reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/ScheduleDFS.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

namespace llvm {

cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
                           cl::desc("Force top-down list scheduling"));
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
                            cl::desc("Force bottom-up list scheduling"));
cl::opt<bool>
DumpCriticalPathLength("misched-dcpl", cl::Hidden,
                       cl::desc("Print critical path length to stdout"));

cl::opt<bool> VerifyScheduling(
    "verify-misched", cl::Hidden,
    cl::desc("Verify machine instrs before and after machine scheduling"));

} // end namespace llvm

#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
  cl::desc("Pop up a window to show MISched dags after they are processed"));

/// In some situations a few uninteresting nodes depend on nearly all other
/// nodes in the graph, provide a cutoff to hide them.
static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
  cl::desc("Hide nodes with more predecessor/successor than cutoff"));

static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));

static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
  cl::desc("Only schedule this function"));
static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
                                        cl::desc("Only schedule this MBB#"));
static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
                              cl::desc("Print schedule DAGs"));
#else
static const bool ViewMISchedDAGs = false;
static const bool PrintDAGs = false;
#endif // NDEBUG

/// Avoid quadratic complexity in unusually large basic blocks by limiting the
/// size of the ready lists.
static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
  cl::desc("Limit ready list to N instructions"), cl::init(256));

static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
  cl::desc("Enable register pressure scheduling."), cl::init(true));

static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
  cl::desc("Enable cyclic critical path analysis."), cl::init(true));

static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
                                        cl::desc("Enable memop clustering."),
                                        cl::init(true));

// DAG subtrees must have at least this many nodes.
static const unsigned MinSubtreeSize = 8;

// Pin the vtables to this file.
void MachineSchedStrategy::anchor() {}

void ScheduleDAGMutation::anchor() {}

//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//

MachineSchedContext::MachineSchedContext() {
  RegClassInfo = new RegisterClassInfo();
}

MachineSchedContext::~MachineSchedContext() {
  delete RegClassInfo;
}

namespace {

/// Base class for a machine scheduler class that can run at any point.
class MachineSchedulerBase : public MachineSchedContext,
                             public MachineFunctionPass {
public:
  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}

  void print(raw_ostream &O, const Module* = nullptr) const override;

protected:
  void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
};

/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineSchedulerBase {
public:
  MachineScheduler();

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  bool runOnMachineFunction(MachineFunction&) override;

  static char ID; // Class identification, replacement for typeinfo

protected:
  ScheduleDAGInstrs *createMachineScheduler();
};

/// PostMachineScheduler runs after shortly before code emission.
class PostMachineScheduler : public MachineSchedulerBase {
public:
  PostMachineScheduler();

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  bool runOnMachineFunction(MachineFunction&) override;

  static char ID; // Class identification, replacement for typeinfo

protected:
  ScheduleDAGInstrs *createPostMachineScheduler();
};

} // end anonymous namespace

char MachineScheduler::ID = 0;

char &llvm::MachineSchedulerID = MachineScheduler::ID;

INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
                      "Machine Instruction Scheduler", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
                    "Machine Instruction Scheduler", false, false)

MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
}

void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

char PostMachineScheduler::ID = 0;

char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;

INITIALIZE_PASS(PostMachineScheduler, "postmisched",
                "PostRA Machine Instruction Scheduler", false, false)

PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
}

void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<TargetPassConfig>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
    MachineSchedRegistry::Registry;

/// A dummy default scheduler factory indicates whether the scheduler
/// is overridden on the command line.
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
  return nullptr;
}

/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
               RegisterPassParser<MachineSchedRegistry>>
MachineSchedOpt("misched",
                cl::init(&useDefaultMachineSched), cl::Hidden,
                cl::desc("Machine instruction scheduler to use"));

static MachineSchedRegistry
DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
                     useDefaultMachineSched);

static cl::opt<bool> EnableMachineSched(
    "enable-misched",
    cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
    cl::Hidden);

static cl::opt<bool> EnablePostRAMachineSched(
    "enable-post-misched",
    cl::desc("Enable the post-ra machine instruction scheduling pass."),
    cl::init(true), cl::Hidden);

/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,
              MachineBasicBlock::const_iterator Beg) {
  assert(I != Beg && "reached the top of the region, cannot decrement");
  while (--I != Beg) {
    if (!I->isDebugInstr())
      break;
  }
  return I;
}

/// Non-const version.
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,
              MachineBasicBlock::const_iterator Beg) {
  return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
      .getNonConstIterator();
}

/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
static MachineBasicBlock::const_iterator
nextIfDebug(MachineBasicBlock::const_iterator I,
            MachineBasicBlock::const_iterator End) {
  for(; I != End; ++I) {
    if (!I->isDebugInstr())
      break;
  }
  return I;
}

/// Non-const version.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,
            MachineBasicBlock::const_iterator End) {
  return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
      .getNonConstIterator();
}

/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
  // Select the scheduler, or set the default.
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
  if (Ctor != useDefaultMachineSched)
    return Ctor(this);

  // Get the default scheduler set by the target for this function.
  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
  if (Scheduler)
    return Scheduler;

  // Default to GenericScheduler.
  return createGenericSchedLive(this);
}

/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
/// the caller. We don't have a command line option to override the postRA
/// scheduler. The Target must configure it.
ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
  // Get the postRA scheduler set by the target for this function.
  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
  if (Scheduler)
    return Scheduler;

