reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
//===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the LiveRangeCalc class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveRangeCalc.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

// Reserve an address that indicates a value that is known to be "undef".
static VNInfo UndefVNI(0xbad, SlotIndex());

void LiveRangeCalc::resetLiveOutMap() {
  unsigned NumBlocks = MF->getNumBlockIDs();
  Seen.clear();
  Seen.resize(NumBlocks);
  EntryInfos.clear();
  Map.resize(NumBlocks);
}

void LiveRangeCalc::reset(const MachineFunction *mf,
                          SlotIndexes *SI,
                          MachineDominatorTree *MDT,
                          VNInfo::Allocator *VNIA) {
  MF = mf;
  MRI = &MF->getRegInfo();
  Indexes = SI;
  DomTree = MDT;
  Alloc = VNIA;
  resetLiveOutMap();
  LiveIn.clear();
}

static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
                          LiveRange &LR, const MachineOperand &MO) {
  const MachineInstr &MI = *MO.getParent();
  SlotIndex DefIdx =
      Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());

  // Create the def in LR. This may find an existing def.
  LR.createDeadDef(DefIdx, Alloc);
}

void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
  assert(MRI && Indexes && "call reset() first");

  // Step 1: Create minimal live segments for every definition of Reg.
  // Visit all def operands. If the same instruction has multiple defs of Reg,
  // createDeadDef() will deduplicate.
  const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
  unsigned Reg = LI.reg;
  for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
    if (!MO.isDef() && !MO.readsReg())
      continue;

    unsigned SubReg = MO.getSubReg();
    if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
      LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
                                        : MRI->getMaxLaneMaskForVReg(Reg);
      // If this is the first time we see a subregister def, initialize
      // subranges by creating a copy of the main range.
      if (!LI.hasSubRanges() && !LI.empty()) {
        LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
        LI.createSubRangeFrom(*Alloc, ClassMask, LI);
      }

      LI.refineSubRanges(*Alloc, SubMask,
                         [&MO, this](LiveInterval::SubRange &SR) {
                           if (MO.isDef())
                             createDeadDef(*Indexes, *Alloc, SR, MO);
                         },
                         *Indexes, TRI);
    }

    // Create the def in the main liverange. We do not have to do this if
    // subranges are tracked as we recreate the main range later in this case.
    if (MO.isDef() && !LI.hasSubRanges())
      createDeadDef(*Indexes, *Alloc, LI, MO);
  }

  // We may have created empty live ranges for partially undefined uses, we
  // can't keep them because we won't find defs in them later.
  LI.removeEmptySubRanges();

  // Step 2: Extend live segments to all uses, constructing SSA form as
  // necessary.
  if (LI.hasSubRanges()) {
    for (LiveInterval::SubRange &S : LI.subranges()) {
      LiveRangeCalc SubLRC;
      SubLRC.reset(MF, Indexes, DomTree, Alloc);
      SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
    }
    LI.clear();
    constructMainRangeFromSubranges(LI);
  } else {
    resetLiveOutMap();
    extendToUses(LI, Reg, LaneBitmask::getAll());
  }
}

void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
  // First create dead defs at all defs found in subranges.
  LiveRange &MainRange = LI;
  assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
         "Expect empty main liverange");

  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    for (const VNInfo *VNI : SR.valnos) {
      if (!VNI->isUnused() && !VNI->isPHIDef())
        MainRange.createDeadDef(VNI->def, *Alloc);
    }
  }
  resetLiveOutMap();
  extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
}

void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
  assert(MRI && Indexes && "call reset() first");

  // Visit all def operands. If the same instruction has multiple defs of Reg,
  // LR.createDeadDef() will deduplicate.
  for (MachineOperand &MO : MRI->def_operands(Reg))
    createDeadDef(*Indexes, *Alloc, LR, MO);
}

void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
                                 LiveInterval *LI) {
  SmallVector<SlotIndex, 4> Undefs;
  if (LI != nullptr)
    LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);

  // Visit all operands that read Reg. This may include partial defs.
  bool IsSubRange = !Mask.all();
  const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
  for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
    // Clear all kill flags. They will be reinserted after register allocation
    // by LiveIntervals::addKillFlags().
    if (MO.isUse())
      MO.setIsKill(false);
    // MO::readsReg returns "true" for subregister defs. This is for keeping
    // liveness of the entire register (i.e. for the main range of the live
    // interval). For subranges, definitions of non-overlapping subregisters
    // do not count as uses.
    if (!MO.readsReg() || (IsSubRange && MO.isDef()))
      continue;

    unsigned SubReg = MO.getSubReg();
    if (SubReg != 0) {
      LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
      if (MO.isDef())
        SLM = ~SLM;
      // Ignore uses not reading the current (sub)range.
      if ((SLM & Mask).none())
        continue;
    }

