of the countPopulation functions
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
  ///
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
  unsigned countPopulation() const {
    if (isSingleWord())
      return llvm::countPopulation(U.VAL);
    return countPopulationSlowCase();
  }

  /// @}
  /// \name Conversion Functions
  /// @{
  void print(raw_ostream &OS, bool isSigned) const;

  /// Converts an APInt to a string and append it to Str.  Str is commonly a
  /// SmallString.
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
                bool formatAsCLiteral = false) const;

  /// Considers the APInt to be unsigned and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 16, or 36.
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, false, false);
  }

  /// Considers the APInt to be signed and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, true, false);
  }

  /// Return the APInt as a std::string.
  ///
  /// Note that this is an inefficient method.  It is better to pass in a
  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
  /// for the string.
  std::string toString(unsigned Radix, bool Signed) const;

  /// \returns a byte-swapped representation of this APInt Value.
  APInt byteSwap() const;

  /// \returns the value with the bit representation reversed of this APInt
  /// Value.
  APInt reverseBits() const;

  /// Converts this APInt to a double value.
  double roundToDouble(bool isSigned) const;

  /// Converts this unsigned APInt to a double value.
  double roundToDouble() const { return roundToDouble(false); }

  /// Converts this signed APInt to a double value.
  double signedRoundToDouble() const { return roundToDouble(true); }

  /// Converts APInt bits to a double
  ///
  /// The conversion does not do a translation from integer to double, it just
  /// re-interprets the bits as a double. Note that it is valid to do this on
  /// any bit width. Exactly 64 bits will be translated.
  double bitsToDouble() const {
    return BitsToDouble(getWord(0));
  }

  /// Converts APInt bits to a double
  ///
  /// The conversion does not do a translation from integer to float, it just
  /// re-interprets the bits as a float. Note that it is valid to do this on
  /// any bit width. Exactly 32 bits will be translated.
  float bitsToFloat() const {
    return BitsToFloat(getWord(0));
  }

  /// Converts a double to APInt bits.
  ///
  /// The conversion does not do a translation from double to integer, it just
  /// re-interprets the bits of the double.
  static APInt doubleToBits(double V) {
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
  }

  /// Converts a float to APInt bits.
  ///
  /// The conversion does not do a translation from float to integer, it just
  /// re-interprets the bits of the float.
  static APInt floatToBits(float V) {
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
  }

  /// @}
  /// \name Mathematics Operations
  /// @{

  /// \returns the floor log base 2 of this APInt.
  unsigned logBase2() const { return getActiveBits() -  1; }

  /// \returns the ceil log base 2 of this APInt.
  unsigned ceilLogBase2() const {
    APInt temp(*this);
    --temp;
    return temp.getActiveBits();
  }

  /// \returns the nearest log base 2 of this APInt. Ties round up.
  ///
  /// NOTE: When we have a BitWidth of 1, we define:
  ///
  ///   log2(0) = UINT32_MAX
  ///   log2(1) = 0
  ///
  /// to get around any mathematical concerns resulting from
  /// referencing 2 in a space where 2 does no exist.
  unsigned nearestLogBase2() const {
    // Special case when we have a bitwidth of 1. If VAL is 1, then we
    // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
    // UINT32_MAX.
    if (BitWidth == 1)
      return U.VAL - 1;

    // Handle the zero case.
    if (isNullValue())
      return UINT32_MAX;

    // The non-zero case is handled by computing:
    //
    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
    //
    // where x[i] is referring to the value of the ith bit of x.
    unsigned lg = logBase2();
    return lg + unsigned((*this)[lg - 1]);
  }

  /// \returns the log base 2 of this APInt if its an exact power of two, -1
  /// otherwise
  int32_t exactLogBase2() const {
    if (!isPowerOf2())
      return -1;
    return logBase2();
  }

  /// Compute the square root
  APInt sqrt() const;

  /// Get the absolute value;
  ///
  /// If *this is < 0 then return -(*this), otherwise *this;
  APInt abs() const {
    if (isNegative())
      return -(*this);
    return *this;
  }

  /// \returns the multiplicative inverse for a given modulo.
  APInt multiplicativeInverse(const APInt &modulo) const;

  /// @}
  /// \name Support for division by constant
  /// @{

  /// Calculate the magic number for signed division by a constant.
  struct ms;
  ms magic() const;

  /// Calculate the magic number for unsigned division by a constant.
  struct mu;
  mu magicu(unsigned LeadingZeros = 0) const;

  /// @}
  /// \name Building-block Operations for APInt and APFloat
  /// @{

  // These building block operations operate on a representation of arbitrary
  // precision, two's-complement, bignum integer values. They should be
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
  // generally a pointer to the base of an array of integer parts, representing
  // an unsigned bignum, and a count of how many parts there are.

