reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements basic block placement transformations using the CFG
// structure and branch probability estimates.
//
// The pass strives to preserve the structure of the CFG (that is, retain
// a topological ordering of basic blocks) in the absence of a *strong* signal
// to the contrary from probabilities. However, within the CFG structure, it
// attempts to choose an ordering which favors placing more likely sequences of
// blocks adjacent to each other.
//
// The algorithm works from the inner-most loop within a function outward, and
// at each stage walks through the basic blocks, trying to coalesce them into
// sequential chains where allowed by the CFG (or demanded by heavy
// probabilities). Finally, it walks the blocks in topological order, and the
// first time it reaches a chain of basic blocks, it schedules them in the
// function in-order.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "block-placement"

STATISTIC(NumCondBranches, "Number of conditional branches");
STATISTIC(NumUncondBranches, "Number of unconditional branches");
STATISTIC(CondBranchTakenFreq,
          "Potential frequency of taking conditional branches");
STATISTIC(UncondBranchTakenFreq,
          "Potential frequency of taking unconditional branches");

static cl::opt<unsigned> AlignAllBlock(
    "align-all-blocks",
    cl::desc("Force the alignment of all blocks in the function in log2 format "
             "(e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

static cl::opt<unsigned> AlignAllNonFallThruBlocks(
    "align-all-nofallthru-blocks",
    cl::desc("Force the alignment of all blocks that have no fall-through "
             "predecessors (i.e. don't add nops that are executed). In log2 "
             "format (e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

// FIXME: Find a good default for this flag and remove the flag.
static cl::opt<unsigned> ExitBlockBias(
    "block-placement-exit-block-bias",
    cl::desc("Block frequency percentage a loop exit block needs "
             "over the original exit to be considered the new exit."),
    cl::init(0), cl::Hidden);

// Definition:
// - Outlining: placement of a basic block outside the chain or hot path.

static cl::opt<unsigned> LoopToColdBlockRatio(
    "loop-to-cold-block-ratio",
    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
             "(frequency of block) is greater than this ratio"),
    cl::init(5), cl::Hidden);

static cl::opt<bool> ForceLoopColdBlock(
    "force-loop-cold-block",
    cl::desc("Force outlining cold blocks from loops."),
    cl::init(false), cl::Hidden);

static cl::opt<bool>
    PreciseRotationCost("precise-rotation-cost",
                        cl::desc("Model the cost of loop rotation more "
                                 "precisely by using profile data."),
                        cl::init(false), cl::Hidden);

static cl::opt<bool>
    ForcePreciseRotationCost("force-precise-rotation-cost",
                             cl::desc("Force the use of precise cost "
                                      "loop rotation strategy."),
                             cl::init(false), cl::Hidden);

static cl::opt<unsigned> MisfetchCost(
    "misfetch-cost",
    cl::desc("Cost that models the probabilistic risk of an instruction "
             "misfetch due to a jump comparing to falling through, whose cost "
             "is zero."),
    cl::init(1), cl::Hidden);

static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
                                      cl::desc("Cost of jump instructions."),
                                      cl::init(1), cl::Hidden);
static cl::opt<bool>
TailDupPlacement("tail-dup-placement",
              cl::desc("Perform tail duplication during placement. "
                       "Creates more fallthrough opportunites in "
                       "outline branches."),
              cl::init(true), cl::Hidden);

static cl::opt<bool>
BranchFoldPlacement("branch-fold-placement",
              cl::desc("Perform branch folding during placement. "
                       "Reduces code size."),
              cl::init(true), cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementThreshold(
    "tail-dup-placement-threshold",
    cl::desc("Instruction cutoff for tail duplication during layout. "
             "Tail merging during layout is forced to have a threshold "
             "that won't conflict."), cl::init(2),
    cl::Hidden);

// Heuristic for aggressive tail duplication.
static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
    "tail-dup-placement-aggressive-threshold",
    cl::desc("Instruction cutoff for aggressive tail duplication during "
             "layout. Used at -O3. Tail merging during layout is forced to "
             "have a threshold that won't conflict."), cl::init(4),
    cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementPenalty(
    "tail-dup-placement-penalty",
    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
             "Copying can increase fallthrough, but it also increases icache "
             "pressure. This parameter controls the penalty to account for that. "
             "Percent as integer."),
    cl::init(2),
    cl::Hidden);

// Heuristic for triangle chains.
static cl::opt<unsigned> TriangleChainCount(
    "triangle-chain-count",
    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
             "triangle tail duplication heuristic to kick in. 0 to disable."),
    cl::init(2),
    cl::Hidden);

extern cl::opt<unsigned> StaticLikelyProb;
extern cl::opt<unsigned> ProfileLikelyProb;

// Internal option used to control BFI display only after MBP pass.
// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
// -view-block-layout-with-bfi=
extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;

// Command line option to specify the name of the function for CFG dump
// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
extern cl::opt<std::string> ViewBlockFreqFuncName;

namespace {

class BlockChain;

/// Type for our function-wide basic block -> block chain mapping.
using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;

/// A chain of blocks which will be laid out contiguously.
///
/// This is the datastructure representing a chain of consecutive blocks that
/// are profitable to layout together in order to maximize fallthrough
/// probabilities and code locality. We also can use a block chain to represent
/// a sequence of basic blocks which have some external (correctness)
/// requirement for sequential layout.
///
/// Chains can be built around a single basic block and can be merged to grow
/// them. They participate in a block-to-chain mapping, which is updated
/// automatically as chains are merged together.
class BlockChain {
  /// The sequence of blocks belonging to this chain.
  ///
  /// This is the sequence of blocks for a particular chain. These will be laid
  /// out in-order within the function.
  SmallVector<MachineBasicBlock *, 4> Blocks;

  /// A handle to the function-wide basic block to block chain mapping.
  ///
  /// This is retained in each block chain to simplify the computation of child
  /// block chains for SCC-formation and iteration. We store the edges to child
  /// basic blocks, and map them back to their associated chains using this
  /// structure.
  BlockToChainMapType &BlockToChain;

public:
  /// Construct a new BlockChain.
  ///
  /// This builds a new block chain representing a single basic block in the
  /// function. It also registers itself as the chain that block participates
  /// in with the BlockToChain mapping.
  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
      : Blocks(1, BB), BlockToChain(BlockToChain) {
    assert(BB && "Cannot create a chain with a null basic block");
    BlockToChain[BB] = this;
  }

  /// Iterator over blocks within the chain.
  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;

  /// Beginning of blocks within the chain.
  iterator begin() { return Blocks.begin(); }
  const_iterator begin() const { return Blocks.begin(); }

  /// End of blocks within the chain.
  iterator end() { return Blocks.end(); }
  const_iterator end() const { return Blocks.end(); }

  bool remove(MachineBasicBlock* BB) {
    for(iterator i = begin(); i != end(); ++i) {
      if (*i == BB) {
        Blocks.erase(i);
        return true;
      }
    }
    return false;
  }

  /// Merge a block chain into this one.
  ///
  /// This routine merges a block chain into this one. It takes care of forming
  /// a contiguous sequence of basic blocks, updating the edge list, and
  /// updating the block -> chain mapping. It does not free or tear down the
  /// old chain, but the old chain's block list is no longer valid.
  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    assert(BB && "Can't merge a null block.");
    assert(!Blocks.empty() && "Can't merge into an empty chain.");

    // Fast path in case we don't have a chain already.
    if (!Chain) {
      assert(!BlockToChain[BB] &&
             "Passed chain is null, but BB has entry in BlockToChain.");
      Blocks.push_back(BB);
      BlockToChain[BB] = this;
      return;
    }

    assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
    assert(Chain->begin() != Chain->end());

    // Update the incoming blocks to point to this chain, and add them to the
    // chain structure.
    for (MachineBasicBlock *ChainBB : *Chain) {
      Blocks.push_back(ChainBB);
      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
      BlockToChain[ChainBB] = this;
    }
  }

#ifndef NDEBUG
  /// Dump the blocks in this chain.
  LLVM_DUMP_METHOD void dump() {
    for (MachineBasicBlock *MBB : *this)
      MBB->dump();
  }
#endif // NDEBUG

  /// Count of predecessors of any block within the chain which have not
  /// yet been scheduled.  In general, we will delay scheduling this chain
  /// until those predecessors are scheduled (or we find a sufficiently good
  /// reason to override this heuristic.)  Note that when forming loop chains,
  /// blocks outside the loop are ignored and treated as if they were already
  /// scheduled.
  ///
  /// Note: This field is reinitialized multiple times - once for each loop,
  /// and then once for the function as a whole.
  unsigned UnscheduledPredecessors = 0;
};

class MachineBlockPlacement : public MachineFunctionPass {
  /// A type for a block filter set.
  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;

  /// Pair struct containing basic block and taildup profitability
  struct BlockAndTailDupResult {
    MachineBasicBlock *BB;
    bool ShouldTailDup;
  };

  /// Triple struct containing edge weight and the edge.
  struct WeightedEdge {
    BlockFrequency Weight;
    MachineBasicBlock *Src;
    MachineBasicBlock *Dest;
  };

  /// work lists of blocks that are ready to be laid out
  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;

  /// Edges that have already been computed as optimal.
  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;

  /// Machine Function
  MachineFunction *F;

  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;

  /// A handle to the loop info.
  MachineLoopInfo *MLI;

  /// Preferred loop exit.
  /// Member variable for convenience. It may be removed by duplication deep
  /// in the call stack.
  MachineBasicBlock *PreferredLoopExit;

  /// A handle to the target's instruction info.
  const TargetInstrInfo *TII;

  /// A handle to the target's lowering info.
  const TargetLoweringBase *TLI;

  /// A handle to the post dominator tree.
  MachinePostDominatorTree *MPDT;

  /// Duplicator used to duplicate tails during placement.
  ///
  /// Placement decisions can open up new tail duplication opportunities, but
  /// since tail duplication affects placement decisions of later blocks, it
  /// must be done inline.
  TailDuplicator TailDup;

  /// Allocator and owner of BlockChain structures.
  ///
  /// We build BlockChains lazily while processing the loop structure of
  /// a function. To reduce malloc traffic, we allocate them using this
  /// slab-like allocator, and destroy them after the pass completes. An
  /// important guarantee is that this allocator produces stable pointers to
  /// the chains.
  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;

  /// Function wide BasicBlock to BlockChain mapping.
  ///
  /// This mapping allows efficiently moving from any given basic block to the
  /// BlockChain it participates in, if any. We use it to, among other things,
  /// allow implicitly defining edges between chains as the existing edges
  /// between basic blocks.
  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;

#ifndef NDEBUG
  /// The set of basic blocks that have terminators that cannot be fully
  /// analyzed.  These basic blocks cannot be re-ordered safely by
  /// MachineBlockPlacement, and we must preserve physical layout of these
  /// blocks and their successors through the pass.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
#endif

  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markChainSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  /// Decrease the UnscheduledPredecessors count for a single block, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markBlockSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *BB,
      const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  BranchProbability
  collectViableSuccessors(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter,
      SmallVector<MachineBasicBlock *, 4> &Successors);
  bool shouldPredBlockBeOutlined(
      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
      const BlockChain &Chain, const BlockFilterSet *BlockFilter,
      BranchProbability SuccProb, BranchProbability HotProb);
  bool repeatedlyTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *&LPred,
      const MachineBasicBlock *LoopHeaderBB,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt);
  bool maybeTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *LPred,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      bool &DuplicatedToLPred);
  bool hasBetterLayoutPredecessor(
      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
      const BlockChain &SuccChain, BranchProbability SuccProb,
      BranchProbability RealSuccProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  BlockAndTailDupResult selectBestSuccessor(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  MachineBasicBlock *selectBestCandidateBlock(
      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
  MachineBasicBlock *getFirstUnplacedBlock(
      const BlockChain &PlacedChain,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      const BlockFilterSet *BlockFilter);

