1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
| //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseSet class derived from the version described in
// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
//
// A sparse set holds a small number of objects identified by integer keys from
// a moderately sized universe. The sparse set uses more memory than other
// containers in order to provide faster operations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSESET_H
#define LLVM_ADT_SPARSESET_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <utility>
namespace llvm {
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
/// be uniquely converted to a small integer less than the set's universe. This
/// class allows the set to hold values that differ from the set's key type as
/// long as an index can still be derived from the value. SparseSet never
/// directly compares ValueT, only their indices, so it can map keys to
/// arbitrary values. SparseSetValTraits computes the index from the value
/// object. To compute the index from a key, SparseSet uses a separate
/// KeyFunctorT template argument.
///
/// A simple type declaration, SparseSet<Type>, handles these cases:
/// - unsigned key, identity index, identity value
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
///
/// The type declaration SparseSet<Type, UnaryFunction> handles:
/// - unsigned key, remapped index, identity value (virtual registers)
/// - pointer key, pointer-derived index, identity value (node+ID)
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
///
/// Only other, unexpected cases require specializing SparseSetValTraits.
///
/// For best results, ValueT should not require a destructor.
///
template<typename ValueT>
struct SparseSetValTraits {
static unsigned getValIndex(const ValueT &Val) {
return Val.getSparseSetIndex();
}
};
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
/// generic implementation handles ValueT classes which either provide
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
///
template<typename KeyT, typename ValueT, typename KeyFunctorT>
struct SparseSetValFunctor {
unsigned operator()(const ValueT &Val) const {
return SparseSetValTraits<ValueT>::getValIndex(Val);
}
};
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
/// identity key/value sets.
template<typename KeyT, typename KeyFunctorT>
struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
unsigned operator()(const KeyT &Key) const {
return KeyFunctorT()(Key);
}
};
/// SparseSet - Fast set implmentation for objects that can be identified by
/// small unsigned keys.
///
/// SparseSet allocates memory proportional to the size of the key universe, so
/// it is not recommended for building composite data structures. It is useful
/// for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
/// clear() and iteration as fast as a vector. The find(), insert(), and
/// erase() operations are all constant time, and typically faster than a hash
/// table. The iteration order doesn't depend on numerical key values, it only
/// depends on the order of insert() and erase() operations. When no elements
/// have been erased, the iteration order is the insertion order.
///
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast
/// iteration independent on the size of the universe.
///
/// SparseSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT
/// template parameter provides a space/speed tradeoff for sets holding many
/// elements.
///
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
/// array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = identity<unsigned>,
typename SparseT = uint8_t>
class SparseSet {
static_assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed,
"SparseT must be an unsigned integer type");
using KeyT = typename KeyFunctorT::argument_type;
using DenseT = SmallVector<ValueT, 8>;
using size_type = unsigned;
DenseT Dense;
SparseT *Sparse = nullptr;
unsigned Universe = 0;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
public:
using value_type = ValueT;
using reference = ValueT &;
using const_reference = const ValueT &;
using pointer = ValueT *;
using const_pointer = const ValueT *;
SparseSet() = default;
SparseSet(const SparseSet &) = delete;
SparseSet &operator=(const SparseSet &) = delete;
~SparseSet() { free(Sparse); }
/// setUniverse - Set the universe size which determines the largest key the
/// set can hold. The universe must be sized before any elements can be
/// added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
free(Sparse);
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
Universe = U;
}
// Import trivial vector stuff from DenseT.
using iterator = typename DenseT::iterator;
using const_iterator = typename DenseT::const_iterator;
const_iterator begin() const { return Dense.begin(); }
const_iterator end() const { return Dense.end(); }
iterator begin() { return Dense.begin(); }
iterator end() { return Dense.end(); }
/// empty - Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return Dense.empty(); }
/// size - Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
size_type size() const { return Dense.size(); }
/// clear - Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
}
/// findIndex - Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
const unsigned FoundIdx = ValIndexOf(Dense[i]);
assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
if (Idx == FoundIdx)
return begin() + i;
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// find - Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
}
/// count - Returns 1 if this set contains an element identified by Key,
/// 0 otherwise.
///
size_type count(const KeyT &Key) const {
return find(Key) == end() ? 0 : 1;
}
/// insert - Attempts to insert a new element.
///
/// If Val is successfully inserted, return (I, true), where I is an iterator
/// pointing to the newly inserted element.
///
/// If the set already contains an element with the same key as Val, return
/// (I, false), where I is an iterator pointing to the existing element.
///
/// Insertion invalidates all iterators.
///
std::pair<iterator, bool> insert(const ValueT &Val) {
unsigned Idx = ValIndexOf(Val);
iterator I = findIndex(Idx);
if (I != end())
return std::make_pair(I, false);
Sparse[Idx] = size();
Dense.push_back(Val);
return std::make_pair(end() - 1, true);
}
/// array subscript - If an element already exists with this key, return it.
/// Otherwise, automatically construct a new value from Key, insert it,
/// and return the newly inserted element.
ValueT &operator[](const KeyT &Key) {
return *insert(ValueT(Key)).first;
}
ValueT pop_back_val() {
// Sparse does not need to be cleared, see find().
return Dense.pop_back_val();
}
/// erase - Erases an existing element identified by a valid iterator.
///
/// This invalidates all iterators, but erase() returns an iterator pointing
/// to the next element. This makes it possible to erase selected elements
/// while iterating over the set:
///
/// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that end() changes when elements are erased, unlike std::list.
///
iterator erase(iterator I) {
assert(unsigned(I - begin()) < size() && "Invalid iterator");
if (I != end() - 1) {
*I = Dense.back();
unsigned BackIdx = ValIndexOf(Dense.back());
assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
Sparse[BackIdx] = I - begin();
}
// This depends on SmallVector::pop_back() not invalidating iterators.
// std::vector::pop_back() doesn't give that guarantee.
Dense.pop_back();
return I;
}
/// erase - Erases an element identified by Key, if it exists.
///
/// @param Key The key identifying the element to erase.
/// @returns True when an element was erased, false if no element was found.
///
bool erase(const KeyT &Key) {
iterator I = find(Key);
if (I == end())
return false;
erase(I);
return true;
}
};
} // end namespace llvm
#endif // LLVM_ADT_SPARSESET_H
|