  // Default to GenericScheduler.
  return createGenericSchedPostRA(this);
}

/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
/// consistent with the DAG builder, which traverses the interior of the
/// scheduling regions bottom-up.
///
/// This design avoids exposing scheduling boundaries to the DAG builder,
/// simplifying the DAG builder's support for "special" target instructions.
/// At the same time the design allows target schedulers to operate across
/// scheduling boundaries, for example to bundle the boundary instructions
/// without reordering them. This creates complexity, because the target
/// scheduler must update the RegionBegin and RegionEnd positions cached by
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
/// design would be to split blocks at scheduling boundaries, but LLVM has a
/// general bias against block splitting purely for implementation simplicity.
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(mf.getFunction()))
    return false;

  if (EnableMachineSched.getNumOccurrences()) {
    if (!EnableMachineSched)
      return false;
  } else if (!mf.getSubtarget().enableMachineScheduler())
    return false;

  LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));

  // Initialize the context of the pass.
  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  MDT = &getAnalysis<MachineDominatorTree>();
  PassConfig = &getAnalysis<TargetPassConfig>();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  LIS = &getAnalysis<LiveIntervals>();

  if (VerifyScheduling) {
    LLVM_DEBUG(LIS->dump());
    MF->verify(this, "Before machine scheduling.");
  }
  RegClassInfo->runOnMachineFunction(*MF);

  // Instantiate the selected scheduler for this target, function, and
  // optimization level.
  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
  scheduleRegions(*Scheduler, false);

  LLVM_DEBUG(LIS->dump());
  if (VerifyScheduling)
    MF->verify(this, "After machine scheduling.");
  return true;
}

bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(mf.getFunction()))
    return false;

  if (EnablePostRAMachineSched.getNumOccurrences()) {
    if (!EnablePostRAMachineSched)
      return false;
  } else if (!mf.getSubtarget().enablePostRAScheduler()) {
    LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));

  // Initialize the context of the pass.
  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  PassConfig = &getAnalysis<TargetPassConfig>();

  if (VerifyScheduling)
    MF->verify(this, "Before post machine scheduling.");

  // Instantiate the selected scheduler for this target, function, and
  // optimization level.
  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
  scheduleRegions(*Scheduler, true);

  if (VerifyScheduling)
    MF->verify(this, "After post machine scheduling.");
  return true;
}

/// Return true of the given instruction should not be included in a scheduling
/// region.
///
/// MachineScheduler does not currently support scheduling across calls. To
/// handle calls, the DAG builder needs to be modified to create register
/// anti/output dependencies on the registers clobbered by the call's regmask
/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
/// the boundary, but there would be no benefit to postRA scheduling across
/// calls this late anyway.
static bool isSchedBoundary(MachineBasicBlock::iterator MI,
                            MachineBasicBlock *MBB,
                            MachineFunction *MF,
                            const TargetInstrInfo *TII) {
  return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
}

/// A region of an MBB for scheduling.
namespace {
struct SchedRegion {
  /// RegionBegin is the first instruction in the scheduling region, and
  /// RegionEnd is either MBB->end() or the scheduling boundary after the
  /// last instruction in the scheduling region. These iterators cannot refer
  /// to instructions outside of the identified scheduling region because
  /// those may be reordered before scheduling this region.
  MachineBasicBlock::iterator RegionBegin;
  MachineBasicBlock::iterator RegionEnd;
  unsigned NumRegionInstrs;

  SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
              unsigned N) :
    RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
};
} // end anonymous namespace

using MBBRegionsVector = SmallVector<SchedRegion, 16>;

static void
getSchedRegions(MachineBasicBlock *MBB,
                MBBRegionsVector &Regions,
                bool RegionsTopDown) {
  MachineFunction *MF = MBB->getParent();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();

  MachineBasicBlock::iterator I = nullptr;
  for(MachineBasicBlock::iterator RegionEnd = MBB->end();
      RegionEnd != MBB->begin(); RegionEnd = I) {

    // Avoid decrementing RegionEnd for blocks with no terminator.
    if (RegionEnd != MBB->end() ||
        isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
      --RegionEnd;
    }

    // The next region starts above the previous region. Look backward in the
    // instruction stream until we find the nearest boundary.
    unsigned NumRegionInstrs = 0;
    I = RegionEnd;
    for (;I != MBB->begin(); --I) {
      MachineInstr &MI = *std::prev(I);
      if (isSchedBoundary(&MI, &*MBB, MF, TII))
        break;
      if (!MI.isDebugInstr()) {
        // MBB::size() uses instr_iterator to count. Here we need a bundle to
        // count as a single instruction.
        ++NumRegionInstrs;
      }
    }

    // It's possible we found a scheduling region that only has debug
    // instructions. Don't bother scheduling these.
    if (NumRegionInstrs != 0)
      Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
  }

  if (RegionsTopDown)
    std::reverse(Regions.begin(), Regions.end());
}

/// Main driver for both MachineScheduler and PostMachineScheduler.
void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
                                           bool FixKillFlags) {
  // Visit all machine basic blocks.
  //
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
  // loop tree. Then we can optionally compute global RegPressure.
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
       MBB != MBBEnd; ++MBB) {

    Scheduler.startBlock(&*MBB);

#ifndef NDEBUG
    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
      continue;
    if (SchedOnlyBlock.getNumOccurrences()
        && (int)SchedOnlyBlock != MBB->getNumber())
      continue;
#endif

    // Break the block into scheduling regions [I, RegionEnd). RegionEnd
    // points to the scheduling boundary at the bottom of the region. The DAG
    // does not include RegionEnd, but the region does (i.e. the next
    // RegionEnd is above the previous RegionBegin). If the current block has
    // no terminator then RegionEnd == MBB->end() for the bottom region.
    //
    // All the regions of MBB are first found and stored in MBBRegions, which
    // will be processed (MBB) top-down if initialized with true.
    //
    // The Scheduler may insert instructions during either schedule() or
    // exitRegion(), even for empty regions. So the local iterators 'I' and
    // 'RegionEnd' are invalid across these calls. Instructions must not be
    // added to other regions than the current one without updating MBBRegions.