  /// Add a basic block to the work list if it is appropriate.
  ///
  /// If the optional parameter BlockFilter is provided, only MBB
  /// present in the set will be added to the worklist. If nullptr
  /// is provided, no filtering occurs.
  void fillWorkLists(const MachineBasicBlock *MBB,
                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
                     const BlockFilterSet *BlockFilter);

  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
                  BlockFilterSet *BlockFilter = nullptr);
  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
                               const MachineBasicBlock *OldTop);
  bool hasViableTopFallthrough(const MachineBasicBlock *Top,
                               const BlockFilterSet &LoopBlockSet);
  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
                                    const BlockFilterSet &LoopBlockSet);
  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
                                  const MachineBasicBlock *OldTop,
                                  const MachineBasicBlock *ExitBB,
                                  const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTop(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopExit(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
      BlockFrequency &ExitFreq);
  BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
  void buildLoopChains(const MachineLoop &L);
  void rotateLoop(
      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
  void rotateLoopWithProfile(
      BlockChain &LoopChain, const MachineLoop &L,
      const BlockFilterSet &LoopBlockSet);
  void buildCFGChains();
  void optimizeBranches();
  void alignBlocks();
  /// Returns true if a block should be tail-duplicated to increase fallthrough
  /// opportunities.
  bool shouldTailDuplicate(MachineBasicBlock *BB);
  /// Check the edge frequencies to see if tail duplication will increase
  /// fallthroughs.
  bool isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Check for a trellis layout.
  bool isTrellis(const MachineBasicBlock *BB,
                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
                 const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Get the best successor given a trellis layout.
  BlockAndTailDupResult getBestTrellisSuccessor(
      const MachineBasicBlock *BB,
      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
      BranchProbability AdjustedSumProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);

  /// Get the best pair of non-conflicting edges.
  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
      const MachineBasicBlock *BB,
      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);

  /// Returns true if a block can tail duplicate into all unplaced
  /// predecessors. Filters based on loop.
  bool canTailDuplicateUnplacedPreds(
      const MachineBasicBlock *BB, MachineBasicBlock *Succ,
      const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Find chains of triangles to tail-duplicate where a global analysis works,
  /// but a local analysis would not find them.
  void precomputeTriangleChains();

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacement() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  bool allowTailDupPlacement() const {
    assert(F);
    return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    if (TailDupPlacement)
      AU.addRequired<MachinePostDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<TargetPassConfig>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacement::ID = 0;

char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
                      "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
                    "Branch Probability Basic Block Placement", false, false)

#ifndef NDEBUG
/// Helper to print the name of a MBB.
///
/// Only used by debug logging.
static std::string getBlockName(const MachineBasicBlock *BB) {
  std::string Result;
  raw_string_ostream OS(Result);
  OS << printMBBReference(*BB);
  OS << " ('" << BB->getName() << "')";
  OS.flush();
  return Result;
}
#endif

/// Mark a chain's successors as having one fewer preds.
///
/// When a chain is being merged into the "placed" chain, this routine will
/// quickly walk the successors of each block in the chain and mark them as
/// having one fewer active predecessor. It also adds any successors of this
/// chain which reach the zero-predecessor state to the appropriate worklist.
void MachineBlockPlacement::markChainSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
    const BlockFilterSet *BlockFilter) {
  // Walk all the blocks in this chain, marking their successors as having
  // a predecessor placed.
  for (MachineBasicBlock *MBB : Chain) {
    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
  }
}

/// Mark a single block's successors as having one fewer preds.
///
/// Under normal circumstances, this is only called by markChainSuccessors,
/// but if a block that was to be placed is completely tail-duplicated away,
/// and was duplicated into the chain end, we need to redo markBlockSuccessors
/// for just that block.
void MachineBlockPlacement::markBlockSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *MBB,
    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
  // Add any successors for which this is the only un-placed in-loop
  // predecessor to the worklist as a viable candidate for CFG-neutral
  // placement. No subsequent placement of this block will violate the CFG
  // shape, so we get to use heuristics to choose a favorable placement.
  for (MachineBasicBlock *Succ : MBB->successors()) {
    if (BlockFilter && !BlockFilter->count(Succ))
      continue;
    BlockChain &SuccChain = *BlockToChain[Succ];
    // Disregard edges within a fixed chain, or edges to the loop header.
    if (&Chain == &SuccChain || Succ == LoopHeaderBB)
      continue;

    // This is a cross-chain edge that is within the loop, so decrement the
    // loop predecessor count of the destination chain.
    if (SuccChain.UnscheduledPredecessors == 0 ||
        --SuccChain.UnscheduledPredecessors > 0)
      continue;

    auto *NewBB = *SuccChain.begin();
    if (NewBB->isEHPad())
      EHPadWorkList.push_back(NewBB);
    else
      BlockWorkList.push_back(NewBB);
  }
}

/// This helper function collects the set of successors of block
/// \p BB that are allowed to be its layout successors, and return
/// the total branch probability of edges from \p BB to those
/// blocks.
BranchProbability MachineBlockPlacement::collectViableSuccessors(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter,
    SmallVector<MachineBasicBlock *, 4> &Successors) {
  // Adjust edge probabilities by excluding edges pointing to blocks that is
  // either not in BlockFilter or is already in the current chain. Consider the
  // following CFG:
  //
  //     --->A
  //     |  / \
  //     | B   C
  //     |  \ / \
  //     ----D   E
  //
  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
  // A->C is chosen as a fall-through, D won't be selected as a successor of C
  // due to CFG constraint (the probability of C->D is not greater than
  // HotProb to break topo-order). If we exclude E that is not in BlockFilter
  // when calculating the probability of C->D, D will be selected and we
  // will get A C D B as the layout of this loop.
  auto AdjustedSumProb = BranchProbability::getOne();
  for (MachineBasicBlock *Succ : BB->successors()) {
    bool SkipSucc = false;
    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
      SkipSucc = true;
    } else {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (SuccChain == &Chain) {
        SkipSucc = true;
      } else if (Succ != *SuccChain->begin()) {
        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
                          << " -> Mid chain!\n");
        continue;
      }
    }
    if (SkipSucc)
      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
    else
      Successors.push_back(Succ);
  }

  return AdjustedSumProb;
}

/// The helper function returns the branch probability that is adjusted
/// or normalized over the new total \p AdjustedSumProb.
static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,
                       BranchProbability AdjustedSumProb) {
  BranchProbability SuccProb;
  uint32_t SuccProbN = OrigProb.getNumerator();
  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
  if (SuccProbN >= SuccProbD)
    SuccProb = BranchProbability::getOne();
  else
    SuccProb = BranchProbability(SuccProbN, SuccProbD);

  return SuccProb;
}

/// Check if \p BB has exactly the successors in \p Successors.
static bool
hasSameSuccessors(MachineBasicBlock &BB,
                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
  if (BB.succ_size() != Successors.size())
    return false;
  // We don't want to count self-loops
  if (Successors.count(&BB))
    return false;
  for (MachineBasicBlock *Succ : BB.successors())
    if (!Successors.count(Succ))
      return false;
  return true;
}

/// Check if a block should be tail duplicated to increase fallthrough
/// opportunities.
/// \p BB Block to check.
bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
  // Blocks with single successors don't create additional fallthrough
  // opportunities. Don't duplicate them. TODO: When conditional exits are
  // analyzable, allow them to be duplicated.
  bool IsSimple = TailDup.isSimpleBB(BB);

  if (BB->succ_size() == 1)
    return false;
  return TailDup.shouldTailDuplicate(IsSimple, *BB);
}

/// Compare 2 BlockFrequency's with a small penalty for \p A.
/// In order to be conservative, we apply a X% penalty to account for
/// increased icache pressure and static heuristics. For small frequencies
/// we use only the numerators to improve accuracy. For simplicity, we assume the
/// penalty is less than 100%
/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
                            uint64_t EntryFreq) {
  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
  BlockFrequency Gain = A - B;
  return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
}

/// Check the edge frequencies to see if tail duplication will increase
/// fallthroughs. It only makes sense to call this function when
/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
/// always locally profitable if we would have picked \p Succ without
/// considering duplication.
bool MachineBlockPlacement::isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // We need to do a probability calculation to make sure this is profitable.
  // First: does succ have a successor that post-dominates? This affects the
  // calculation. The 2 relevant cases are:
  //    BB         BB
  //    | \Qout    | \Qout
  //   P|  C       |P C
  //    =   C'     =   C'
  //    |  /Qin    |  /Qin
  //    | /        | /
  //    Succ       Succ
  //    / \        | \  V
  //  U/   =V      |U \
  //  /     \      =   D
  //  D      E     |  /
  //               | /
  //               |/
  //               PDom
  //  '=' : Branch taken for that CFG edge
  // In the second case, Placing Succ while duplicating it into C prevents the
  // fallthrough of Succ into either D or PDom, because they now have C as an
  // unplaced predecessor

  // Start by figuring out which case we fall into
  MachineBasicBlock *PDom = nullptr;
  SmallVector<MachineBasicBlock *, 4> SuccSuccs;
  // Only scan the relevant successors
  auto AdjustedSuccSumProb =
      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
  auto BBFreq = MBFI->getBlockFreq(BB);
  auto SuccFreq = MBFI->getBlockFreq(Succ);
  BlockFrequency P = BBFreq * PProb;
  BlockFrequency Qout = BBFreq * QProb;
  uint64_t EntryFreq = MBFI->getEntryFreq();
  // If there are no more successors, it is profitable to copy, as it strictly
  // increases fallthrough.
  if (SuccSuccs.size() == 0)
    return greaterWithBias(P, Qout, EntryFreq);

  auto BestSuccSucc = BranchProbability::getZero();
  // Find the PDom or the best Succ if no PDom exists.
  for (MachineBasicBlock *SuccSucc : SuccSuccs) {
    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
    if (Prob > BestSuccSucc)
      BestSuccSucc = Prob;
    if (PDom == nullptr)
      if (MPDT->dominates(SuccSucc, Succ)) {
        PDom = SuccSucc;
        break;
      }
  }
  // For the comparisons, we need to know Succ's best incoming edge that isn't
  // from BB.
  auto SuccBestPred = BlockFrequency(0);
  for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
    if (SuccPred == Succ || SuccPred == BB
        || BlockToChain[SuccPred] == &Chain
        || (BlockFilter && !BlockFilter->count(SuccPred)))
      continue;
    auto Freq = MBFI->getBlockFreq(SuccPred)
        * MBPI->getEdgeProbability(SuccPred, Succ);
    if (Freq > SuccBestPred)
      SuccBestPred = Freq;
  }
  // Qin is Succ's best unplaced incoming edge that isn't BB
  BlockFrequency Qin = SuccBestPred;
  // If it doesn't have a post-dominating successor, here is the calculation:
  //    BB        BB
  //    | \Qout   |  \
  //   P|  C      |   =
  //    =   C'    |    C
  //    |  /Qin   |     |
  //    | /       |     C' (+Succ)
  //    Succ      Succ /|
  //    / \       |  \/ |
  //  U/   =V     |  == |
  //  /     \     | /  \|
  //  D      E    D     E
  //  '=' : Branch taken for that CFG edge
  //  Cost in the first case is: P + V
  //  For this calculation, we always assume P > Qout. If Qout > P
  //  The result of this function will be ignored at the caller.
  //  Let F = SuccFreq - Qin
  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V

