reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
// and dyn_cast_or_null<X>() templates.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_CASTING_H
#define LLVM_SUPPORT_CASTING_H

#include "llvm/Support/Compiler.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <memory>
#include <type_traits>

namespace llvm {

//===----------------------------------------------------------------------===//
//                          isa<x> Support Templates
//===----------------------------------------------------------------------===//

// Define a template that can be specialized by smart pointers to reflect the
// fact that they are automatically dereferenced, and are not involved with the
// template selection process...  the default implementation is a noop.
//
template<typename From> struct simplify_type {
  using SimpleType = From; // The real type this represents...

  // An accessor to get the real value...
  static SimpleType &getSimplifiedValue(From &Val) { return Val; }
};

template<typename From> struct simplify_type<const From> {
  using NonConstSimpleType = typename simplify_type<From>::SimpleType;
  using SimpleType =
      typename add_const_past_pointer<NonConstSimpleType>::type;
  using RetType =
      typename add_lvalue_reference_if_not_pointer<SimpleType>::type;

  static RetType getSimplifiedValue(const From& Val) {
    return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
  }
};

// The core of the implementation of isa<X> is here; To and From should be
// the names of classes.  This template can be specialized to customize the
// implementation of isa<> without rewriting it from scratch.
template <typename To, typename From, typename Enabler = void>
struct isa_impl {
  static inline bool doit(const From &Val) {
    return To::classof(&Val);
  }
};

/// Always allow upcasts, and perform no dynamic check for them.
template <typename To, typename From>
struct isa_impl<
    To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
  static inline bool doit(const From &) { return true; }
};

template <typename To, typename From> struct isa_impl_cl {
  static inline bool doit(const From &Val) {
    return isa_impl<To, From>::doit(Val);
  }
};

template <typename To, typename From> struct isa_impl_cl<To, const From> {
  static inline bool doit(const From &Val) {
    return isa_impl<To, From>::doit(Val);
  }
};

template <typename To, typename From>
struct isa_impl_cl<To, const std::unique_ptr<From>> {
  static inline bool doit(const std::unique_ptr<From> &Val) {
    assert(Val && "isa<> used on a null pointer");
    return isa_impl_cl<To, From>::doit(*Val);
  }
};

template <typename To, typename From> struct isa_impl_cl<To, From*> {
  static inline bool doit(const From *Val) {
    assert(Val && "isa<> used on a null pointer");
    return isa_impl<To, From>::doit(*Val);
  }
};

template <typename To, typename From> struct isa_impl_cl<To, From*const> {
  static inline bool doit(const From *Val) {
    assert(Val && "isa<> used on a null pointer");
    return isa_impl<To, From>::doit(*Val);
  }
};

template <typename To, typename From> struct isa_impl_cl<To, const From*> {
  static inline bool doit(const From *Val) {
    assert(Val && "isa<> used on a null pointer");
    return isa_impl<To, From>::doit(*Val);
  }
};

template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
  static inline bool doit(const From *Val) {
    assert(Val && "isa<> used on a null pointer");
    return isa_impl<To, From>::doit(*Val);
  }
};

template<typename To, typename From, typename SimpleFrom>
struct isa_impl_wrap {
  // When From != SimplifiedType, we can simplify the type some more by using
  // the simplify_type template.
  static bool doit(const From &Val) {
    return isa_impl_wrap<To, SimpleFrom,
      typename simplify_type<SimpleFrom>::SimpleType>::doit(
                          simplify_type<const From>::getSimplifiedValue(Val));
  }
};

template<typename To, typename FromTy>
struct isa_impl_wrap<To, FromTy, FromTy> {
  // When From == SimpleType, we are as simple as we are going to get.
  static bool doit(const FromTy &Val) {
    return isa_impl_cl<To,FromTy>::doit(Val);
  }
};

// isa<X> - Return true if the parameter to the template is an instance of the
// template type argument.  Used like this:
//
//  if (isa<Type>(myVal)) { ... }
//
template <class X, class Y> LLVM_NODISCARD inline bool isa(const Y &Val) {
  return isa_impl_wrap<X, const Y,
                       typename simplify_type<const Y>::SimpleType>::doit(Val);
}

// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
// is accepted.
//
template <class X, class Y>
LLVM_NODISCARD inline bool isa_and_nonnull(const Y &Val) {
  if (!Val)
    return false;
  return isa<X>(Val);
}

//===----------------------------------------------------------------------===//
//                          cast<x> Support Templates
//===----------------------------------------------------------------------===//

template<class To, class From> struct cast_retty;

// Calculate what type the 'cast' function should return, based on a requested
// type of To and a source type of From.
template<class To, class From> struct cast_retty_impl {
  using ret_type = To &;       // Normal case, return Ty&
};
template<class To, class From> struct cast_retty_impl<To, const From> {
  using ret_type = const To &; // Normal case, return Ty&
};

template<class To, class From> struct cast_retty_impl<To, From*> {
  using ret_type = To *;       // Pointer arg case, return Ty*
};

template<class To, class From> struct cast_retty_impl<To, const From*> {
  using ret_type = const To *; // Constant pointer arg case, return const Ty*
};

template<class To, class From> struct cast_retty_impl<To, const From*const> {
  using ret_type = const To *; // Constant pointer arg case, return const Ty*
};

template <class To, class From>
struct cast_retty_impl<To, std::unique_ptr<From>> {
private:
  using PointerType = typename cast_retty_impl<To, From *>::ret_type;
  using ResultType = typename std::remove_pointer<PointerType>::type;

public:
  using ret_type = std::unique_ptr<ResultType>;
};

template<class To, class From, class SimpleFrom>
struct cast_retty_wrap {
  // When the simplified type and the from type are not the same, use the type
  // simplifier to reduce the type, then reuse cast_retty_impl to get the
  // resultant type.
  using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
};

template<class To, class FromTy>
struct cast_retty_wrap<To, FromTy, FromTy> {
  // When the simplified type is equal to the from type, use it directly.
  using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
};

template<class To, class From>
struct cast_retty {
  using ret_type = typename cast_retty_wrap<
      To, From, typename simplify_type<From>::SimpleType>::ret_type;
};