    // Determine the actual place of the use.
    const MachineInstr *MI = MO.getParent();
    unsigned OpNo = (&MO - &MI->getOperand(0));
    SlotIndex UseIdx;
    if (MI->isPHI()) {
      assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
      // The actual place where a phi operand is used is the end of the pred
      // MBB. PHI operands are paired: (Reg, PredMBB).
      UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
    } else {
      // Check for early-clobber redefs.
      bool isEarlyClobber = false;
      unsigned DefIdx;
      if (MO.isDef())
        isEarlyClobber = MO.isEarlyClobber();
      else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
        // FIXME: This would be a lot easier if tied early-clobber uses also
        // had an early-clobber flag.
        isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
      }
      UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
    }

    // MI is reading Reg. We may have visited MI before if it happens to be
    // reading Reg multiple times. That is OK, extend() is idempotent.
    extend(LR, UseIdx, Reg, Undefs);
  }
}

void LiveRangeCalc::updateFromLiveIns() {
  LiveRangeUpdater Updater;
  for (const LiveInBlock &I : LiveIn) {
    if (!I.DomNode)
      continue;
    MachineBasicBlock *MBB = I.DomNode->getBlock();
    assert(I.Value && "No live-in value found");
    SlotIndex Start, End;
    std::tie(Start, End) = Indexes->getMBBRange(MBB);

    if (I.Kill.isValid())
      // Value is killed inside this block.
      End = I.Kill;
    else {
      // The value is live-through, update LiveOut as well.
      // Defer the Domtree lookup until it is needed.
      assert(Seen.test(MBB->getNumber()));
      Map[MBB] = LiveOutPair(I.Value, nullptr);
    }
    Updater.setDest(&I.LR);
    Updater.add(Start, End, I.Value);
  }
  LiveIn.clear();
}

void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
                           ArrayRef<SlotIndex> Undefs) {
  assert(Use.isValid() && "Invalid SlotIndex");
  assert(Indexes && "Missing SlotIndexes");
  assert(DomTree && "Missing dominator tree");

  MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
  assert(UseMBB && "No MBB at Use");

  // Is there a def in the same MBB we can extend?
  auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
  if (EP.first != nullptr || EP.second)
    return;

  // Find the single reaching def, or determine if Use is jointly dominated by
  // multiple values, and we may need to create even more phi-defs to preserve
  // VNInfo SSA form.  Perform a search for all predecessor blocks where we
  // know the dominating VNInfo.
  if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
    return;

  // When there were multiple different values, we may need new PHIs.
  calculateValues();
}

// This function is called by a client after using the low-level API to add
// live-out and live-in blocks.  The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues() {
  assert(Indexes && "Missing SlotIndexes");
  assert(DomTree && "Missing dominator tree");
  updateSSA();
  updateFromLiveIns();
}

bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
                                 MachineBasicBlock &MBB, BitVector &DefOnEntry,
                                 BitVector &UndefOnEntry) {
  unsigned BN = MBB.getNumber();
  if (DefOnEntry[BN])
    return true;
  if (UndefOnEntry[BN])
    return false;

  auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
    for (MachineBasicBlock *S : B.successors())
      DefOnEntry[S->getNumber()] = true;
    DefOnEntry[BN] = true;
    return true;
  };

  SetVector<unsigned> WorkList;
  // Checking if the entry of MBB is reached by some def: add all predecessors
  // that are potentially defined-on-exit to the work list.
  for (MachineBasicBlock *P : MBB.predecessors())
    WorkList.insert(P->getNumber());

  for (unsigned i = 0; i != WorkList.size(); ++i) {
    // Determine if the exit from the block is reached by some def.
    unsigned N = WorkList[i];
    MachineBasicBlock &B = *MF->getBlockNumbered(N);
    if (Seen[N]) {
      const LiveOutPair &LOB = Map[&B];
      if (LOB.first != nullptr && LOB.first != &UndefVNI)
        return MarkDefined(B);
    }
    SlotIndex Begin, End;
    std::tie(Begin, End) = Indexes->getMBBRange(&B);
    // Treat End as not belonging to B.
    // If LR has a segment S that starts at the next block, i.e. [End, ...),
    // std::upper_bound will return the segment following S. Instead,
    // S should be treated as the first segment that does not overlap B.
    LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
                                              End.getPrevSlot());
    if (UB != LR.begin()) {
      LiveRange::Segment &Seg = *std::prev(UB);
      if (Seg.end > Begin) {
        // There is a segment that overlaps B. If the range is not explicitly
        // undefined between the end of the segment and the end of the block,
        // treat the block as defined on exit. If it is, go to the next block
        // on the work list.
        if (LR.isUndefIn(Undefs, Seg.end, End))
          continue;
        return MarkDefined(B);
      }
    }