  if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
    BranchProbability UProb = BestSuccSucc;
    BranchProbability VProb = AdjustedSuccSumProb - UProb;
    BlockFrequency F = SuccFreq - Qin;
    BlockFrequency V = SuccFreq * VProb;
    BlockFrequency QinU = std::min(Qin, F) * UProb;
    BlockFrequency BaseCost = P + V;
    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
    return greaterWithBias(BaseCost, DupCost, EntryFreq);
  }
  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
  BranchProbability VProb = AdjustedSuccSumProb - UProb;
  BlockFrequency U = SuccFreq * UProb;
  BlockFrequency V = SuccFreq * VProb;
  BlockFrequency F = SuccFreq - Qin;
  // If there is a post-dominating successor, here is the calculation:
  // BB         BB                 BB          BB
  // | \Qout    |   \               | \Qout     |  \
  // |P C       |    =              |P C        |   =
  // =   C'     |P    C             =   C'      |P   C
  // |  /Qin    |      |            |  /Qin     |     |
  // | /        |      C' (+Succ)   | /         |     C' (+Succ)
  // Succ       Succ  /|            Succ        Succ /|
  // | \  V     |   \/ |            | \  V      |  \/ |
  // |U \       |U  /\ =?           |U =        |U /\ |
  // =   D      = =  =?|            |   D       | =  =|
  // |  /       |/     D            |  /        |/    D
  // | /        |     /             | =         |    /
  // |/         |    /              |/          |   =
  // Dom         Dom                Dom         Dom
  //  '=' : Branch taken for that CFG edge
  // The cost for taken branches in the first case is P + U
  // Let F = SuccFreq - Qin
  // The cost in the second case (assuming independence), given the layout:
  // BB, Succ, (C+Succ), D, Dom or the layout:
  // BB, Succ, D, Dom, (C+Succ)
  // is Qout + max(F, Qin) * U + min(F, Qin)
  // compare P + U vs Qout + P * U + Qin.
  //
  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
  //
  // For the 3rd case, the cost is P + 2 * V
  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
  if (UProb > AdjustedSuccSumProb / 2 &&
      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
                                  Chain, BlockFilter))
    // Cases 3 & 4
    return greaterWithBias(
        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
        EntryFreq);
  // Cases 1 & 2
  return greaterWithBias((P + U),
                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
                          std::max(Qin, F) * UProb),
                         EntryFreq);
}

/// Check for a trellis layout. \p BB is the upper part of a trellis if its
/// successors form the lower part of a trellis. A successor set S forms the
/// lower part of a trellis if all of the predecessors of S are either in S or
/// have all of S as successors. We ignore trellises where BB doesn't have 2
/// successors because for fewer than 2, it's trivial, and for 3 or greater they
/// are very uncommon and complex to compute optimally. Allowing edges within S
/// is not strictly a trellis, but the same algorithm works, so we allow it.
bool MachineBlockPlacement::isTrellis(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // Technically BB could form a trellis with branching factor higher than 2.
  // But that's extremely uncommon.
  if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
    return false;

  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  // To avoid reviewing the same predecessors twice.
  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;

  for (MachineBasicBlock *Succ : ViableSuccs) {
    int PredCount = 0;
    for (auto SuccPred : Succ->predecessors()) {
      // Allow triangle successors, but don't count them.
      if (Successors.count(SuccPred)) {
        // Make sure that it is actually a triangle.
        for (MachineBasicBlock *CheckSucc : SuccPred->successors())
          if (!Successors.count(CheckSucc))
            return false;
        continue;
      }
      const BlockChain *PredChain = BlockToChain[SuccPred];
      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
          PredChain == &Chain || PredChain == BlockToChain[Succ])
        continue;
      ++PredCount;
      // Perform the successor check only once.
      if (!SeenPreds.insert(SuccPred).second)
        continue;
      if (!hasSameSuccessors(*SuccPred, Successors))
        return false;
    }
    // If one of the successors has only BB as a predecessor, it is not a
    // trellis.
    if (PredCount < 1)
      return false;
  }
  return true;
}

/// Pick the highest total weight pair of edges that can both be laid out.
/// The edges in \p Edges[0] are assumed to have a different destination than
/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
/// the individual highest weight edges to the 2 different destinations, or in
/// case of a conflict, one of them should be replaced with a 2nd best edge.
std::pair<MachineBlockPlacement::WeightedEdge,
          MachineBlockPlacement::WeightedEdge>
MachineBlockPlacement::getBestNonConflictingEdges(
    const MachineBasicBlock *BB,
    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
        Edges) {
  // Sort the edges, and then for each successor, find the best incoming
  // predecessor. If the best incoming predecessors aren't the same,
  // then that is clearly the best layout. If there is a conflict, one of the
  // successors will have to fallthrough from the second best predecessor. We
  // compare which combination is better overall.

  // Sort for highest frequency.
  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };

  llvm::stable_sort(Edges[0], Cmp);
  llvm::stable_sort(Edges[1], Cmp);
  auto BestA = Edges[0].begin();
  auto BestB = Edges[1].begin();
  // Arrange for the correct answer to be in BestA and BestB
  // If the 2 best edges don't conflict, the answer is already there.
  if (BestA->Src == BestB->Src) {
    // Compare the total fallthrough of (Best + Second Best) for both pairs
    auto SecondBestA = std::next(BestA);
    auto SecondBestB = std::next(BestB);
    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
    if (BestAScore < BestBScore)
      BestA = SecondBestA;
    else
      BestB = SecondBestB;
  }
  // Arrange for the BB edge to be in BestA if it exists.
  if (BestB->Src == BB)
    std::swap(BestA, BestB);
  return std::make_pair(*BestA, *BestB);
}

/// Get the best successor from \p BB based on \p BB being part of a trellis.
/// We only handle trellises with 2 successors, so the algorithm is
/// straightforward: Find the best pair of edges that don't conflict. We find
/// the best incoming edge for each successor in the trellis. If those conflict,
/// we consider which of them should be replaced with the second best.
/// Upon return the two best edges will be in \p BestEdges. If one of the edges
/// comes from \p BB, it will be in \p BestEdges[0]
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::getBestTrellisSuccessor(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    BranchProbability AdjustedSumProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  BlockAndTailDupResult Result = {nullptr, false};
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());

  // We assume size 2 because it's common. For general n, we would have to do
  // the Hungarian algorithm, but it's not worth the complexity because more
  // than 2 successors is fairly uncommon, and a trellis even more so.
  if (Successors.size() != 2 || ViableSuccs.size() != 2)
    return Result;

  // Collect the edge frequencies of all edges that form the trellis.
  SmallVector<WeightedEdge, 8> Edges[2];
  int SuccIndex = 0;
  for (auto Succ : ViableSuccs) {
    for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
      // Skip any placed predecessors that are not BB
      if (SuccPred != BB)
        if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
            BlockToChain[SuccPred] == &Chain ||
            BlockToChain[SuccPred] == BlockToChain[Succ])
          continue;
      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
                                MBPI->getEdgeProbability(SuccPred, Succ);
      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
    }
    ++SuccIndex;
  }

  // Pick the best combination of 2 edges from all the edges in the trellis.
  WeightedEdge BestA, BestB;
  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);

  if (BestA.Src != BB) {
    // If we have a trellis, and BB doesn't have the best fallthrough edges,
    // we shouldn't choose any successor. We've already looked and there's a
    // better fallthrough edge for all the successors.
    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
    return Result;
  }

  // Did we pick the triangle edge? If tail-duplication is profitable, do
  // that instead. Otherwise merge the triangle edge now while we know it is
  // optimal.
  if (BestA.Dest == BestB.Src) {
    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
    // would be better.
    MachineBasicBlock *Succ1 = BestA.Dest;
    MachineBasicBlock *Succ2 = BestB.Dest;
    // Check to see if tail-duplication would be profitable.
    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
                              Chain, BlockFilter)) {
      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
                 dbgs() << "    Selected: " << getBlockName(Succ2)
                        << ", probability: " << Succ2Prob
                        << " (Tail Duplicate)\n");
      Result.BB = Succ2;
      Result.ShouldTailDup = true;
      return Result;
    }
  }
  // We have already computed the optimal edge for the other side of the
  // trellis.
  ComputedEdges[BestB.Src] = { BestB.Dest, false };

  auto TrellisSucc = BestA.Dest;
  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
             dbgs() << "    Selected: " << getBlockName(TrellisSucc)
                    << ", probability: " << SuccProb << " (Trellis)\n");
  Result.BB = TrellisSucc;
  return Result;
}

/// When the option allowTailDupPlacement() is on, this method checks if the
/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
/// into all of its unplaced, unfiltered predecessors, that are not BB.
bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
    const MachineBasicBlock *BB, MachineBasicBlock *Succ,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  if (!shouldTailDuplicate(Succ))
    return false;

  // For CFG checking.
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    // Make sure all unplaced and unfiltered predecessors can be
    // tail-duplicated into.
    // Skip any blocks that are already placed or not in this loop.
    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
        || BlockToChain[Pred] == &Chain)
      continue;
    if (!TailDup.canTailDuplicate(Succ, Pred)) {
      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
        // This will result in a trellis after tail duplication, so we don't
        // need to copy Succ into this predecessor. In the presence
        // of a trellis tail duplication can continue to be profitable.
        // For example:
        // A            A
        // |\           |\
        // | \          | \
        // |  C         |  C+BB
        // | /          |  |
        // |/           |  |
        // BB    =>     BB |
        // |\           |\/|
        // | \          |/\|
        // |  D         |  D
        // | /          | /
        // |/           |/
        // Succ         Succ
        //
        // After BB was duplicated into C, the layout looks like the one on the
        // right. BB and C now have the same successors. When considering
        // whether Succ can be duplicated into all its unplaced predecessors, we
        // ignore C.
        // We can do this because C already has a profitable fallthrough, namely
        // D. TODO(iteratee): ignore sufficiently cold predecessors for
        // duplication and for this test.
        //
        // This allows trellises to be laid out in 2 separate chains
        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
        // because it allows the creation of 2 fallthrough paths with links
        // between them, and we correctly identify the best layout for these
        // CFGs. We want to extend trellises that the user created in addition
        // to trellises created by tail-duplication, so we just look for the
        // CFG.
        continue;
      return false;
    }
  }
  return true;
}

/// Find chains of triangles where we believe it would be profitable to
/// tail-duplicate them all, but a local analysis would not find them.
/// There are 3 ways this can be profitable:
/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
///    longer chains)
/// 2) The chains are statically correlated. Branch probabilities have a very
///    U-shaped distribution.
///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
///    If the branches in a chain are likely to be from the same side of the
///    distribution as their predecessor, but are independent at runtime, this
///    transformation is profitable. (Because the cost of being wrong is a small
///    fixed cost, unlike the standard triangle layout where the cost of being
///    wrong scales with the # of triangles.)
/// 3) The chains are dynamically correlated. If the probability that a previous
///    branch was taken positively influences whether the next branch will be
///    taken
/// We believe that 2 and 3 are common enough to justify the small margin in 1.
void MachineBlockPlacement::precomputeTriangleChains() {
  struct TriangleChain {
    std::vector<MachineBasicBlock *> Edges;

    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
        : Edges({src, dst}) {}

    void append(MachineBasicBlock *dst) {
      assert(getKey()->isSuccessor(dst) &&
             "Attempting to append a block that is not a successor.");
      Edges.push_back(dst);
    }

    unsigned count() const { return Edges.size() - 1; }

    MachineBasicBlock *getKey() const {
      return Edges.back();
    }
  };

  if (TriangleChainCount == 0)
    return;