  /// Sets the least significant part of a bignum to the input value, and zeroes
  /// out higher parts.
  static void tcSet(WordType *, WordType, unsigned);

  /// Assign one bignum to another.
  static void tcAssign(WordType *, const WordType *, unsigned);

  /// Returns true if a bignum is zero, false otherwise.
  static bool tcIsZero(const WordType *, unsigned);

  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
  static int tcExtractBit(const WordType *, unsigned bit);

  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
  /// significant bit of DST.  All high bits above srcBITS in DST are
  /// zero-filled.
  static void tcExtract(WordType *, unsigned dstCount,
                        const WordType *, unsigned srcBits,
                        unsigned srcLSB);

  /// Set the given bit of a bignum.  Zero-based.
  static void tcSetBit(WordType *, unsigned bit);

  /// Clear the given bit of a bignum.  Zero-based.
  static void tcClearBit(WordType *, unsigned bit);

  /// Returns the bit number of the least or most significant set bit of a
  /// number.  If the input number has no bits set -1U is returned.
  static unsigned tcLSB(const WordType *, unsigned n);
  static unsigned tcMSB(const WordType *parts, unsigned n);

  /// Negate a bignum in-place.
  static void tcNegate(WordType *, unsigned);

  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
  static WordType tcAdd(WordType *, const WordType *,
                        WordType carry, unsigned);
  /// DST += RHS.  Returns the carry flag.
  static WordType tcAddPart(WordType *, WordType, unsigned);

  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
  static WordType tcSubtract(WordType *, const WordType *,
                             WordType carry, unsigned);
  /// DST -= RHS.  Returns the carry flag.
  static WordType tcSubtractPart(WordType *, WordType, unsigned);

  /// DST += SRC * MULTIPLIER + PART   if add is true
  /// DST  = SRC * MULTIPLIER + PART   if add is false
  ///
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
  /// start at the same point, i.e. DST == SRC.
  ///
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
  /// result, and if all of the omitted higher parts were zero return zero,
  /// otherwise overflow occurred and return one.
  static int tcMultiplyPart(WordType *dst, const WordType *src,
                            WordType multiplier, WordType carry,
                            unsigned srcParts, unsigned dstParts,
                            bool add);

  /// DST = LHS * RHS, where DST has the same width as the operands and is
  /// filled with the least significant parts of the result.  Returns one if
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
  /// operands.
  static int tcMultiply(WordType *, const WordType *, const WordType *,
                        unsigned);

  /// DST = LHS * RHS, where DST has width the sum of the widths of the
  /// operands. No overflow occurs. DST must be disjoint from both operands.
  static void tcFullMultiply(WordType *, const WordType *,
                             const WordType *, unsigned, unsigned);

  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
  /// REMAINDER to the remainder, return zero.  i.e.
  ///
  ///  OLD_LHS = RHS * LHS + REMAINDER
  ///
  /// SCRATCH is a bignum of the same size as the operands and result for use by
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
  /// REMAINDER and SCRATCH must be distinct.
  static int tcDivide(WordType *lhs, const WordType *rhs,
                      WordType *remainder, WordType *scratch,
                      unsigned parts);

  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
  /// restrictions on Count.
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);

  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
  /// restrictions on Count.
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);

  /// The obvious AND, OR and XOR and complement operations.
  static void tcAnd(WordType *, const WordType *, unsigned);
  static void tcOr(WordType *, const WordType *, unsigned);
  static void tcXor(WordType *, const WordType *, unsigned);
  static void tcComplement(WordType *, unsigned);

  /// Comparison (unsigned) of two bignums.
  static int tcCompare(const WordType *, const WordType *, unsigned);

  /// Increment a bignum in-place.  Return the carry flag.
  static WordType tcIncrement(WordType *dst, unsigned parts) {
    return tcAddPart(dst, 1, parts);
  }

  /// Decrement a bignum in-place.  Return the borrow flag.
  static WordType tcDecrement(WordType *dst, unsigned parts) {
    return tcSubtractPart(dst, 1, parts);
  }

  /// Set the least significant BITS and clear the rest.
  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);

  /// debug method
  void dump() const;

  /// @}
};

/// Magic data for optimising signed division by a constant.
struct APInt::ms {
  APInt m;    ///< magic number
  unsigned s; ///< shift amount
};

/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
  APInt m;    ///< magic number
  bool a;     ///< add indicator
  unsigned s; ///< shift amount
};

inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }

inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }

/// Unary bitwise complement operator.
///
/// \returns an APInt that is the bitwise complement of \p v.
inline APInt operator~(APInt v) {
  v.flipAllBits();
  return v;
}

inline APInt operator&(APInt a, const APInt &b) {
  a &= b;
  return a;
}

inline APInt operator&(const APInt &a, APInt &&b) {
  b &= a;
  return std::move(b);
}

inline APInt operator&(APInt a, uint64_t RHS) {
  a &= RHS;
  return a;
}

inline APInt operator&(uint64_t LHS, APInt b) {
  b &= LHS;
  return b;
}

inline APInt operator|(APInt a, const APInt &b) {
  a |= b;
  return a;
}

inline APInt operator|(const APInt &a, APInt &&b) {
  b |= a;
  return std::move(b);
}