    // No segment overlaps with this block. If this block is not defined on
    // entry, or it undefines the range, do not process its predecessors.
    if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
      UndefOnEntry[N] = true;
      continue;
    }
    if (DefOnEntry[N])
      return MarkDefined(B);

    // Still don't know: add all predecessors to the work list.
    for (MachineBasicBlock *P : B.predecessors())
      WorkList.insert(P->getNumber());
  }

  UndefOnEntry[BN] = true;
  return false;
}

bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
                                     SlotIndex Use, unsigned PhysReg,
                                     ArrayRef<SlotIndex> Undefs) {
  unsigned UseMBBNum = UseMBB.getNumber();

  // Block numbers where LR should be live-in.
  SmallVector<unsigned, 16> WorkList(1, UseMBBNum);

  // Remember if we have seen more than one value.
  bool UniqueVNI = true;
  VNInfo *TheVNI = nullptr;

  bool FoundUndef = false;

  // Using Seen as a visited set, perform a BFS for all reaching defs.
  for (unsigned i = 0; i != WorkList.size(); ++i) {
    MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);

#ifndef NDEBUG
    if (MBB->pred_empty()) {
      MBB->getParent()->verify();
      errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo())
             << " does not have a corresponding definition on every path:\n";
      const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
      if (MI != nullptr)
        errs() << Use << " " << *MI;
      report_fatal_error("Use not jointly dominated by defs.");
    }

    if (Register::isPhysicalRegister(PhysReg) && !MBB->isLiveIn(PhysReg)) {
      MBB->getParent()->verify();
      const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
      errs() << "The register " << printReg(PhysReg, TRI)
             << " needs to be live in to " << printMBBReference(*MBB)
             << ", but is missing from the live-in list.\n";
      report_fatal_error("Invalid global physical register");
    }
#endif
    FoundUndef |= MBB->pred_empty();

    for (MachineBasicBlock *Pred : MBB->predecessors()) {
       // Is this a known live-out block?
       if (Seen.test(Pred->getNumber())) {
         if (VNInfo *VNI = Map[Pred].first) {
           if (TheVNI && TheVNI != VNI)
             UniqueVNI = false;
           TheVNI = VNI;
         }
         continue;
       }

       SlotIndex Start, End;
       std::tie(Start, End) = Indexes->getMBBRange(Pred);

       // First time we see Pred.  Try to determine the live-out value, but set
       // it as null if Pred is live-through with an unknown value.
       auto EP = LR.extendInBlock(Undefs, Start, End);
       VNInfo *VNI = EP.first;
       FoundUndef |= EP.second;
       setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
       if (VNI) {
         if (TheVNI && TheVNI != VNI)
           UniqueVNI = false;
         TheVNI = VNI;
       }
       if (VNI || EP.second)
         continue;

       // No, we need a live-in value for Pred as well
       if (Pred != &UseMBB)
         WorkList.push_back(Pred->getNumber());
       else
          // Loopback to UseMBB, so value is really live through.
         Use = SlotIndex();
    }
  }

  LiveIn.clear();
  FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
  if (!Undefs.empty() && FoundUndef)
    UniqueVNI = false;

  // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
  // neither require it. Skip the sorting overhead for small updates.
  if (WorkList.size() > 4)
    array_pod_sort(WorkList.begin(), WorkList.end());

  // If a unique reaching def was found, blit in the live ranges immediately.
  if (UniqueVNI) {
    assert(TheVNI != nullptr && TheVNI != &UndefVNI);
    LiveRangeUpdater Updater(&LR);
    for (unsigned BN : WorkList) {
      SlotIndex Start, End;
      std::tie(Start, End) = Indexes->getMBBRange(BN);
      // Trim the live range in UseMBB.
      if (BN == UseMBBNum && Use.isValid())
        End = Use;
      else
        Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
      Updater.add(Start, End, TheVNI);
    }
    return true;
  }

  // Prepare the defined/undefined bit vectors.
  EntryInfoMap::iterator Entry;
  bool DidInsert;
  std::tie(Entry, DidInsert) = EntryInfos.insert(
      std::make_pair(&LR, std::make_pair(BitVector(), BitVector())));
  if (DidInsert) {
    // Initialize newly inserted entries.
    unsigned N = MF->getNumBlockIDs();
    Entry->second.first.resize(N);
    Entry->second.second.resize(N);
  }
  BitVector &DefOnEntry = Entry->second.first;
  BitVector &UndefOnEntry = Entry->second.second;