  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
  // Map from last block to the chain that contains it. This allows us to extend
  // chains as we find new triangles.
  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
  for (MachineBasicBlock &BB : *F) {
    // If BB doesn't have 2 successors, it doesn't start a triangle.
    if (BB.succ_size() != 2)
      continue;
    MachineBasicBlock *PDom = nullptr;
    for (MachineBasicBlock *Succ : BB.successors()) {
      if (!MPDT->dominates(Succ, &BB))
        continue;
      PDom = Succ;
      break;
    }
    // If BB doesn't have a post-dominating successor, it doesn't form a
    // triangle.
    if (PDom == nullptr)
      continue;
    // If PDom has a hint that it is low probability, skip this triangle.
    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
      continue;
    // If PDom isn't eligible for duplication, this isn't the kind of triangle
    // we're looking for.
    if (!shouldTailDuplicate(PDom))
      continue;
    bool CanTailDuplicate = true;
    // If PDom can't tail-duplicate into it's non-BB predecessors, then this
    // isn't the kind of triangle we're looking for.
    for (MachineBasicBlock* Pred : PDom->predecessors()) {
      if (Pred == &BB)
        continue;
      if (!TailDup.canTailDuplicate(PDom, Pred)) {
        CanTailDuplicate = false;
        break;
      }
    }
    // If we can't tail-duplicate PDom to its predecessors, then skip this
    // triangle.
    if (!CanTailDuplicate)
      continue;

    // Now we have an interesting triangle. Insert it if it's not part of an
    // existing chain.
    // Note: This cannot be replaced with a call insert() or emplace() because
    // the find key is BB, but the insert/emplace key is PDom.
    auto Found = TriangleChainMap.find(&BB);
    // If it is, remove the chain from the map, grow it, and put it back in the
    // map with the end as the new key.
    if (Found != TriangleChainMap.end()) {
      TriangleChain Chain = std::move(Found->second);
      TriangleChainMap.erase(Found);
      Chain.append(PDom);
      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
    } else {
      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;
    }
  }

  // Iterating over a DenseMap is safe here, because the only thing in the body
  // of the loop is inserting into another DenseMap (ComputedEdges).
  // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
  for (auto &ChainPair : TriangleChainMap) {
    TriangleChain &Chain = ChainPair.second;
    // Benchmarking has shown that due to branch correlation duplicating 2 or
    // more triangles is profitable, despite the calculations assuming
    // independence.
    if (Chain.count() < TriangleChainCount)
      continue;
    MachineBasicBlock *dst = Chain.Edges.back();
    Chain.Edges.pop_back();
    for (MachineBasicBlock *src : reverse(Chain.Edges)) {
      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
                        << getBlockName(dst)
                        << " as pre-computed based on triangles.\n");

      auto InsertResult = ComputedEdges.insert({src, {dst, true}});
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;

      dst = src;
    }
  }
}

// When profile is not present, return the StaticLikelyProb.
// When profile is available, we need to handle the triangle-shape CFG.
static BranchProbability getLayoutSuccessorProbThreshold(
      const MachineBasicBlock *BB) {
  if (!BB->getParent()->getFunction().hasProfileData())
    return BranchProbability(StaticLikelyProb, 100);
  if (BB->succ_size() == 2) {
    const MachineBasicBlock *Succ1 = *BB->succ_begin();
    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
      /* See case 1 below for the cost analysis. For BB->Succ to
       * be taken with smaller cost, the following needs to hold:
       *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
       *   So the threshold T in the calculation below
       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
       *   So T / (1 - T) = 2, Yielding T = 2/3
       * Also adding user specified branch bias, we have
       *   T = (2/3)*(ProfileLikelyProb/50)
       *     = (2*ProfileLikelyProb)/150)
       */
      return BranchProbability(2 * ProfileLikelyProb, 150);
    }
  }
  return BranchProbability(ProfileLikelyProb, 100);
}

/// Checks to see if the layout candidate block \p Succ has a better layout
/// predecessor than \c BB. If yes, returns true.
/// \p SuccProb: The probability adjusted for only remaining blocks.
///   Only used for logging
/// \p RealSuccProb: The un-adjusted probability.
/// \p Chain: The chain that BB belongs to and Succ is being considered for.
/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
///    considered
bool MachineBlockPlacement::hasBetterLayoutPredecessor(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    const BlockChain &SuccChain, BranchProbability SuccProb,
    BranchProbability RealSuccProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  // There isn't a better layout when there are no unscheduled predecessors.
  if (SuccChain.UnscheduledPredecessors == 0)
    return false;

  // There are two basic scenarios here:
  // -------------------------------------
  // Case 1: triangular shape CFG (if-then):
  //     BB
  //     | \
  //     |  \
  //     |   Pred
  //     |   /
  //     Succ
  // In this case, we are evaluating whether to select edge -> Succ, e.g.
  // set Succ as the layout successor of BB. Picking Succ as BB's
  // successor breaks the CFG constraints (FIXME: define these constraints).
  // With this layout, Pred BB
  // is forced to be outlined, so the overall cost will be cost of the
  // branch taken from BB to Pred, plus the cost of back taken branch
  // from Pred to Succ, as well as the additional cost associated
  // with the needed unconditional jump instruction from Pred To Succ.

  // The cost of the topological order layout is the taken branch cost
  // from BB to Succ, so to make BB->Succ a viable candidate, the following
  // must hold:
  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
  //      < freq(BB->Succ) *  taken_branch_cost.
  // Ignoring unconditional jump cost, we get
  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
  //    prob(BB->Succ) > 2 * prob(BB->Pred)
  //
  // When real profile data is available, we can precisely compute the
  // probability threshold that is needed for edge BB->Succ to be considered.
  // Without profile data, the heuristic requires the branch bias to be
  // a lot larger to make sure the signal is very strong (e.g. 80% default).
  // -----------------------------------------------------------------
  // Case 2: diamond like CFG (if-then-else):
  //     S
  //    / \
  //   |   \
  //  BB    Pred
  //   \    /
  //    Succ
  //    ..
  //
  // The current block is BB and edge BB->Succ is now being evaluated.
  // Note that edge S->BB was previously already selected because
  // prob(S->BB) > prob(S->Pred).
  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
  // choose Pred, we will have a topological ordering as shown on the left
  // in the picture below. If we choose Succ, we have the solution as shown
  // on the right:
  //
  //   topo-order:
  //
  //       S-----                             ---S
  //       |    |                             |  |
  //    ---BB   |                             |  BB
  //    |       |                             |  |
  //    |  Pred--                             |  Succ--
  //    |  |                                  |       |
  //    ---Succ                               ---Pred--
  //
  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
  //      = freq(S->Pred) + freq(S->BB)
  //
  // If we have profile data (i.e, branch probabilities can be trusted), the
  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
  // means the cost of topological order is greater.
  // When profile data is not available, however, we need to be more
  // conservative. If the branch prediction is wrong, breaking the topo-order
  // will actually yield a layout with large cost. For this reason, we need
  // strong biased branch at block S with Prob(S->BB) in order to select
  // BB->Succ. This is equivalent to looking the CFG backward with backward
  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
  // profile data).
  // --------------------------------------------------------------------------
  // Case 3: forked diamond
  //       S
  //      / \
  //     /   \
  //   BB    Pred
  //   | \   / |
  //   |  \ /  |
  //   |   X   |
  //   |  / \  |
  //   | /   \ |
  //   S1     S2
  //
  // The current block is BB and edge BB->S1 is now being evaluated.
  // As above S->BB was already selected because
  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
  //
  // topo-order:
  //
  //     S-------|                     ---S
  //     |       |                     |  |
  //  ---BB      |                     |  BB
  //  |          |                     |  |
  //  |  Pred----|                     |  S1----
  //  |  |                             |       |
  //  --(S1 or S2)                     ---Pred--
  //                                        |
  //                                       S2
  //
  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
  //    + min(freq(Pred->S1), freq(Pred->S2))
  // Non-topo-order cost:
  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
  // is 0. Then the non topo layout is better when
  // freq(S->Pred) < freq(BB->S1).
  // This is exactly what is checked below.
  // Note there are other shapes that apply (Pred may not be a single block,
  // but they all fit this general pattern.)
  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);

  // Make sure that a hot successor doesn't have a globally more
  // important predecessor.
  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
  bool BadCFGConflict = false;

  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
        (BlockFilter && !BlockFilter->count(Pred)) ||
        BlockToChain[Pred] == &Chain ||
        // This check is redundant except for look ahead. This function is
        // called for lookahead by isProfitableToTailDup when BB hasn't been
        // placed yet.
        (Pred == BB))
      continue;
    // Do backward checking.
    // For all cases above, we need a backward checking to filter out edges that
    // are not 'strongly' biased.
    // BB  Pred
    //  \ /
    //  Succ
    // We select edge BB->Succ if
    //      freq(BB->Succ) > freq(Succ) * HotProb
    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
    //      HotProb
    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
    // Case 1 is covered too, because the first equation reduces to:
    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
    BlockFrequency PredEdgeFreq =
        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
      BadCFGConflict = true;
      break;
    }
  }

  if (BadCFGConflict) {
    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
                      << SuccProb << " (prob) (non-cold CFG conflict)\n");
    return true;
  }

  return false;
}

/// Select the best successor for a block.
///
/// This looks across all successors of a particular block and attempts to
/// select the "best" one to be the layout successor. It only considers direct
/// successors which also pass the block filter. It will attempt to avoid
/// breaking CFG structure, but cave and break such structures in the case of
/// very hot successor edges.
///
/// \returns The best successor block found, or null if none are viable, along
/// with a boolean indicating if tail duplication is necessary.
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::selectBestSuccessor(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {
  const BranchProbability HotProb(StaticLikelyProb, 100);

  BlockAndTailDupResult BestSucc = { nullptr, false };
  auto BestProb = BranchProbability::getZero();

  SmallVector<MachineBasicBlock *, 4> Successors;
  auto AdjustedSumProb =
      collectViableSuccessors(BB, Chain, BlockFilter, Successors);

  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
                    << "\n");

  // if we already precomputed the best successor for BB, return that if still
  // applicable.
  auto FoundEdge = ComputedEdges.find(BB);
  if (FoundEdge != ComputedEdges.end()) {
    MachineBasicBlock *Succ = FoundEdge->second.BB;
    ComputedEdges.erase(FoundEdge);
    BlockChain *SuccChain = BlockToChain[Succ];
    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
        SuccChain != &Chain && Succ == *SuccChain->begin())
      return FoundEdge->second;
  }

  // if BB is part of a trellis, Use the trellis to determine the optimal
  // fallthrough edges
  if (isTrellis(BB, Successors, Chain, BlockFilter))
    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
                                   BlockFilter);

  // For blocks with CFG violations, we may be able to lay them out anyway with
  // tail-duplication. We keep this vector so we can perform the probability
  // calculations the minimum number of times.
  SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
      DupCandidates;
  for (MachineBasicBlock *Succ : Successors) {
    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
    BranchProbability SuccProb =
        getAdjustedProbability(RealSuccProb, AdjustedSumProb);

    BlockChain &SuccChain = *BlockToChain[Succ];
    // Skip the edge \c BB->Succ if block \c Succ has a better layout
    // predecessor that yields lower global cost.
    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
                                   Chain, BlockFilter)) {
      // If tail duplication would make Succ profitable, place it.
      if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
        DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
      continue;
    }

    LLVM_DEBUG(
        dbgs() << "    Candidate: " << getBlockName(Succ)
               << ", probability: " << SuccProb
               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
               << "\n");

    if (BestSucc.BB && BestProb >= SuccProb) {
      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
      continue;
    }