    MBBRegionsVector MBBRegions;
    getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
    for (MBBRegionsVector::iterator R = MBBRegions.begin();
         R != MBBRegions.end(); ++R) {
      MachineBasicBlock::iterator I = R->RegionBegin;
      MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
      unsigned NumRegionInstrs = R->NumRegionInstrs;

      // Notify the scheduler of the region, even if we may skip scheduling
      // it. Perhaps it still needs to be bundled.
      Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);

      // Skip empty scheduling regions (0 or 1 schedulable instructions).
      if (I == RegionEnd || I == std::prev(RegionEnd)) {
        // Close the current region. Bundle the terminator if needed.
        // This invalidates 'RegionEnd' and 'I'.
        Scheduler.exitRegion();
        continue;
      }
      LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
      LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
                        << " " << MBB->getName() << "\n  From: " << *I
                        << "    To: ";
                 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
                 else dbgs() << "End";
                 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
      if (DumpCriticalPathLength) {
        errs() << MF->getName();
        errs() << ":%bb. " << MBB->getNumber();
        errs() << " " << MBB->getName() << " \n";
      }

      // Schedule a region: possibly reorder instructions.
      // This invalidates the original region iterators.
      Scheduler.schedule();

      // Close the current region.
      Scheduler.exitRegion();
    }
    Scheduler.finishBlock();
    // FIXME: Ideally, no further passes should rely on kill flags. However,
    // thumb2 size reduction is currently an exception, so the PostMIScheduler
    // needs to do this.
    if (FixKillFlags)
      Scheduler.fixupKills(*MBB);
  }
  Scheduler.finalizeSchedule();
}

void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
  // unimplemented
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ReadyQueue::dump() const {
  dbgs() << "Queue " << Name << ": ";
  for (const SUnit *SU : Queue)
    dbgs() << SU->NodeNum << " ";
  dbgs() << "\n";
}
#endif

//===----------------------------------------------------------------------===//
// ScheduleDAGMI - Basic machine instruction scheduling. This is
// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
// virtual registers.
// ===----------------------------------------------------------------------===/

// Provide a vtable anchor.
ScheduleDAGMI::~ScheduleDAGMI() = default;

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
///
/// FIXME: Adjust SuccSU height based on MinLatency.
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    --SuccSU->WeakPredsLeft;
    if (SuccEdge->isCluster())
      NextClusterSucc = SuccSU;
    return;
  }
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    dumpNode(*SuccSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif
  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
  // CurrCycle may have advanced since then.
  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();

  --SuccSU->NumPredsLeft;
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    SchedImpl->releaseTopNode(SuccSU);
}

/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
  for (SDep &Succ : SU->Succs)
    releaseSucc(SU, &Succ);
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
/// NumSuccsLeft reaches zero, release the predecessor node.
///
/// FIXME: Adjust PredSU height based on MinLatency.
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

  if (PredEdge->isWeak()) {
    --PredSU->WeakSuccsLeft;
    if (PredEdge->isCluster())
      NextClusterPred = PredSU;
    return;
  }
#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    dumpNode(*PredSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif
  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
  // CurrCycle may have advanced since then.
  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();

  --PredSU->NumSuccsLeft;
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    SchedImpl->releaseBottomNode(PredSU);
}

/// releasePredecessors - Call releasePred on each of SU's predecessors.
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
  for (SDep &Pred : SU->Preds)
    releasePred(SU, &Pred);
}

void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
  ScheduleDAGInstrs::startBlock(bb);
  SchedImpl->enterMBB(bb);
}

void ScheduleDAGMI::finishBlock() {
  SchedImpl->leaveMBB();
  ScheduleDAGInstrs::finishBlock();
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
                                     MachineBasicBlock::iterator begin,
                                     MachineBasicBlock::iterator end,
                                     unsigned regioninstrs)
{
  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);

  SchedImpl->initPolicy(begin, end, regioninstrs);
}

/// This is normally called from the main scheduler loop but may also be invoked
/// by the scheduling strategy to perform additional code motion.
void ScheduleDAGMI::moveInstruction(
  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
  // Advance RegionBegin if the first instruction moves down.
  if (&*RegionBegin == MI)
    ++RegionBegin;

  // Update the instruction stream.
  BB->splice(InsertPos, BB, MI);

  // Update LiveIntervals
  if (LIS)
    LIS->handleMove(*MI, /*UpdateFlags=*/true);

  // Recede RegionBegin if an instruction moves above the first.
  if (RegionBegin == InsertPos)
    RegionBegin = MI;
}

bool ScheduleDAGMI::checkSchedLimit() {
#ifndef NDEBUG
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    CurrentTop = CurrentBottom;
    return false;
  }
  ++NumInstrsScheduled;
#endif
  return true;
}

/// Per-region scheduling driver, called back from
/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
/// does not consider liveness or register pressure. It is useful for PostRA
/// scheduling and potentially other custom schedulers.
void ScheduleDAGMI::schedule() {
  LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
  LLVM_DEBUG(SchedImpl->dumpPolicy());

  // Build the DAG.
  buildSchedGraph(AA);

  postprocessDAG();

  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  findRootsAndBiasEdges(TopRoots, BotRoots);

