1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
| //===- Header.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_GSYM_HEADER_H
#define LLVM_DEBUGINFO_GSYM_HEADER_H
#include "llvm/Support/Error.h"
#include <cstddef>
#include <cstdint>
namespace llvm {
class raw_ostream;
class DataExtractor;
namespace gsym {
class FileWriter;
constexpr uint32_t GSYM_MAGIC = 0x4753594d; // 'GSYM'
constexpr uint32_t GSYM_CIGAM = 0x4d595347; // 'MYSG'
constexpr uint32_t GSYM_VERSION = 1;
constexpr size_t GSYM_MAX_UUID_SIZE = 20;
/// The GSYM header.
///
/// The GSYM header is found at the start of a stand alone GSYM file, or as
/// the first bytes in a section when GSYM is contained in a section of an
/// executable file (ELF, mach-o, COFF).
///
/// The structure is encoded exactly as it appears in the structure definition
/// with no gaps between members. Alignment should not change from system to
/// system as the members were laid out so that they shouldn't align
/// differently on different architectures.
///
/// When endianness of the system loading a GSYM file matches, the file can
/// be mmap'ed in and a pointer to the header can be cast to the first bytes
/// of the file (stand alone GSYM file) or section data (GSYM in a section).
/// When endianness is swapped, the Header::decode() function should be used to
/// decode the header.
struct Header {
/// The magic bytes should be set to GSYM_MAGIC. This helps detect if a file
/// is a GSYM file by scanning the first 4 bytes of a file or section.
/// This value might appear byte swapped
uint32_t Magic;
/// The version can number determines how the header is decoded and how each
/// InfoType in FunctionInfo is encoded/decoded. As version numbers increase,
/// "Magic" and "Version" members should always appear at offset zero and 4
/// respectively to ensure clients figure out if they can parse the format.
uint16_t Version;
/// The size in bytes of each address offset in the address offsets table.
uint8_t AddrOffSize;
/// The size in bytes of the UUID encoded in the "UUID" member.
uint8_t UUIDSize;
/// The 64 bit base address that all address offsets in the address offsets
/// table are relative to. Storing a full 64 bit address allows our address
/// offsets table to be smaller on disk.
uint64_t BaseAddress;
/// The number of addresses stored in the address offsets table.
uint32_t NumAddresses;
/// The file relative offset of the start of the string table for strings
/// contained in the GSYM file. If the GSYM in contained in a stand alone
/// file this will be the file offset of the start of the string table. If
/// the GSYM is contained in a section within an executable file, this can
/// be the offset of the first string used in the GSYM file and can possibly
/// span one or more executable string tables. This allows the strings to
/// share string tables in an ELF or mach-o file.
uint32_t StrtabOffset;
/// The size in bytes of the string table. For a stand alone GSYM file, this
/// will be the exact size in bytes of the string table. When the GSYM data
/// is in a section within an executable file, this size can span one or more
/// sections that contains strings. This allows any strings that are already
/// stored in the executable file to be re-used, and any extra strings could
/// be added to another string table and the string table offset and size
/// can be set to span all needed string tables.
uint32_t StrtabSize;
/// The UUID of the original executable file. This is stored to allow
/// matching a GSYM file to an executable file when symbolication is
/// required. Only the first "UUIDSize" bytes of the UUID are valid. Any
/// bytes in the UUID value that appear after the first UUIDSize bytes should
/// be set to zero.
uint8_t UUID[GSYM_MAX_UUID_SIZE];
/// Check if a header is valid and return an error if anything is wrong.
///
/// This function can be used prior to encoding a header to ensure it is
/// valid, or after decoding a header to ensure it is valid and supported.
///
/// Check a correctly byte swapped header for errors:
/// - check magic value
/// - check that version number is supported
/// - check that the address offset size is supported
/// - check that the UUID size is valid
///
/// \returns An error if anything is wrong in the header, or Error::success()
/// if there are no errors.
llvm::Error checkForError() const;
/// Decode an object from a binary data stream.
///
/// \param Data The binary stream to read the data from. This object must
/// have the data for the object starting at offset zero. The data
/// can contain more data than needed.
///
/// \returns A Header or an error describing the issue that was
/// encountered during decoding.
static llvm::Expected<Header> decode(DataExtractor &Data);
/// Encode this object into FileWriter stream.
///
/// \param O The binary stream to write the data to at the current file
/// position.
///
/// \returns An error object that indicates success or failure of the
/// encoding process.
llvm::Error encode(FileWriter &O) const;
};
bool operator==(const Header &LHS, const Header &RHS);
raw_ostream &operator<<(raw_ostream &OS, const llvm::gsym::Header &H);
} // namespace gsym
} // namespace llvm
#endif // #ifndef LLVM_DEBUGINFO_GSYM_HEADER_H
|