    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
    BestSucc.BB = Succ;
    BestProb = SuccProb;
  }
  // Handle the tail duplication candidates in order of decreasing probability.
  // Stop at the first one that is profitable. Also stop if they are less
  // profitable than BestSucc. Position is important because we preserve it and
  // prefer first best match. Here we aren't comparing in order, so we capture
  // the position instead.
  llvm::stable_sort(DupCandidates,
                    [](std::tuple<BranchProbability, MachineBasicBlock *> L,
                       std::tuple<BranchProbability, MachineBasicBlock *> R) {
                      return std::get<0>(L) > std::get<0>(R);
                    });
  for (auto &Tup : DupCandidates) {
    BranchProbability DupProb;
    MachineBasicBlock *Succ;
    std::tie(DupProb, Succ) = Tup;
    if (DupProb < BestProb)
      break;
    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
                        << ", probability: " << DupProb
                        << " (Tail Duplicate)\n");
      BestSucc.BB = Succ;
      BestSucc.ShouldTailDup = true;
      break;
    }
  }

  if (BestSucc.BB)
    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");

  return BestSucc;
}

/// Select the best block from a worklist.
///
/// This looks through the provided worklist as a list of candidate basic
/// blocks and select the most profitable one to place. The definition of
/// profitable only really makes sense in the context of a loop. This returns
/// the most frequently visited block in the worklist, which in the case of
/// a loop, is the one most desirable to be physically close to the rest of the
/// loop body in order to improve i-cache behavior.
///
/// \returns The best block found, or null if none are viable.
MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
  // Once we need to walk the worklist looking for a candidate, cleanup the
  // worklist of already placed entries.
  // FIXME: If this shows up on profiles, it could be folded (at the cost of
  // some code complexity) into the loop below.
  WorkList.erase(llvm::remove_if(WorkList,
                                 [&](MachineBasicBlock *BB) {
                                   return BlockToChain.lookup(BB) == &Chain;
                                 }),
                 WorkList.end());

  if (WorkList.empty())
    return nullptr;

  bool IsEHPad = WorkList[0]->isEHPad();

  MachineBasicBlock *BestBlock = nullptr;
  BlockFrequency BestFreq;
  for (MachineBasicBlock *MBB : WorkList) {
    assert(MBB->isEHPad() == IsEHPad &&
           "EHPad mismatch between block and work list.");

    BlockChain &SuccChain = *BlockToChain[MBB];
    if (&SuccChain == &Chain)
      continue;

    assert(SuccChain.UnscheduledPredecessors == 0 &&
           "Found CFG-violating block");

    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");

    // For ehpad, we layout the least probable first as to avoid jumping back
    // from least probable landingpads to more probable ones.
    //
    // FIXME: Using probability is probably (!) not the best way to achieve
    // this. We should probably have a more principled approach to layout
    // cleanup code.
    //
    // The goal is to get:
    //
    //                 +--------------------------+
    //                 |                          V
    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
    //
    // Rather than:
    //
    //                 +-------------------------------------+
    //                 V                                     |
    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
      continue;

    BestBlock = MBB;
    BestFreq = CandidateFreq;
  }

  return BestBlock;
}

/// Retrieve the first unplaced basic block.
///
/// This routine is called when we are unable to use the CFG to walk through
/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
/// We walk through the function's blocks in order, starting from the
/// LastUnplacedBlockIt. We update this iterator on each call to avoid
/// re-scanning the entire sequence on repeated calls to this routine.
MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    const BlockChain &PlacedChain,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    const BlockFilterSet *BlockFilter) {
  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
       ++I) {
    if (BlockFilter && !BlockFilter->count(&*I))
      continue;
    if (BlockToChain[&*I] != &PlacedChain) {
      PrevUnplacedBlockIt = I;
      // Now select the head of the chain to which the unplaced block belongs
      // as the block to place. This will force the entire chain to be placed,
      // and satisfies the requirements of merging chains.
      return *BlockToChain[&*I]->begin();
    }
  }
  return nullptr;
}

void MachineBlockPlacement::fillWorkLists(
    const MachineBasicBlock *MBB,
    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
    const BlockFilterSet *BlockFilter = nullptr) {
  BlockChain &Chain = *BlockToChain[MBB];
  if (!UpdatedPreds.insert(&Chain).second)
    return;

  assert(
      Chain.UnscheduledPredecessors == 0 &&
      "Attempting to place block with unscheduled predecessors in worklist.");
  for (MachineBasicBlock *ChainBB : Chain) {
    assert(BlockToChain[ChainBB] == &Chain &&
           "Block in chain doesn't match BlockToChain map.");
    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
      if (BlockFilter && !BlockFilter->count(Pred))
        continue;
      if (BlockToChain[Pred] == &Chain)
        continue;
      ++Chain.UnscheduledPredecessors;
    }
  }

  if (Chain.UnscheduledPredecessors != 0)
    return;

  MachineBasicBlock *BB = *Chain.begin();
  if (BB->isEHPad())
    EHPadWorkList.push_back(BB);
  else
    BlockWorkList.push_back(BB);
}

void MachineBlockPlacement::buildChain(
    const MachineBasicBlock *HeadBB, BlockChain &Chain,
    BlockFilterSet *BlockFilter) {
  assert(HeadBB && "BB must not be null.\n");
  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();

  const MachineBasicBlock *LoopHeaderBB = HeadBB;
  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
  MachineBasicBlock *BB = *std::prev(Chain.end());
  while (true) {
    assert(BB && "null block found at end of chain in loop.");
    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");


    // Look for the best viable successor if there is one to place immediately
    // after this block.
    auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
    MachineBasicBlock* BestSucc = Result.BB;
    bool ShouldTailDup = Result.ShouldTailDup;
    if (allowTailDupPlacement())
      ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));

    // If an immediate successor isn't available, look for the best viable
    // block among those we've identified as not violating the loop's CFG at
    // this point. This won't be a fallthrough, but it will increase locality.
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);

    if (!BestSucc) {
      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
      if (!BestSucc)
        break;

      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
                           "layout successor until the CFG reduces\n");
    }

    // Placement may have changed tail duplication opportunities.
    // Check for that now.
    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
      // If the chosen successor was duplicated into all its predecessors,
      // don't bother laying it out, just go round the loop again with BB as
      // the chain end.
      if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
                                       BlockFilter, PrevUnplacedBlockIt))
        continue;
    }

    // Place this block, updating the datastructures to reflect its placement.
    BlockChain &SuccChain = *BlockToChain[BestSucc];
    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
    // we selected a successor that didn't fit naturally into the CFG.
    SuccChain.UnscheduledPredecessors = 0;
    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
                      << getBlockName(BestSucc) << "\n");
    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
    Chain.merge(BestSucc, &SuccChain);
    BB = *std::prev(Chain.end());
  }

  LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
                    << getBlockName(*Chain.begin()) << "\n");
}

// If bottom of block BB has only one successor OldTop, in most cases it is
// profitable to move it before OldTop, except the following case:
//
//     -->OldTop<-
//     |    .    |
//     |    .    |
//     |    .    |
//     ---Pred   |
//          |    |
//         BB-----
//
// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
// layout the other successor below it, so it can't reduce taken branch.
// In this case we keep its original layout.
bool
MachineBlockPlacement::canMoveBottomBlockToTop(
    const MachineBasicBlock *BottomBlock,
    const MachineBasicBlock *OldTop) {
  if (BottomBlock->pred_size() != 1)
    return true;
  MachineBasicBlock *Pred = *BottomBlock->pred_begin();
  if (Pred->succ_size() != 2)
    return true;

  MachineBasicBlock *OtherBB = *Pred->succ_begin();
  if (OtherBB == BottomBlock)
    OtherBB = *Pred->succ_rbegin();
  if (OtherBB == OldTop)
    return false;

  return true;
}

// Find out the possible fall through frequence to the top of a loop.
BlockFrequency
MachineBlockPlacement::TopFallThroughFreq(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency MaxFreq = 0;
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
            (!SuccChain || Succ == *SuccChain->begin())) {
          TopOK = false;
          break;
        }
      }
      if (TopOK) {
        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
                                  MBPI->getEdgeProbability(Pred, Top);
        if (EdgeFreq > MaxFreq)
          MaxFreq = EdgeFreq;
      }
    }
  }
  return MaxFreq;
}

// Compute the fall through gains when move NewTop before OldTop.
//
// In following diagram, edges marked as "-" are reduced fallthrough, edges
// marked as "+" are increased fallthrough, this function computes
//
//      SUM(increased fallthrough) - SUM(decreased fallthrough)
//
//              |
//              | -
//              V
//        --->OldTop
//        |     .
//        |     .
//       +|     .    +
//        |   Pred --->
//        |     |-
//        |     V
//        --- NewTop <---
//              |-
//              V
//
BlockFrequency
MachineBlockPlacement::FallThroughGains(
    const MachineBasicBlock *NewTop,
    const MachineBasicBlock *OldTop,
    const MachineBasicBlock *ExitBB,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
  BlockFrequency FallThrough2Exit = 0;
  if (ExitBB)
    FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
        MBPI->getEdgeProbability(NewTop, ExitBB);
  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
      MBPI->getEdgeProbability(NewTop, OldTop);

  // Find the best Pred of NewTop.
   MachineBasicBlock *BestPred = nullptr;
   BlockFrequency FallThroughFromPred = 0;
   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
     if (!LoopBlockSet.count(Pred))
       continue;
     BlockChain *PredChain = BlockToChain[Pred];
     if (!PredChain || Pred == *std::prev(PredChain->end())) {
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
           MBPI->getEdgeProbability(Pred, NewTop);
       if (EdgeFreq > FallThroughFromPred) {
         FallThroughFromPred = EdgeFreq;
         BestPred = Pred;
       }
     }
   }

   // If NewTop is not placed after Pred, another successor can be placed
   // after Pred.
   BlockFrequency NewFreq = 0;
   if (BestPred) {
     for (MachineBasicBlock *Succ : BestPred->successors()) {
       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
         continue;
       if (ComputedEdges.find(Succ) != ComputedEdges.end())
         continue;
       BlockChain *SuccChain = BlockToChain[Succ];
       if ((SuccChain && (Succ != *SuccChain->begin())) ||
           (SuccChain == BlockToChain[BestPred]))
         continue;
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
           MBPI->getEdgeProbability(BestPred, Succ);
       if (EdgeFreq > NewFreq)
         NewFreq = EdgeFreq;
     }
     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
         MBPI->getEdgeProbability(BestPred, NewTop);
     if (NewFreq > OrigEdgeFreq) {
       // If NewTop is not the best successor of Pred, then Pred doesn't
       // fallthrough to NewTop. So there is no FallThroughFromPred and
       // NewFreq.
       NewFreq = 0;
       FallThroughFromPred = 0;
     }
   }

   BlockFrequency Result = 0;
   BlockFrequency Gains = BackEdgeFreq + NewFreq;
   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
       FallThroughFromPred;
   if (Gains > Lost)
     Result = Gains - Lost;
   return Result;
}

/// Helper function of findBestLoopTop. Find the best loop top block
/// from predecessors of old top.
///
/// Look for a block which is strictly better than the old top for laying
/// out before the old top of the loop. This looks for only two patterns:
///
///     1. a block has only one successor, the old loop top
///
///        Because such a block will always result in an unconditional jump,
///        rotating it in front of the old top is always profitable.
///
///     2. a block has two successors, one is old top, another is exit
///        and it has more than one predecessors
///
///        If it is below one of its predecessors P, only P can fall through to
///        it, all other predecessors need a jump to it, and another conditional
///        jump to loop header. If it is moved before loop header, all its
///        predecessors jump to it, then fall through to loop header. So all its
///        predecessors except P can reduce one taken branch.
///        At the same time, move it before old top increases the taken branch
///        to loop exit block, so the reduced taken branch will be compared with
///        the increased taken branch to the loop exit block.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTopHelper(
    MachineBasicBlock *OldTop,
    const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  // Check that the header hasn't been fused with a preheader block due to
  // crazy branches. If it has, we need to start with the header at the top to
  // prevent pulling the preheader into the loop body.
  BlockChain &HeaderChain = *BlockToChain[OldTop];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return OldTop;