  LLVM_DEBUG(dump());
  if (PrintDAGs) dump();
  if (ViewMISchedDAGs) viewGraph();

  // Initialize the strategy before modifying the DAG.
  // This may initialize a DFSResult to be used for queue priority.
  SchedImpl->initialize(this);

  // Initialize ready queues now that the DAG and priority data are finalized.
  initQueues(TopRoots, BotRoots);

  bool IsTopNode = false;
  while (true) {
    LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
    SUnit *SU = SchedImpl->pickNode(IsTopNode);
    if (!SU) break;

    assert(!SU->isScheduled && "Node already scheduled");
    if (!checkSchedLimit())
      break;

    MachineInstr *MI = SU->getInstr();
    if (IsTopNode) {
      assert(SU->isTopReady() && "node still has unscheduled dependencies");
      if (&*CurrentTop == MI)
        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
      else
        moveInstruction(MI, CurrentTop);
    } else {
      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
      MachineBasicBlock::iterator priorII =
        priorNonDebug(CurrentBottom, CurrentTop);
      if (&*priorII == MI)
        CurrentBottom = priorII;
      else {
        if (&*CurrentTop == MI)
          CurrentTop = nextIfDebug(++CurrentTop, priorII);
        moveInstruction(MI, CurrentBottom);
        CurrentBottom = MI;
      }
    }
    // Notify the scheduling strategy before updating the DAG.
    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
    // runs, it can then use the accurate ReadyCycle time to determine whether
    // newly released nodes can move to the readyQ.
    SchedImpl->schedNode(SU, IsTopNode);

    updateQueues(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();

  LLVM_DEBUG({
    dbgs() << "*** Final schedule for "
           << printMBBReference(*begin()->getParent()) << " ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}

/// Apply each ScheduleDAGMutation step in order.
void ScheduleDAGMI::postprocessDAG() {
  for (auto &m : Mutations)
    m->apply(this);
}

void ScheduleDAGMI::
findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
                      SmallVectorImpl<SUnit*> &BotRoots) {
  for (SUnit &SU : SUnits) {
    assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");

    // Order predecessors so DFSResult follows the critical path.
    SU.biasCriticalPath();

    // A SUnit is ready to top schedule if it has no predecessors.
    if (!SU.NumPredsLeft)
      TopRoots.push_back(&SU);
    // A SUnit is ready to bottom schedule if it has no successors.
    if (!SU.NumSuccsLeft)
      BotRoots.push_back(&SU);
  }
  ExitSU.biasCriticalPath();
}

/// Identify DAG roots and setup scheduler queues.
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
                               ArrayRef<SUnit*> BotRoots) {
  NextClusterSucc = nullptr;
  NextClusterPred = nullptr;

  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
  //
  // Nodes with unreleased weak edges can still be roots.
  // Release top roots in forward order.
  for (SUnit *SU : TopRoots)
    SchedImpl->releaseTopNode(SU);

  // Release bottom roots in reverse order so the higher priority nodes appear
  // first. This is more natural and slightly more efficient.
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    SchedImpl->releaseBottomNode(*I);
  }

  releaseSuccessors(&EntrySU);
  releasePredecessors(&ExitSU);

  SchedImpl->registerRoots();

  // Advance past initial DebugValues.
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
  CurrentBottom = RegionEnd;
}

/// Update scheduler queues after scheduling an instruction.
void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
  // Release dependent instructions for scheduling.
  if (IsTopNode)
    releaseSuccessors(SU);
  else
    releasePredecessors(SU);

  SU->isScheduled = true;
}

/// Reinsert any remaining debug_values, just like the PostRA scheduler.
void ScheduleDAGMI::placeDebugValues() {
  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue) {
    BB->splice(RegionBegin, BB, FirstDbgValue);
    RegionBegin = FirstDbgValue;
  }

  for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrevMI = P.second;
    if (&*RegionBegin == DbgValue)
      ++RegionBegin;
    BB->splice(++OrigPrevMI, BB, DbgValue);
    if (OrigPrevMI == std::prev(RegionEnd))
      RegionEnd = DbgValue;
  }
  DbgValues.clear();
  FirstDbgValue = nullptr;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    if (SUnit *SU = getSUnit(&(*MI)))
      dumpNode(*SU);
    else
      dbgs() << "Missing SUnit\n";
  }
}
#endif

//===----------------------------------------------------------------------===//
// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
// preservation.
//===----------------------------------------------------------------------===//

ScheduleDAGMILive::~ScheduleDAGMILive() {
  delete DFSResult;
}

void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
  const MachineInstr &MI = *SU.getInstr();
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    if (!MO.readsReg())
      continue;
    if (TrackLaneMasks && !MO.isUse())
      continue;

    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;

    // Ignore re-defs.
    if (TrackLaneMasks) {
      bool FoundDef = false;
      for (const MachineOperand &MO2 : MI.operands()) {
        if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
          FoundDef = true;
          break;
        }
      }
      if (FoundDef)
        continue;
    }

    // Record this local VReg use.
    VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
    for (; UI != VRegUses.end(); ++UI) {
      if (UI->SU == &SU)
        break;
    }
    if (UI == VRegUses.end())
      VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
  }
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
                                MachineBasicBlock::iterator begin,
                                MachineBasicBlock::iterator end,
                                unsigned regioninstrs)
{
  // ScheduleDAGMI initializes SchedImpl's per-region policy.
  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);

  // For convenience remember the end of the liveness region.
  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);

  SUPressureDiffs.clear();

  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
  ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();

  assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
         "ShouldTrackLaneMasks requires ShouldTrackPressure");
}