// Ensure the non-simple values are converted using the simplify_type template
// that may be specialized by smart pointers...
//
template<class To, class From, class SimpleFrom> struct cast_convert_val {
  // This is not a simple type, use the template to simplify it...
  static typename cast_retty<To, From>::ret_type doit(From &Val) {
    return cast_convert_val<To, SimpleFrom,
      typename simplify_type<SimpleFrom>::SimpleType>::doit(
                          simplify_type<From>::getSimplifiedValue(Val));
  }
};

template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
  // This _is_ a simple type, just cast it.
  static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
    typename cast_retty<To, FromTy>::ret_type Res2
     = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
    return Res2;
  }
};

template <class X> struct is_simple_type {
  static const bool value =
      std::is_same<X, typename simplify_type<X>::SimpleType>::value;
};

// cast<X> - Return the argument parameter cast to the specified type.  This
// casting operator asserts that the type is correct, so it does not return null
// on failure.  It does not allow a null argument (use cast_or_null for that).
// It is typically used like this:
//
//  cast<Instruction>(myVal)->getParent()
//
template <class X, class Y>
inline typename std::enable_if<!is_simple_type<Y>::value,
                               typename cast_retty<X, const Y>::ret_type>::type
cast(const Y &Val) {
  assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!");
  return cast_convert_val<
      X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
}

template <class X, class Y>
inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
  assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!");
  return cast_convert_val<X, Y,
                          typename simplify_type<Y>::SimpleType>::doit(Val);
}

template <class X, class Y>
inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
  assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!");
  return cast_convert_val<X, Y*,
                          typename simplify_type<Y*>::SimpleType>::doit(Val);
}

template <class X, class Y>
inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
cast(std::unique_ptr<Y> &&Val) {
  assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!");
  using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
  return ret_type(
      cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
          Val.release()));
}

// cast_or_null<X> - Functionally identical to cast, except that a null value is
// accepted.
//
template <class X, class Y>
LLVM_NODISCARD inline
    typename std::enable_if<!is_simple_type<Y>::value,
                            typename cast_retty<X, const Y>::ret_type>::type
    cast_or_null(const Y &Val) {
  if (!Val)
    return nullptr;
  assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
  return cast<X>(Val);
}

template <class X, class Y>
LLVM_NODISCARD inline
    typename std::enable_if<!is_simple_type<Y>::value,
                            typename cast_retty<X, Y>::ret_type>::type
    cast_or_null(Y &Val) {
  if (!Val)
    return nullptr;
  assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
  return cast<X>(Val);
}

template <class X, class Y>
LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type
cast_or_null(Y *Val) {
  if (!Val) return nullptr;
  assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
  return cast<X>(Val);
}

template <class X, class Y>
inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
cast_or_null(std::unique_ptr<Y> &&Val) {
  if (!Val)
    return nullptr;
  return cast<X>(std::move(Val));
}

// dyn_cast<X> - Return the argument parameter cast to the specified type.  This
// casting operator returns null if the argument is of the wrong type, so it can
// be used to test for a type as well as cast if successful.  This should be
// used in the context of an if statement like this:
//
//  if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
//

template <class X, class Y>
LLVM_NODISCARD inline
    typename std::enable_if<!is_simple_type<Y>::value,
                            typename cast_retty<X, const Y>::ret_type>::type
    dyn_cast(const Y &Val) {
  return isa<X>(Val) ? cast<X>(Val) : nullptr;
}

template <class X, class Y>
LLVM_NODISCARD inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
  return isa<X>(Val) ? cast<X>(Val) : nullptr;
}

template <class X, class Y>
LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
  return isa<X>(Val) ? cast<X>(Val) : nullptr;
}

// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
// value is accepted.
//
template <class X, class Y>
LLVM_NODISCARD inline
    typename std::enable_if<!is_simple_type<Y>::value,
                            typename cast_retty<X, const Y>::ret_type>::type
    dyn_cast_or_null(const Y &Val) {
  return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}

template <class X, class Y>
LLVM_NODISCARD inline
    typename std::enable_if<!is_simple_type<Y>::value,
                            typename cast_retty<X, Y>::ret_type>::type
    dyn_cast_or_null(Y &Val) {
  return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}

template <class X, class Y>
LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type
dyn_cast_or_null(Y *Val) {
  return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}

// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
// taking ownership of the input pointer iff isa<X>(Val) is true.  If the
// cast is successful, From refers to nullptr on exit and the casted value
// is returned.  If the cast is unsuccessful, the function returns nullptr
// and From is unchanged.
template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
    -> decltype(cast<X>(Val)) {
  if (!isa<X>(Val))
    return nullptr;
  return cast<X>(std::move(Val));
}

template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
    -> decltype(cast<X>(Val)) {
  return unique_dyn_cast<X, Y>(Val);
}

// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
// a null value is accepted.
template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
    -> decltype(cast<X>(Val)) {
  if (!Val)
    return nullptr;
  return unique_dyn_cast<X, Y>(Val);
}

template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
    -> decltype(cast<X>(Val)) {
  return unique_dyn_cast_or_null<X, Y>(Val);
}

} // end namespace llvm

#endif // LLVM_SUPPORT_CASTING_H