  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
                    << "\n");

  BlockFrequency BestGains = 0;
  MachineBasicBlock *BestPred = nullptr;
  for (MachineBasicBlock *Pred : OldTop->predecessors()) {
    if (!LoopBlockSet.count(Pred))
      continue;
    if (Pred == L.getHeader())
      continue;
    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
                      << Pred->succ_size() << " successors, ";
               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
    if (Pred->succ_size() > 2)
      continue;

    MachineBasicBlock *OtherBB = nullptr;
    if (Pred->succ_size() == 2) {
      OtherBB = *Pred->succ_begin();
      if (OtherBB == OldTop)
        OtherBB = *Pred->succ_rbegin();
    }

    if (!canMoveBottomBlockToTop(Pred, OldTop))
      continue;

    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
                                            LoopBlockSet);
    if ((Gains > 0) && (Gains > BestGains ||
        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
      BestPred = Pred;
      BestGains = Gains;
    }
  }

  // If no direct predecessor is fine, just use the loop header.
  if (!BestPred) {
    LLVM_DEBUG(dbgs() << "    final top unchanged\n");
    return OldTop;
  }

  // Walk backwards through any straight line of predecessors.
  while (BestPred->pred_size() == 1 &&
         (*BestPred->pred_begin())->succ_size() == 1 &&
         *BestPred->pred_begin() != L.getHeader())
    BestPred = *BestPred->pred_begin();

  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
  return BestPred;
}

/// Find the best loop top block for layout.
///
/// This function iteratively calls findBestLoopTopHelper, until no new better
/// BB can be found.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
                                       const BlockFilterSet &LoopBlockSet) {
  // Placing the latch block before the header may introduce an extra branch
  // that skips this block the first time the loop is executed, which we want
  // to avoid when optimising for size.
  // FIXME: in theory there is a case that does not introduce a new branch,
  // i.e. when the layout predecessor does not fallthrough to the loop header.
  // In practice this never happens though: there always seems to be a preheader
  // that can fallthrough and that is also placed before the header.
  if (F->getFunction().hasOptSize())
    return L.getHeader();

  MachineBasicBlock *OldTop = nullptr;
  MachineBasicBlock *NewTop = L.getHeader();
  while (NewTop != OldTop) {
    OldTop = NewTop;
    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
    if (NewTop != OldTop)
      ComputedEdges[NewTop] = { OldTop, false };
  }
  return NewTop;
}

/// Find the best loop exiting block for layout.
///
/// This routine implements the logic to analyze the loop looking for the best
/// block to layout at the top of the loop. Typically this is done to maximize
/// fallthrough opportunities.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
                                        const BlockFilterSet &LoopBlockSet,
                                        BlockFrequency &ExitFreq) {
  // We don't want to layout the loop linearly in all cases. If the loop header
  // is just a normal basic block in the loop, we want to look for what block
  // within the loop is the best one to layout at the top. However, if the loop
  // header has be pre-merged into a chain due to predecessors not having
  // analyzable branches, *and* the predecessor it is merged with is *not* part
  // of the loop, rotating the header into the middle of the loop will create
  // a non-contiguous range of blocks which is Very Bad. So start with the
  // header and only rotate if safe.
  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return nullptr;

  BlockFrequency BestExitEdgeFreq;
  unsigned BestExitLoopDepth = 0;
  MachineBasicBlock *ExitingBB = nullptr;
  // If there are exits to outer loops, loop rotation can severely limit
  // fallthrough opportunities unless it selects such an exit. Keep a set of
  // blocks where rotating to exit with that block will reach an outer loop.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;

  LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
                    << getBlockName(L.getHeader()) << "\n");
  for (MachineBasicBlock *MBB : L.getBlocks()) {
    BlockChain &Chain = *BlockToChain[MBB];
    // Ensure that this block is at the end of a chain; otherwise it could be
    // mid-way through an inner loop or a successor of an unanalyzable branch.
    if (MBB != *std::prev(Chain.end()))
      continue;

    // Now walk the successors. We need to establish whether this has a viable
    // exiting successor and whether it has a viable non-exiting successor.
    // We store the old exiting state and restore it if a viable looping
    // successor isn't found.
    MachineBasicBlock *OldExitingBB = ExitingBB;
    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    bool HasLoopingSucc = false;
    for (MachineBasicBlock *Succ : MBB->successors()) {
      if (Succ->isEHPad())
        continue;
      if (Succ == MBB)
        continue;
      BlockChain &SuccChain = *BlockToChain[Succ];
      // Don't split chains, either this chain or the successor's chain.
      if (&Chain == &SuccChain) {
        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (chain conflict)\n");
        continue;
      }

      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
      if (LoopBlockSet.count(Succ)) {
        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (" << SuccProb << ")\n");
        HasLoopingSucc = true;
        continue;
      }

      unsigned SuccLoopDepth = 0;
      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
        SuccLoopDepth = ExitLoop->getLoopDepth();
        if (ExitLoop->contains(&L))
          BlocksExitingToOuterLoop.insert(MBB);
      }

      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                        << getBlockName(Succ) << " [L:" << SuccLoopDepth
                        << "] (";
                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
      // Note that we bias this toward an existing layout successor to retain
      // incoming order in the absence of better information. The exit must have
      // a frequency higher than the current exit before we consider breaking
      // the layout.
      BranchProbability Bias(100 - ExitBlockBias, 100);
      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
          ExitEdgeFreq > BestExitEdgeFreq ||
          (MBB->isLayoutSuccessor(Succ) &&
           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
        BestExitEdgeFreq = ExitEdgeFreq;
        ExitingBB = MBB;
      }
    }

    if (!HasLoopingSucc) {
      // Restore the old exiting state, no viable looping successor was found.
      ExitingBB = OldExitingBB;
      BestExitEdgeFreq = OldBestExitEdgeFreq;
    }
  }
  // Without a candidate exiting block or with only a single block in the
  // loop, just use the loop header to layout the loop.
  if (!ExitingBB) {
    LLVM_DEBUG(
        dbgs() << "    No other candidate exit blocks, using loop header\n");
    return nullptr;
  }
  if (L.getNumBlocks() == 1) {
    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
    return nullptr;
  }

  // Also, if we have exit blocks which lead to outer loops but didn't select
  // one of them as the exiting block we are rotating toward, disable loop
  // rotation altogether.
  if (!BlocksExitingToOuterLoop.empty() &&
      !BlocksExitingToOuterLoop.count(ExitingBB))
    return nullptr;

  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
                    << "\n");
  ExitFreq = BestExitEdgeFreq;
  return ExitingBB;
}

/// Check if there is a fallthrough to loop header Top.
///
///   1. Look for a Pred that can be layout before Top.
///   2. Check if Top is the most possible successor of Pred.
bool
MachineBlockPlacement::hasViableTopFallthrough(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
          TopOK = false;
          break;
        }
      }
      if (TopOK)
        return true;
    }
  }
  return false;
}

/// Attempt to rotate an exiting block to the bottom of the loop.
///
/// Once we have built a chain, try to rotate it to line up the hot exit block
/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
/// branches. For example, if the loop has fallthrough into its header and out
/// of its bottom already, don't rotate it.
void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
                                       const MachineBasicBlock *ExitingBB,
                                       BlockFrequency ExitFreq,
                                       const BlockFilterSet &LoopBlockSet) {
  if (!ExitingBB)
    return;

  MachineBasicBlock *Top = *LoopChain.begin();
  MachineBasicBlock *Bottom = *std::prev(LoopChain.end());

  // If ExitingBB is already the last one in a chain then nothing to do.
  if (Bottom == ExitingBB)
    return;

  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);

  // If the header has viable fallthrough, check whether the current loop
  // bottom is a viable exiting block. If so, bail out as rotating will
  // introduce an unnecessary branch.
  if (ViableTopFallthrough) {
    for (MachineBasicBlock *Succ : Bottom->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin()))
        return;
    }

    // Rotate will destroy the top fallthrough, we need to ensure the new exit
    // frequency is larger than top fallthrough.
    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
    if (FallThrough2Top >= ExitFreq)
      return;
  }

  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
  if (ExitIt == LoopChain.end())
    return;

  // Rotating a loop exit to the bottom when there is a fallthrough to top
  // trades the entry fallthrough for an exit fallthrough.
  // If there is no bottom->top edge, but the chosen exit block does have
  // a fallthrough, we break that fallthrough for nothing in return.

  // Let's consider an example. We have a built chain of basic blocks
  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
  // By doing a rotation we get
  // Bk+1, ..., Bn, B1, ..., Bk
  // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
  // If we had a fallthrough Bk -> Bk+1 it is broken now.
  // It might be compensated by fallthrough Bn -> B1.
  // So we have a condition to avoid creation of extra branch by loop rotation.
  // All below must be true to avoid loop rotation:
  //   If there is a fallthrough to top (B1)
  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
  //   There is no fallthrough from bottom (Bn) to top (B1).
  // Please note that there is no exit fallthrough from Bn because we checked it
  // above.
  if (ViableTopFallthrough) {
    assert(std::next(ExitIt) != LoopChain.end() &&
           "Exit should not be last BB");
    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
    if (ExitingBB->isSuccessor(NextBlockInChain))
      if (!Bottom->isSuccessor(Top))
        return;
  }

  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
                    << " at bottom\n");
  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
}

/// Attempt to rotate a loop based on profile data to reduce branch cost.
///
/// With profile data, we can determine the cost in terms of missed fall through
/// opportunities when rotating a loop chain and select the best rotation.
/// Basically, there are three kinds of cost to consider for each rotation:
///    1. The possibly missed fall through edge (if it exists) from BB out of
///    the loop to the loop header.
///    2. The possibly missed fall through edges (if they exist) from the loop
///    exits to BB out of the loop.
///    3. The missed fall through edge (if it exists) from the last BB to the
///    first BB in the loop chain.
///  Therefore, the cost for a given rotation is the sum of costs listed above.
///  We select the best rotation with the smallest cost.
void MachineBlockPlacement::rotateLoopWithProfile(
    BlockChain &LoopChain, const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  auto RotationPos = LoopChain.end();

  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();

  // A utility lambda that scales up a block frequency by dividing it by a
  // branch probability which is the reciprocal of the scale.
  auto ScaleBlockFrequency = [](BlockFrequency Freq,
                                unsigned Scale) -> BlockFrequency {
    if (Scale == 0)
      return 0;
    // Use operator / between BlockFrequency and BranchProbability to implement
    // saturating multiplication.
    return Freq / BranchProbability(1, Scale);
  };

  // Compute the cost of the missed fall-through edge to the loop header if the
  // chain head is not the loop header. As we only consider natural loops with
  // single header, this computation can be done only once.
  BlockFrequency HeaderFallThroughCost(0);
  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
  for (auto *Pred : ChainHeaderBB->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      auto EdgeFreq = MBFI->getBlockFreq(Pred) *
          MBPI->getEdgeProbability(Pred, ChainHeaderBB);
      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
      // If the predecessor has only an unconditional jump to the header, we
      // need to consider the cost of this jump.
      if (Pred->succ_size() == 1)
        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
    }
  }

  // Here we collect all exit blocks in the loop, and for each exit we find out
  // its hottest exit edge. For each loop rotation, we define the loop exit cost
  // as the sum of frequencies of exit edges we collect here, excluding the exit
  // edge from the tail of the loop chain.
  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
  for (auto BB : LoopChain) {
    auto LargestExitEdgeProb = BranchProbability::getZero();
    for (auto *Succ : BB->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin())) {
        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
      }
    }
    if (LargestExitEdgeProb > BranchProbability::getZero()) {
      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
      ExitsWithFreq.emplace_back(BB, ExitFreq);
    }
  }