// Setup the register pressure trackers for the top scheduled and bottom
// scheduled regions.
void ScheduleDAGMILive::initRegPressure() {
  VRegUses.clear();
  VRegUses.setUniverse(MRI.getNumVirtRegs());
  for (SUnit &SU : SUnits)
    collectVRegUses(SU);

  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
                    ShouldTrackLaneMasks, false);
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
                    ShouldTrackLaneMasks, false);

  // Close the RPTracker to finalize live ins.
  RPTracker.closeRegion();

  LLVM_DEBUG(RPTracker.dump());

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Close one end of the tracker so we can call
  // getMaxUpward/DownwardPressureDelta before advancing across any
  // instructions. This converts currently live regs into live ins/outs.
  TopRPTracker.closeTop();
  BotRPTracker.closeBottom();

  BotRPTracker.initLiveThru(RPTracker);
  if (!BotRPTracker.getLiveThru().empty()) {
    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
    LLVM_DEBUG(dbgs() << "Live Thru: ";
               dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
  };

  // For each live out vreg reduce the pressure change associated with other
  // uses of the same vreg below the live-out reaching def.
  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);

  // Account for liveness generated by the region boundary.
  if (LiveRegionEnd != RegionEnd) {
    SmallVector<RegisterMaskPair, 8> LiveUses;
    BotRPTracker.recede(&LiveUses);
    updatePressureDiffs(LiveUses);
  }

  LLVM_DEBUG(dbgs() << "Top Pressure:\n";
             dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
             dbgs() << "Bottom Pressure:\n";
             dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););

  assert((BotRPTracker.getPos() == RegionEnd ||
          (RegionEnd->isDebugInstr() &&
           BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
         "Can't find the region bottom");

  // Cache the list of excess pressure sets in this region. This will also track
  // the max pressure in the scheduled code for these sets.
  RegionCriticalPSets.clear();
  const std::vector<unsigned> &RegionPressure =
    RPTracker.getPressure().MaxSetPressure;
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
    if (RegionPressure[i] > Limit) {
      LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
                        << " Actual " << RegionPressure[i] << "\n");
      RegionCriticalPSets.push_back(PressureChange(i));
    }
  }
  LLVM_DEBUG(dbgs() << "Excess PSets: ";
             for (const PressureChange &RCPS
                  : RegionCriticalPSets) dbgs()
             << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
             dbgs() << "\n");
}

void ScheduleDAGMILive::
updateScheduledPressure(const SUnit *SU,
                        const std::vector<unsigned> &NewMaxPressure) {
  const PressureDiff &PDiff = getPressureDiff(SU);
  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
  for (const PressureChange &PC : PDiff) {
    if (!PC.isValid())
      break;
    unsigned ID = PC.getPSet();
    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
      ++CritIdx;
    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
          && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
    }
    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
    if (NewMaxPressure[ID] >= Limit - 2) {
      LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
                        << NewMaxPressure[ID]
                        << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
                        << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
                        << " livethru)\n");
    }
  }
}

/// Update the PressureDiff array for liveness after scheduling this
/// instruction.
void ScheduleDAGMILive::updatePressureDiffs(
    ArrayRef<RegisterMaskPair> LiveUses) {
  for (const RegisterMaskPair &P : LiveUses) {
    unsigned Reg = P.RegUnit;
    /// FIXME: Currently assuming single-use physregs.
    if (!Register::isVirtualRegister(Reg))
      continue;

    if (ShouldTrackLaneMasks) {
      // If the register has just become live then other uses won't change
      // this fact anymore => decrement pressure.
      // If the register has just become dead then other uses make it come
      // back to life => increment pressure.
      bool Decrement = P.LaneMask.any();

      for (const VReg2SUnit &V2SU
           : make_range(VRegUses.find(Reg), VRegUses.end())) {
        SUnit &SU = *V2SU.SU;
        if (SU.isScheduled || &SU == &ExitSU)
          continue;

        PressureDiff &PDiff = getPressureDiff(&SU);
        PDiff.addPressureChange(Reg, Decrement, &MRI);
        LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
                          << printReg(Reg, TRI) << ':'
                          << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
                   dbgs() << "              to "; PDiff.dump(*TRI););
      }
    } else {
      assert(P.LaneMask.any());
      LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
      // This may be called before CurrentBottom has been initialized. However,
      // BotRPTracker must have a valid position. We want the value live into the
      // instruction or live out of the block, so ask for the previous
      // instruction's live-out.
      const LiveInterval &LI = LIS->getInterval(Reg);
      VNInfo *VNI;
      MachineBasicBlock::const_iterator I =
        nextIfDebug(BotRPTracker.getPos(), BB->end());
      if (I == BB->end())
        VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
      else {
        LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
        VNI = LRQ.valueIn();
      }
      // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
      assert(VNI && "No live value at use.");
      for (const VReg2SUnit &V2SU
           : make_range(VRegUses.find(Reg), VRegUses.end())) {
        SUnit *SU = V2SU.SU;
        // If this use comes before the reaching def, it cannot be a last use,
        // so decrease its pressure change.
        if (!SU->isScheduled && SU != &ExitSU) {
          LiveQueryResult LRQ =
              LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
          if (LRQ.valueIn() == VNI) {
            PressureDiff &PDiff = getPressureDiff(SU);
            PDiff.addPressureChange(Reg, true, &MRI);
            LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
                              << *SU->getInstr();
                       dbgs() << "              to "; PDiff.dump(*TRI););
          }
        }
      }
    }
  }
}