  // Multiple values were found, so transfer the work list to the LiveIn array
  // where UpdateSSA will use it as a work list.
  LiveIn.reserve(WorkList.size());
  for (unsigned BN : WorkList) {
    MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
    if (!Undefs.empty() &&
        !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
      continue;
    addLiveInBlock(LR, DomTree->getNode(MBB));
    if (MBB == &UseMBB)
      LiveIn.back().Kill = Use;
  }

  return false;
}

// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA() {
  assert(Indexes && "Missing SlotIndexes");
  assert(DomTree && "Missing dominator tree");

  // Interate until convergence.
  bool Changed;
  do {
    Changed = false;
    // Propagate live-out values down the dominator tree, inserting phi-defs
    // when necessary.
    for (LiveInBlock &I : LiveIn) {
      MachineDomTreeNode *Node = I.DomNode;
      // Skip block if the live-in value has already been determined.
      if (!Node)
        continue;
      MachineBasicBlock *MBB = Node->getBlock();
      MachineDomTreeNode *IDom = Node->getIDom();
      LiveOutPair IDomValue;

      // We need a live-in value to a block with no immediate dominator?
      // This is probably an unreachable block that has survived somehow.
      bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());

      // IDom dominates all of our predecessors, but it may not be their
      // immediate dominator. Check if any of them have live-out values that are
      // properly dominated by IDom. If so, we need a phi-def here.
      if (!needPHI) {
        IDomValue = Map[IDom->getBlock()];

        // Cache the DomTree node that defined the value.
        if (IDomValue.first && IDomValue.first != &UndefVNI &&
            !IDomValue.second) {
          Map[IDom->getBlock()].second = IDomValue.second =
            DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
        }

        for (MachineBasicBlock *Pred : MBB->predecessors()) {
          LiveOutPair &Value = Map[Pred];
          if (!Value.first || Value.first == IDomValue.first)
            continue;
          if (Value.first == &UndefVNI) {
            needPHI = true;
            break;
          }

          // Cache the DomTree node that defined the value.
          if (!Value.second)
            Value.second =
              DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));

          // This predecessor is carrying something other than IDomValue.
          // It could be because IDomValue hasn't propagated yet, or it could be
          // because MBB is in the dominance frontier of that value.
          if (DomTree->dominates(IDom, Value.second)) {
            needPHI = true;
            break;
          }
        }
      }

      // The value may be live-through even if Kill is set, as can happen when
      // we are called from extendRange. In that case LiveOutSeen is true, and
      // LiveOut indicates a foreign or missing value.
      LiveOutPair &LOP = Map[MBB];

      // Create a phi-def if required.
      if (needPHI) {
        Changed = true;
        assert(Alloc && "Need VNInfo allocator to create PHI-defs");
        SlotIndex Start, End;
        std::tie(Start, End) = Indexes->getMBBRange(MBB);
        LiveRange &LR = I.LR;
        VNInfo *VNI = LR.getNextValue(Start, *Alloc);
        I.Value = VNI;
        // This block is done, we know the final value.
        I.DomNode = nullptr;

        // Add liveness since updateFromLiveIns now skips this node.
        if (I.Kill.isValid()) {
          if (VNI)
            LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
        } else {
          if (VNI)
            LR.addSegment(LiveInterval::Segment(Start, End, VNI));
          LOP = LiveOutPair(VNI, Node);
        }
      } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
        // No phi-def here. Remember incoming value.
        I.Value = IDomValue.first;

        // If the IDomValue is killed in the block, don't propagate through.
        if (I.Kill.isValid())
          continue;

        // Propagate IDomValue if it isn't killed:
        // MBB is live-out and doesn't define its own value.
        if (LOP.first == IDomValue.first)
          continue;
        Changed = true;
        LOP = IDomValue;
      }
    }
  } while (Changed);
}

bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
                                       ArrayRef<SlotIndex> Defs,
                                       const SlotIndexes &Indexes) {
  const MachineFunction &MF = *MBB->getParent();
  BitVector DefBlocks(MF.getNumBlockIDs());
  for (SlotIndex I : Defs)
    DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());

  SetVector<unsigned> PredQueue;
  PredQueue.insert(MBB->getNumber());
  for (unsigned i = 0; i != PredQueue.size(); ++i) {
    unsigned BN = PredQueue[i];
    if (DefBlocks[BN])
      return true;
    const MachineBasicBlock *B = MF.getBlockNumbered(BN);
    for (const MachineBasicBlock *P : B->predecessors())
      PredQueue.insert(P->getNumber());
  }
  return false;
}