  // In this loop we iterate every block in the loop chain and calculate the
  // cost assuming the block is the head of the loop chain. When the loop ends,
  // we should have found the best candidate as the loop chain's head.
  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
            EndIter = LoopChain.end();
       Iter != EndIter; Iter++, TailIter++) {
    // TailIter is used to track the tail of the loop chain if the block we are
    // checking (pointed by Iter) is the head of the chain.
    if (TailIter == LoopChain.end())
      TailIter = LoopChain.begin();

    auto TailBB = *TailIter;

    // Calculate the cost by putting this BB to the top.
    BlockFrequency Cost = 0;

    // If the current BB is the loop header, we need to take into account the
    // cost of the missed fall through edge from outside of the loop to the
    // header.
    if (Iter != LoopChain.begin())
      Cost += HeaderFallThroughCost;

    // Collect the loop exit cost by summing up frequencies of all exit edges
    // except the one from the chain tail.
    for (auto &ExitWithFreq : ExitsWithFreq)
      if (TailBB != ExitWithFreq.first)
        Cost += ExitWithFreq.second;

    // The cost of breaking the once fall-through edge from the tail to the top
    // of the loop chain. Here we need to consider three cases:
    // 1. If the tail node has only one successor, then we will get an
    //    additional jmp instruction. So the cost here is (MisfetchCost +
    //    JumpInstCost) * tail node frequency.
    // 2. If the tail node has two successors, then we may still get an
    //    additional jmp instruction if the layout successor after the loop
    //    chain is not its CFG successor. Note that the more frequently executed
    //    jmp instruction will be put ahead of the other one. Assume the
    //    frequency of those two branches are x and y, where x is the frequency
    //    of the edge to the chain head, then the cost will be
    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
    // 3. If the tail node has more than two successors (this rarely happens),
    //    we won't consider any additional cost.
    if (TailBB->isSuccessor(*Iter)) {
      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
      if (TailBB->succ_size() == 1)
        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
                                    MisfetchCost + JumpInstCost);
      else if (TailBB->succ_size() == 2) {
        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
                                  ? TailBBFreq * TailToHeadProb.getCompl()
                                  : TailToHeadFreq;
        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
      }
    }

    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
                      << getBlockName(*Iter)
                      << " to the top: " << Cost.getFrequency() << "\n");

    if (Cost < SmallestRotationCost) {
      SmallestRotationCost = Cost;
      RotationPos = Iter;
    }
  }

  if (RotationPos != LoopChain.end()) {
    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
                      << " to the top\n");
    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
  }
}

/// Collect blocks in the given loop that are to be placed.
///
/// When profile data is available, exclude cold blocks from the returned set;
/// otherwise, collect all blocks in the loop.
MachineBlockPlacement::BlockFilterSet
MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
  BlockFilterSet LoopBlockSet;

  // Filter cold blocks off from LoopBlockSet when profile data is available.
  // Collect the sum of frequencies of incoming edges to the loop header from
  // outside. If we treat the loop as a super block, this is the frequency of
  // the loop. Then for each block in the loop, we calculate the ratio between
  // its frequency and the frequency of the loop block. When it is too small,
  // don't add it to the loop chain. If there are outer loops, then this block
  // will be merged into the first outer loop chain for which this block is not
  // cold anymore. This needs precise profile data and we only do this when
  // profile data is available.
  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
    BlockFrequency LoopFreq(0);
    for (auto LoopPred : L.getHeader()->predecessors())
      if (!L.contains(LoopPred))
        LoopFreq += MBFI->getBlockFreq(LoopPred) *
                    MBPI->getEdgeProbability(LoopPred, L.getHeader());

    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
        continue;
      LoopBlockSet.insert(LoopBB);
    }
  } else
    LoopBlockSet.insert(L.block_begin(), L.block_end());

  return LoopBlockSet;
}

/// Forms basic block chains from the natural loop structures.
///
/// These chains are designed to preserve the existing *structure* of the code
/// as much as possible. We can then stitch the chains together in a way which
/// both preserves the topological structure and minimizes taken conditional
/// branches.
void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
  // First recurse through any nested loops, building chains for those inner
  // loops.
  for (const MachineLoop *InnerLoop : L)
    buildLoopChains(*InnerLoop);

  assert(BlockWorkList.empty() &&
         "BlockWorkList not empty when starting to build loop chains.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList not empty when starting to build loop chains.");
  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);

  // Check if we have profile data for this function. If yes, we will rotate
  // this loop by modeling costs more precisely which requires the profile data
  // for better layout.
  bool RotateLoopWithProfile =
      ForcePreciseRotationCost ||
      (PreciseRotationCost && F->getFunction().hasProfileData());

  // First check to see if there is an obviously preferable top block for the
  // loop. This will default to the header, but may end up as one of the
  // predecessors to the header if there is one which will result in strictly
  // fewer branches in the loop body.
  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);

  // If we selected just the header for the loop top, look for a potentially
  // profitable exit block in the event that rotating the loop can eliminate
  // branches by placing an exit edge at the bottom.
  //
  // Loops are processed innermost to uttermost, make sure we clear
  // PreferredLoopExit before processing a new loop.
  PreferredLoopExit = nullptr;
  BlockFrequency ExitFreq;
  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);

  BlockChain &LoopChain = *BlockToChain[LoopTop];

  // FIXME: This is a really lame way of walking the chains in the loop: we
  // walk the blocks, and use a set to prevent visiting a particular chain
  // twice.
  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  assert(LoopChain.UnscheduledPredecessors == 0 &&
         "LoopChain should not have unscheduled predecessors.");
  UpdatedPreds.insert(&LoopChain);

  for (const MachineBasicBlock *LoopBB : LoopBlockSet)
    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);

  buildChain(LoopTop, LoopChain, &LoopBlockSet);

  if (RotateLoopWithProfile)
    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
  else
    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);

  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadLoop = false;
    if (LoopChain.UnscheduledPredecessors) {
      BadLoop = true;
      dbgs() << "Loop chain contains a block without its preds placed!\n"
             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
    }
    for (MachineBasicBlock *ChainBB : LoopChain) {
      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
      if (!LoopBlockSet.remove(ChainBB)) {
        // We don't mark the loop as bad here because there are real situations
        // where this can occur. For example, with an unanalyzable fallthrough
        // from a loop block to a non-loop block or vice versa.
        dbgs() << "Loop chain contains a block not contained by the loop!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }
    }

    if (!LoopBlockSet.empty()) {
      BadLoop = true;
      for (const MachineBasicBlock *LoopBB : LoopBlockSet)
        dbgs() << "Loop contains blocks never placed into a chain!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
    }
    assert(!BadLoop && "Detected problems with the placement of this loop.");
  });

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::buildCFGChains() {
  // Ensure that every BB in the function has an associated chain to simplify
  // the assumptions of the remaining algorithm.
  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
       ++FI) {
    MachineBasicBlock *BB = &*FI;
    BlockChain *Chain =
        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
    // Also, merge any blocks which we cannot reason about and must preserve
    // the exact fallthrough behavior for.
    while (true) {
      Cond.clear();
      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
        break;

      MachineFunction::iterator NextFI = std::next(FI);
      MachineBasicBlock *NextBB = &*NextFI;
      // Ensure that the layout successor is a viable block, as we know that
      // fallthrough is a possibility.
      assert(NextFI != FE && "Can't fallthrough past the last block.");
      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
                        << getBlockName(BB) << " -> " << getBlockName(NextBB)
                        << "\n");
      Chain->merge(NextBB, nullptr);
#ifndef NDEBUG
      BlocksWithUnanalyzableExits.insert(&*BB);
#endif
      FI = NextFI;
      BB = NextBB;
    }
  }

  // Build any loop-based chains.
  PreferredLoopExit = nullptr;
  for (MachineLoop *L : *MLI)
    buildLoopChains(*L);

  assert(BlockWorkList.empty() &&
         "BlockWorkList should be empty before building final chain.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList should be empty before building final chain.");

  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  for (MachineBasicBlock &MBB : *F)
    fillWorkLists(&MBB, UpdatedPreds);

  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  buildChain(&F->front(), FunctionChain);

#ifndef NDEBUG
  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
#endif
  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadFunc = false;
    FunctionBlockSetType FunctionBlockSet;
    for (MachineBasicBlock &MBB : *F)
      FunctionBlockSet.insert(&MBB);

    for (MachineBasicBlock *ChainBB : FunctionChain)
      if (!FunctionBlockSet.erase(ChainBB)) {
        BadFunc = true;
        dbgs() << "Function chain contains a block not in the function!\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }

    if (!FunctionBlockSet.empty()) {
      BadFunc = true;
      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
        dbgs() << "Function contains blocks never placed into a chain!\n"
               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
    }
    assert(!BadFunc && "Detected problems with the block placement.");
  });

  // Splice the blocks into place.
  MachineFunction::iterator InsertPos = F->begin();
  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
                                                            : "          ... ")
                      << getBlockName(ChainBB) << "\n");
    if (InsertPos != MachineFunction::iterator(ChainBB))
      F->splice(InsertPos, ChainBB);
    else
      ++InsertPos;

    // Update the terminator of the previous block.
    if (ChainBB == *FunctionChain.begin())
      continue;
    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));

    // FIXME: It would be awesome of updateTerminator would just return rather
    // than assert when the branch cannot be analyzed in order to remove this
    // boiler plate.
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.

#ifndef NDEBUG
    if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
      // Given the exact block placement we chose, we may actually not _need_ to
      // be able to edit PrevBB's terminator sequence, but not being _able_ to
      // do that at this point is a bug.
      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
              !PrevBB->canFallThrough()) &&
             "Unexpected block with un-analyzable fallthrough!");
      Cond.clear();
      TBB = FBB = nullptr;
    }
#endif

    // The "PrevBB" is not yet updated to reflect current code layout, so,
    //   o. it may fall-through to a block without explicit "goto" instruction
    //      before layout, and no longer fall-through it after layout; or
    //   o. just opposite.
    //
    // analyzeBranch() may return erroneous value for FBB when these two
    // situations take place. For the first scenario FBB is mistakenly set NULL;
    // for the 2nd scenario, the FBB, which is expected to be NULL, is
    // mistakenly pointing to "*BI".
    // Thus, if the future change needs to use FBB before the layout is set, it
    // has to correct FBB first by using the code similar to the following:
    //
    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
    //   PrevBB->updateTerminator();
    //   Cond.clear();
    //   TBB = FBB = nullptr;
    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
    //     // FIXME: This should never take place.
    //     TBB = FBB = nullptr;
    //   }
    // }
    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
      PrevBB->updateTerminator();
  }

  // Fixup the last block.
  Cond.clear();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
    F->back().updateTerminator();

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::optimizeBranches() {
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.