void ScheduleDAGMILive::dump() const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  if (EntrySU.getInstr() != nullptr)
    dumpNodeAll(EntrySU);
  for (const SUnit &SU : SUnits) {
    dumpNodeAll(SU);
    if (ShouldTrackPressure) {
      dbgs() << "  Pressure Diff      : ";
      getPressureDiff(&SU).dump(*TRI);
    }
    dbgs() << "  Single Issue       : ";
    if (SchedModel.mustBeginGroup(SU.getInstr()) &&
        SchedModel.mustEndGroup(SU.getInstr()))
      dbgs() << "true;";
    else
      dbgs() << "false;";
    dbgs() << '\n';
  }
  if (ExitSU.getInstr() != nullptr)
    dumpNodeAll(ExitSU);
#endif
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
///
/// This is a skeletal driver, with all the functionality pushed into helpers,
/// so that it can be easily extended by experimental schedulers. Generally,
/// implementing MachineSchedStrategy should be sufficient to implement a new
/// scheduling algorithm. However, if a scheduler further subclasses
/// ScheduleDAGMILive then it will want to override this virtual method in order
/// to update any specialized state.
void ScheduleDAGMILive::schedule() {
  LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
  LLVM_DEBUG(SchedImpl->dumpPolicy());
  buildDAGWithRegPressure();

  postprocessDAG();

  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  findRootsAndBiasEdges(TopRoots, BotRoots);

  // Initialize the strategy before modifying the DAG.
  // This may initialize a DFSResult to be used for queue priority.
  SchedImpl->initialize(this);

  LLVM_DEBUG(dump());
  if (PrintDAGs) dump();
  if (ViewMISchedDAGs) viewGraph();

  // Initialize ready queues now that the DAG and priority data are finalized.
  initQueues(TopRoots, BotRoots);

  bool IsTopNode = false;
  while (true) {
    LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
    SUnit *SU = SchedImpl->pickNode(IsTopNode);
    if (!SU) break;

    assert(!SU->isScheduled && "Node already scheduled");
    if (!checkSchedLimit())
      break;

    scheduleMI(SU, IsTopNode);

    if (DFSResult) {
      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
      if (!ScheduledTrees.test(SubtreeID)) {
        ScheduledTrees.set(SubtreeID);
        DFSResult->scheduleTree(SubtreeID);
        SchedImpl->scheduleTree(SubtreeID);
      }
    }

    // Notify the scheduling strategy after updating the DAG.
    SchedImpl->schedNode(SU, IsTopNode);

    updateQueues(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();

  LLVM_DEBUG({
    dbgs() << "*** Final schedule for "
           << printMBBReference(*begin()->getParent()) << " ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}

/// Build the DAG and setup three register pressure trackers.
void ScheduleDAGMILive::buildDAGWithRegPressure() {
  if (!ShouldTrackPressure) {
    RPTracker.reset();
    RegionCriticalPSets.clear();
    buildSchedGraph(AA);
    return;
  }

  // Initialize the register pressure tracker used by buildSchedGraph.
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
                 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);

  // Account for liveness generate by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    RPTracker.recede();

  // Build the DAG, and compute current register pressure.
  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);

  // Initialize top/bottom trackers after computing region pressure.
  initRegPressure();
}

void ScheduleDAGMILive::computeDFSResult() {
  if (!DFSResult)
    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
  DFSResult->clear();
  ScheduledTrees.clear();
  DFSResult->resize(SUnits.size());
  DFSResult->compute(SUnits);
  ScheduledTrees.resize(DFSResult->getNumSubtrees());
}

/// Compute the max cyclic critical path through the DAG. The scheduling DAG
/// only provides the critical path for single block loops. To handle loops that
/// span blocks, we could use the vreg path latencies provided by
/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
/// available for use in the scheduler.
///
/// The cyclic path estimation identifies a def-use pair that crosses the back
/// edge and considers the depth and height of the nodes. For example, consider
/// the following instruction sequence where each instruction has unit latency
/// and defines an epomymous virtual register:
///
/// a->b(a,c)->c(b)->d(c)->exit
///
/// The cyclic critical path is a two cycles: b->c->b
/// The acyclic critical path is four cycles: a->b->c->d->exit
/// LiveOutHeight = height(c) = len(c->d->exit) = 2
/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
/// LiveInDepth = depth(b) = len(a->b) = 1
///
/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
/// CyclicCriticalPath = min(2, 2) = 2
///
/// This could be relevant to PostRA scheduling, but is currently implemented
/// assuming LiveIntervals.
unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
  // This only applies to single block loop.
  if (!BB->isSuccessor(BB))
    return 0;

  unsigned MaxCyclicLatency = 0;
  // Visit each live out vreg def to find def/use pairs that cross iterations.
  for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
    unsigned Reg = P.RegUnit;
    if (!Register::isVirtualRegister(Reg))
      continue;
    const LiveInterval &LI = LIS->getInterval(Reg);
    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
    if (!DefVNI)
      continue;

    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
    const SUnit *DefSU = getSUnit(DefMI);
    if (!DefSU)
      continue;

    unsigned LiveOutHeight = DefSU->getHeight();
    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
    // Visit all local users of the vreg def.
    for (const VReg2SUnit &V2SU
         : make_range(VRegUses.find(Reg), VRegUses.end())) {
      SUnit *SU = V2SU.SU;
      if (SU == &ExitSU)
        continue;

      // Only consider uses of the phi.
      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
      if (!LRQ.valueIn()->isPHIDef())
        continue;