inline APInt operator|(APInt a, uint64_t RHS) {
  a |= RHS;
  return a;
}

inline APInt operator|(uint64_t LHS, APInt b) {
  b |= LHS;
  return b;
}

inline APInt operator^(APInt a, const APInt &b) {
  a ^= b;
  return a;
}

inline APInt operator^(const APInt &a, APInt &&b) {
  b ^= a;
  return std::move(b);
}

inline APInt operator^(APInt a, uint64_t RHS) {
  a ^= RHS;
  return a;
}

inline APInt operator^(uint64_t LHS, APInt b) {
  b ^= LHS;
  return b;
}

inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
  I.print(OS, true);
  return OS;
}

inline APInt operator-(APInt v) {
  v.negate();
  return v;
}

inline APInt operator+(APInt a, const APInt &b) {
  a += b;
  return a;
}

inline APInt operator+(const APInt &a, APInt &&b) {
  b += a;
  return std::move(b);
}

inline APInt operator+(APInt a, uint64_t RHS) {
  a += RHS;
  return a;
}

inline APInt operator+(uint64_t LHS, APInt b) {
  b += LHS;
  return b;
}

inline APInt operator-(APInt a, const APInt &b) {
  a -= b;
  return a;
}

inline APInt operator-(const APInt &a, APInt &&b) {
  b.negate();
  b += a;
  return std::move(b);
}

inline APInt operator-(APInt a, uint64_t RHS) {
  a -= RHS;
  return a;
}

inline APInt operator-(uint64_t LHS, APInt b) {
  b.negate();
  b += LHS;
  return b;
}

inline APInt operator*(APInt a, uint64_t RHS) {
  a *= RHS;
  return a;
}

inline APInt operator*(uint64_t LHS, APInt b) {
  b *= LHS;
  return b;
}


namespace APIntOps {

/// Determine the smaller of two APInts considered to be signed.
inline const APInt &smin(const APInt &A, const APInt &B) {
  return A.slt(B) ? A : B;
}

/// Determine the larger of two APInts considered to be signed.
inline const APInt &smax(const APInt &A, const APInt &B) {
  return A.sgt(B) ? A : B;
}

/// Determine the smaller of two APInts considered to be signed.
inline const APInt &umin(const APInt &A, const APInt &B) {
  return A.ult(B) ? A : B;
}

/// Determine the larger of two APInts considered to be unsigned.
inline const APInt &umax(const APInt &A, const APInt &B) {
  return A.ugt(B) ? A : B;
}

/// Compute GCD of two unsigned APInt values.
///
/// This function returns the greatest common divisor of the two APInt values
/// using Stein's algorithm.
///
/// \returns the greatest common divisor of A and B.
APInt GreatestCommonDivisor(APInt A, APInt B);

/// Converts the given APInt to a double value.
///
/// Treats the APInt as an unsigned value for conversion purposes.
inline double RoundAPIntToDouble(const APInt &APIVal) {
  return APIVal.roundToDouble();
}

/// Converts the given APInt to a double value.
///
/// Treats the APInt as a signed value for conversion purposes.
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
  return APIVal.signedRoundToDouble();
}

/// Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt &APIVal) {
  return float(RoundAPIntToDouble(APIVal));
}

/// Converts the given APInt to a float value.
///
/// Treast the APInt as a signed value for conversion purposes.
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
  return float(APIVal.signedRoundToDouble());
}

/// Converts the given double value into a APInt.
///
/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);

/// Converts a float value into a APInt.
///
/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
  return RoundDoubleToAPInt(double(Float), width);
}

/// Return A unsign-divided by B, rounded by the given rounding mode.
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);

/// Return A sign-divided by B, rounded by the given rounding mode.
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);

/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
/// (e.g. 32 for i32).
/// This function finds the smallest number n, such that
/// (a) n >= 0 and q(n) = 0, or
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
///     integers, belong to two different intervals [Rk, Rk+R),
///     where R = 2^BW, and k is an integer.
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
/// subtraction (treated as addition of negated numbers) would always
/// count as an overflow, but here we want to allow values to decrease
/// and increase as long as they are within the same interval.
/// Specifically, adding of two negative numbers should not cause an
/// overflow (as long as the magnitude does not exceed the bith width).
/// On the other hand, given a positive number, adding a negative
/// number to it can give a negative result, which would cause the
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
/// treated as a special case of an overflow.
///
/// This function returns None if after finding k that minimizes the
/// positive solution to q(n) = kR, both solutions are contained between
/// two consecutive integers.
///
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
/// virtue of *signed* overflow. This function will *not* find such an n,
/// however it may find a value of n satisfying the inequalities due to
/// an *unsigned* overflow (if the values are treated as unsigned).
/// To find a solution for a signed overflow, treat it as a problem of
/// finding an unsigned overflow with a range with of BW-1.
///
/// The returned value may have a different bit width from the input
/// coefficients.
Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
                                           unsigned RangeWidth);

/// Compare two values, and if they are different, return the position of the
/// most significant bit that is different in the values.
Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
                                                  const APInt &B);

} // End of APIntOps namespace

// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APInt &Arg);

/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
/// with the integer held in IntVal.
void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);

/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);

} // namespace llvm

#endif