  // Now that all the basic blocks in the chain have the proper layout,
  // make a final call to AnalyzeBranch with AllowModify set.
  // Indeed, the target may be able to optimize the branches in a way we
  // cannot because all branches may not be analyzable.
  // E.g., the target may be able to remove an unconditional branch to
  // a fallthrough when it occurs after predicated terminators.
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
      // If PrevBB has a two-way branch, try to re-order the branches
      // such that we branch to the successor with higher probability first.
      if (TBB && !Cond.empty() && FBB &&
          MBPI->getEdgeProbability(ChainBB, FBB) >
              MBPI->getEdgeProbability(ChainBB, TBB) &&
          !TII->reverseBranchCondition(Cond)) {
        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
                          << getBlockName(ChainBB) << "\n");
        LLVM_DEBUG(dbgs() << "    Edge probability: "
                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
        DebugLoc dl; // FIXME: this is nowhere
        TII->removeBranch(*ChainBB);
        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
        ChainBB->updateTerminator();
      }
    }
  }
}

void MachineBlockPlacement::alignBlocks() {
  // Walk through the backedges of the function now that we have fully laid out
  // the basic blocks and align the destination of each backedge. We don't rely
  // exclusively on the loop info here so that we can align backedges in
  // unnatural CFGs and backedges that were introduced purely because of the
  // loop rotations done during this layout pass.
  if (F->getFunction().hasMinSize() ||
      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
    return;
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  if (FunctionChain.begin() == FunctionChain.end())
    return; // Empty chain.

  const BranchProbability ColdProb(1, 5); // 20%
  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    if (ChainBB == *FunctionChain.begin())
      continue;

    // Don't align non-looping basic blocks. These are unlikely to execute
    // enough times to matter in practice. Note that we'll still handle
    // unnatural CFGs inside of a natural outer loop (the common case) and
    // rotated loops.
    MachineLoop *L = MLI->getLoopFor(ChainBB);
    if (!L)
      continue;

    const Align Align = TLI->getPrefLoopAlignment(L);
    if (Align == 1)
      continue; // Don't care about loop alignment.

    // If the block is cold relative to the function entry don't waste space
    // aligning it.
    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
    if (Freq < WeightedEntryFreq)
      continue;

    // If the block is cold relative to its loop header, don't align it
    // regardless of what edges into the block exist.
    MachineBasicBlock *LoopHeader = L->getHeader();
    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
    if (Freq < (LoopHeaderFreq * ColdProb))
      continue;

    // Check for the existence of a non-layout predecessor which would benefit
    // from aligning this block.
    MachineBasicBlock *LayoutPred =
        &*std::prev(MachineFunction::iterator(ChainBB));

    // Force alignment if all the predecessors are jumps. We already checked
    // that the block isn't cold above.
    if (!LayoutPred->isSuccessor(ChainBB)) {
      ChainBB->setAlignment(Align);
      continue;
    }

    // Align this block if the layout predecessor's edge into this block is
    // cold relative to the block. When this is true, other predecessors make up
    // all of the hot entries into the block and thus alignment is likely to be
    // important.
    BranchProbability LayoutProb =
        MBPI->getEdgeProbability(LayoutPred, ChainBB);
    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
    if (LayoutEdgeFreq <= (Freq * ColdProb))
      ChainBB->setAlignment(Align);
  }
}

/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
/// it was duplicated into its chain predecessor and removed.
/// \p BB    - Basic block that may be duplicated.
///
/// \p LPred - Chosen layout predecessor of \p BB.
///            Updated to be the chain end if LPred is removed.
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// @return true if \p BB was removed.
bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *&LPred,
    const MachineBasicBlock *LoopHeaderBB,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt) {
  bool Removed, DuplicatedToLPred;
  bool DuplicatedToOriginalLPred;
  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
                                    PrevUnplacedBlockIt,
                                    DuplicatedToLPred);
  if (!Removed)
    return false;
  DuplicatedToOriginalLPred = DuplicatedToLPred;
  // Iteratively try to duplicate again. It can happen that a block that is
  // duplicated into is still small enough to be duplicated again.
  // No need to call markBlockSuccessors in this case, as the blocks being
  // duplicated from here on are already scheduled.
  // Note that DuplicatedToLPred always implies Removed.
  while (DuplicatedToLPred) {
    assert(Removed && "Block must have been removed to be duplicated into its "
           "layout predecessor.");
    MachineBasicBlock *DupBB, *DupPred;
    // The removal callback causes Chain.end() to be updated when a block is
    // removed. On the first pass through the loop, the chain end should be the
    // same as it was on function entry. On subsequent passes, because we are
    // duplicating the block at the end of the chain, if it is removed the
    // chain will have shrunk by one block.
    BlockChain::iterator ChainEnd = Chain.end();
    DupBB = *(--ChainEnd);
    // Now try to duplicate again.
    if (ChainEnd == Chain.begin())
      break;
    DupPred = *std::prev(ChainEnd);
    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
                                      PrevUnplacedBlockIt,
                                      DuplicatedToLPred);
  }
  // If BB was duplicated into LPred, it is now scheduled. But because it was
  // removed, markChainSuccessors won't be called for its chain. Instead we
  // call markBlockSuccessors for LPred to achieve the same effect. This must go
  // at the end because repeating the tail duplication can increase the number
  // of unscheduled predecessors.
  LPred = *std::prev(Chain.end());
  if (DuplicatedToOriginalLPred)
    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
  return true;
}

/// Tail duplicate \p BB into (some) predecessors if profitable.
/// \p BB    - Basic block that may be duplicated
/// \p LPred - Chosen layout predecessor of \p BB
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
///                        only be true if the block was removed.
/// \return  - True if the block was duplicated into all preds and removed.
bool MachineBlockPlacement::maybeTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *LPred,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    bool &DuplicatedToLPred) {
  DuplicatedToLPred = false;
  if (!shouldTailDuplicate(BB))
    return false;

  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
                    << "\n");

  // This has to be a callback because none of it can be done after
  // BB is deleted.
  bool Removed = false;
  auto RemovalCallback =
      [&](MachineBasicBlock *RemBB) {
        // Signal to outer function
        Removed = true;

        // Conservative default.
        bool InWorkList = true;
        // Remove from the Chain and Chain Map
        if (BlockToChain.count(RemBB)) {
          BlockChain *Chain = BlockToChain[RemBB];
          InWorkList = Chain->UnscheduledPredecessors == 0;
          Chain->remove(RemBB);
          BlockToChain.erase(RemBB);
        }

        // Handle the unplaced block iterator
        if (&(*PrevUnplacedBlockIt) == RemBB) {
          PrevUnplacedBlockIt++;
        }

        // Handle the Work Lists
        if (InWorkList) {
          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
          if (RemBB->isEHPad())
            RemoveList = EHPadWorkList;
          RemoveList.erase(
              llvm::remove_if(RemoveList,
                              [RemBB](MachineBasicBlock *BB) {
                                return BB == RemBB;
                              }),
              RemoveList.end());
        }

        // Handle the filter set
        if (BlockFilter) {
          BlockFilter->remove(RemBB);
        }

        // Remove the block from loop info.
        MLI->removeBlock(RemBB);
        if (RemBB == PreferredLoopExit)
          PreferredLoopExit = nullptr;

        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
                          << getBlockName(RemBB) << "\n");
      };
  auto RemovalCallbackRef =
      function_ref<void(MachineBasicBlock*)>(RemovalCallback);

  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
  bool IsSimple = TailDup.isSimpleBB(BB);
  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
                                 &DuplicatedPreds, &RemovalCallbackRef);

  // Update UnscheduledPredecessors to reflect tail-duplication.
  DuplicatedToLPred = false;
  for (MachineBasicBlock *Pred : DuplicatedPreds) {
    // We're only looking for unscheduled predecessors that match the filter.
    BlockChain* PredChain = BlockToChain[Pred];
    if (Pred == LPred)
      DuplicatedToLPred = true;
    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
        || PredChain == &Chain)
      continue;
    for (MachineBasicBlock *NewSucc : Pred->successors()) {
      if (BlockFilter && !BlockFilter->count(NewSucc))
        continue;
      BlockChain *NewChain = BlockToChain[NewSucc];
      if (NewChain != &Chain && NewChain != PredChain)
        NewChain->UnscheduledPredecessors++;
    }
  }
  return Removed;
}

bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  // Check for single-block functions and skip them.
  if (std::next(MF.begin()) == MF.end())
    return false;

  F = &MF;
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
      getAnalysis<MachineBlockFrequencyInfo>());
  MLI = &getAnalysis<MachineLoopInfo>();
  TII = MF.getSubtarget().getInstrInfo();
  TLI = MF.getSubtarget().getTargetLowering();
  MPDT = nullptr;

  // Initialize PreferredLoopExit to nullptr here since it may never be set if
  // there are no MachineLoops.
  PreferredLoopExit = nullptr;

  assert(BlockToChain.empty() &&
         "BlockToChain map should be empty before starting placement.");
  assert(ComputedEdges.empty() &&
         "Computed Edge map should be empty before starting placement.");

  unsigned TailDupSize = TailDupPlacementThreshold;
  // If only the aggressive threshold is explicitly set, use it.
  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
      TailDupPlacementThreshold.getNumOccurrences() == 0)
    TailDupSize = TailDupPlacementAggressiveThreshold;

  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // For aggressive optimization, we can adjust some thresholds to be less
  // conservative.
  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
    // At O3 we should be more willing to copy blocks for tail duplication. This
    // increases size pressure, so we only do it at O3
    // Do this unless only the regular threshold is explicitly set.
    if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
      TailDupSize = TailDupPlacementAggressiveThreshold;
  }

  if (allowTailDupPlacement()) {
    MPDT = &getAnalysis<MachinePostDominatorTree>();
    if (MF.getFunction().hasOptSize())
      TailDupSize = 1;
    bool PreRegAlloc = false;
    TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
    precomputeTriangleChains();
  }

  buildCFGChains();

  // Changing the layout can create new tail merging opportunities.
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structured CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge() &&
                         BranchFoldPlacement;
  // No tail merging opportunities if the block number is less than four.
  if (MF.size() > 3 && EnableTailMerge) {
    unsigned TailMergeSize = TailDupSize + 1;
    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
                    *MBPI, TailMergeSize);

    auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
                            MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
                            /*AfterPlacement=*/true)) {
      // Redo the layout if tail merging creates/removes/moves blocks.
      BlockToChain.clear();
      ComputedEdges.clear();
      // Must redo the post-dominator tree if blocks were changed.
      if (MPDT)
        MPDT->runOnMachineFunction(MF);
      ChainAllocator.DestroyAll();
      buildCFGChains();
    }
  }

  optimizeBranches();
  alignBlocks();

  BlockToChain.clear();
  ComputedEdges.clear();
  ChainAllocator.DestroyAll();

  if (AlignAllBlock)
    // Align all of the blocks in the function to a specific alignment.
    for (MachineBasicBlock &MBB : MF)
      MBB.setAlignment(Align(1ULL << AlignAllBlock));
  else if (AlignAllNonFallThruBlocks) {
    // Align all of the blocks that have no fall-through predecessors to a
    // specific alignment.
    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
      auto LayoutPred = std::prev(MBI);
      if (!LayoutPred->isSuccessor(&*MBI))
        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
    }
  }
  if (ViewBlockLayoutWithBFI != GVDT_None &&
      (ViewBlockFreqFuncName.empty() ||
       F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
    MBFI->view("MBP." + MF.getName(), false);
  }


  // We always return true as we have no way to track whether the final order
  // differs from the original order.
  return true;
}

namespace {

/// A pass to compute block placement statistics.
///
/// A separate pass to compute interesting statistics for evaluating block
/// placement. This is separate from the actual placement pass so that they can
/// be computed in the absence of any placement transformations or when using
/// alternative placement strategies.
class MachineBlockPlacementStats : public MachineFunctionPass {
  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  const MachineBlockFrequencyInfo *MBFI;

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacementStats::ID = 0;

char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
                      "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
                    "Basic Block Placement Stats", false, false)

bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
  // Check for single-block functions and skip them.
  if (std::next(F.begin()) == F.end())
    return false;

  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();

  for (MachineBasicBlock &MBB : F) {
    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
    Statistic &NumBranches =
        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
    Statistic &BranchTakenFreq =
        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
    for (MachineBasicBlock *Succ : MBB.successors()) {
      // Skip if this successor is a fallthrough.
      if (MBB.isLayoutSuccessor(Succ))
        continue;

      BlockFrequency EdgeFreq =
          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
      ++NumBranches;
      BranchTakenFreq += EdgeFreq.getFrequency();
    }
  }

  return false;
}