      // Assume that a path spanning two iterations is a cycle, which could
      // overestimate in strange cases. This allows cyclic latency to be
      // estimated as the minimum slack of the vreg's depth or height.
      unsigned CyclicLatency = 0;
      if (LiveOutDepth > SU->getDepth())
        CyclicLatency = LiveOutDepth - SU->getDepth();

      unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
      if (LiveInHeight > LiveOutHeight) {
        if (LiveInHeight - LiveOutHeight < CyclicLatency)
          CyclicLatency = LiveInHeight - LiveOutHeight;
      } else
        CyclicLatency = 0;

      LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
                        << SU->NodeNum << ") = " << CyclicLatency << "c\n");
      if (CyclicLatency > MaxCyclicLatency)
        MaxCyclicLatency = CyclicLatency;
    }
  }
  LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
  return MaxCyclicLatency;
}

/// Release ExitSU predecessors and setup scheduler queues. Re-position
/// the Top RP tracker in case the region beginning has changed.
void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
                                   ArrayRef<SUnit*> BotRoots) {
  ScheduleDAGMI::initQueues(TopRoots, BotRoots);
  if (ShouldTrackPressure) {
    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
    TopRPTracker.setPos(CurrentTop);
  }
}

/// Move an instruction and update register pressure.
void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
  // Move the instruction to its new location in the instruction stream.
  MachineInstr *MI = SU->getInstr();

  if (IsTopNode) {
    assert(SU->isTopReady() && "node still has unscheduled dependencies");
    if (&*CurrentTop == MI)
      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    else {
      moveInstruction(MI, CurrentTop);
      TopRPTracker.setPos(MI);
    }

    if (ShouldTrackPressure) {
      // Update top scheduled pressure.
      RegisterOperands RegOpers;
      RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
      if (ShouldTrackLaneMasks) {
        // Adjust liveness and add missing dead+read-undef flags.
        SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
      } else {
        // Adjust for missing dead-def flags.
        RegOpers.detectDeadDefs(*MI, *LIS);
      }

      TopRPTracker.advance(RegOpers);
      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
      LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
                     TopRPTracker.getRegSetPressureAtPos(), TRI););

      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
    }
  } else {
    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    MachineBasicBlock::iterator priorII =
      priorNonDebug(CurrentBottom, CurrentTop);
    if (&*priorII == MI)
      CurrentBottom = priorII;
    else {
      if (&*CurrentTop == MI) {
        CurrentTop = nextIfDebug(++CurrentTop, priorII);
        TopRPTracker.setPos(CurrentTop);
      }
      moveInstruction(MI, CurrentBottom);
      CurrentBottom = MI;
      BotRPTracker.setPos(CurrentBottom);
    }
    if (ShouldTrackPressure) {
      RegisterOperands RegOpers;
      RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
      if (ShouldTrackLaneMasks) {
        // Adjust liveness and add missing dead+read-undef flags.
        SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
      } else {
        // Adjust for missing dead-def flags.
        RegOpers.detectDeadDefs(*MI, *LIS);
      }

      if (BotRPTracker.getPos() != CurrentBottom)
        BotRPTracker.recedeSkipDebugValues();
      SmallVector<RegisterMaskPair, 8> LiveUses;
      BotRPTracker.recede(RegOpers, &LiveUses);
      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
      LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
                     BotRPTracker.getRegSetPressureAtPos(), TRI););

      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
      updatePressureDiffs(LiveUses);
    }
  }
}

//===----------------------------------------------------------------------===//
// BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
//===----------------------------------------------------------------------===//

namespace {

/// Post-process the DAG to create cluster edges between neighboring
/// loads or between neighboring stores.
class BaseMemOpClusterMutation : public ScheduleDAGMutation {
  struct MemOpInfo {
    SUnit *SU;
    const MachineOperand *BaseOp;
    int64_t Offset;

    MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
        : SU(su), BaseOp(Op), Offset(ofs) {}

    bool operator<(const MemOpInfo &RHS) const {
      if (BaseOp->getType() != RHS.BaseOp->getType())
        return BaseOp->getType() < RHS.BaseOp->getType();

      if (BaseOp->isReg())
        return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
               std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
                               RHS.SU->NodeNum);
      if (BaseOp->isFI()) {
        const MachineFunction &MF =
            *BaseOp->getParent()->getParent()->getParent();
        const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
        bool StackGrowsDown = TFI.getStackGrowthDirection() ==
                              TargetFrameLowering::StackGrowsDown;
        // Can't use tuple comparison here since we might need to use a
        // different order when the stack grows down.
        if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
          return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
                                : BaseOp->getIndex() < RHS.BaseOp->getIndex();

        if (Offset != RHS.Offset)
          return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;

        return SU->NodeNum < RHS.SU->NodeNum;
      }

      llvm_unreachable("MemOpClusterMutation only supports register or frame "
                       "index bases.");
    }
  };

  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  bool IsLoad;

public:
  BaseMemOpClusterMutation(const TargetInstrInfo *tii,
                           const TargetRegisterInfo *tri, bool IsLoad)
      : TII(tii), TRI(tri), IsLoad(IsLoad) {}

  void apply(ScheduleDAGInstrs *DAGInstrs) override;

protected:
  void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
};

class StoreClusterMutation : public BaseMemOpClusterMutation {
public:
  StoreClusterMutation(const TargetInstrInfo *tii,
                       const TargetRegisterInfo *tri)
      : BaseMemOpClusterMutation(tii, tri, false) {}
};

class LoadClusterMutation : public BaseMemOpClusterMutation {
public:
  LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
      : BaseMemOpClusterMutation(tii, tri, true) {}
};

} // end anonymous namespace

namespace llvm {

std::unique_ptr<ScheduleDAGMutation>
createLoadClusterDAGMutation(const TargetInstrInfo *TII,
                             const TargetRegisterInfo *TRI) {
  return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
                            : nullptr;
}

std::unique_ptr<ScheduleDAGMutation>
createStoreClusterDAGMutation(const TargetInstrInfo *TII,
                              const TargetRegisterInfo *TRI) {
  return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
                            : nullptr;
}

} // end namespace llvm

void BaseMemOpClusterMutation::clusterNeighboringMemOps(
    ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
  SmallVector<MemOpInfo, 32> MemOpRecords;
  for (SUnit *SU : MemOps) {
    const MachineOperand *BaseOp;
    int64_t Offset;
    if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
      MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
  }
  if (MemOpRecords.size() < 2)
    return;

  llvm::sort(MemOpRecords);
  unsigned ClusterLength = 1;
  for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
    SUnit *SUa = MemOpRecords[Idx].SU;
    SUnit *SUb = MemOpRecords[Idx+1].SU;
    if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
                                 *MemOpRecords[Idx + 1].BaseOp,
                                 ClusterLength) &&
        DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
      LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
                        << SUb->NodeNum << ")\n");
      // Copy successor edges from SUa to SUb. Interleaving computation
      // dependent on SUa can prevent load combining due to register reuse.
      // Predecessor edges do not need to be copied from SUb to SUa since nearby
      // loads should have effectively the same inputs.
      for (const SDep &Succ : SUa->Succs) {
        if (Succ.getSUnit() == SUb)
          continue;
        LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
                          << ")\n");
        DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
      }
      ++ClusterLength;
    } else
      ClusterLength = 1;
  }
}

/// Callback from DAG postProcessing to create cluster edges for loads.
void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
  // Map DAG NodeNum to store chain ID.
  DenseMap<unsigned, unsigned> StoreChainIDs;
  // Map each store chain to a set of dependent MemOps.
  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
  for (SUnit &SU : DAG->SUnits) {
    if ((IsLoad && !SU.getInstr()->mayLoad()) ||
        (!IsLoad && !SU.getInstr()->mayStore()))
      continue;

    unsigned ChainPredID = DAG->SUnits.size();
    for (const SDep &Pred : SU.Preds) {
      if (Pred.isCtrl()) {
        ChainPredID = Pred.getSUnit()->NodeNum;
        break;
      }
    }
    // Check if this chain-like pred has been seen
    // before. ChainPredID==MaxNodeID at the top of the schedule.
    unsigned NumChains = StoreChainDependents.size();
    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
    if (Result.second)
      StoreChainDependents.resize(NumChains + 1);
    StoreChainDependents[Result.first->second].push_back(&SU);
  }

  // Iterate over the store chains.
  for (auto &SCD : StoreChainDependents)
    clusterNeighboringMemOps(SCD, DAG);
}

//===----------------------------------------------------------------------===//
// CopyConstrain - DAG post-processing to encourage copy elimination.
//===----------------------------------------------------------------------===//

namespace {

/// Post-process the DAG to create weak edges from all uses of a copy to
/// the one use that defines the copy's source vreg, most likely an induction
/// variable increment.
class CopyConstrain : public ScheduleDAGMutation {
  // Transient state.
  SlotIndex RegionBeginIdx;

  // RegionEndIdx is the slot index of the last non-debug instruction in the
  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
  SlotIndex RegionEndIdx;

public:
  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}

  void apply(ScheduleDAGInstrs *DAGInstrs) override;

protected:
  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
};

} // end anonymous namespace

namespace llvm {

std::unique_ptr<ScheduleDAGMutation>
createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
                               const TargetRegisterInfo *TRI) {
  return std::make_unique<CopyConstrain>(TII, TRI);
}

} // end namespace llvm

/// constrainLocalCopy handles two possibilities:
/// 1) Local src:
/// I0:     = dst
/// I1: src = ...
/// I2:     = dst
/// I3: dst = src (copy)
/// (create pred->succ edges I0->I1, I2->I1)
///
/// 2) Local copy:
/// I0: dst = src (copy)
/// I1:     = dst
/// I2: src = ...
/// I3:     = dst
/// (create pred->succ edges I1->I2, I3->I2)
///
/// Although the MachineScheduler is currently constrained to single blocks,
/// this algorithm should handle extended blocks. An EBB is a set of
/// contiguously numbered blocks such that the previous block in the EBB is
/// always the single predecessor.
void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
  LiveIntervals *LIS = DAG->getLIS();
  MachineInstr *Copy = CopySU->getInstr();

  // Check for pure vreg copies.
  const MachineOperand &SrcOp = Copy->getOperand(1);
  Register SrcReg = SrcOp.getReg();
  if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
    return;

  const MachineOperand &DstOp = Copy->getOperand(0);
  Register DstReg = DstOp.getReg();
  if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
    return;

  // Check if either the dest or source is local. If it's live across a back
  // edge, it's not local. Note that if both vregs are live across the back
  // edge, we cannot successfully contrain the copy without cyclic scheduling.
  // If both the copy's source and dest are local live intervals, then we
  // should treat the dest as the global for the purpose of adding
  // constraints. This adds edges from source's other uses to the copy.
  unsigned LocalReg = SrcReg;
  unsigned GlobalReg = DstReg;
  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
    LocalReg = DstReg;
    GlobalReg = SrcReg;
    LocalLI = &LIS->getInterval(LocalReg);
    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
      return;
  }
  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);

  // Find the global segment after the start of the local LI.
  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
  // local live range. We could create edges from other global uses to the local
  // start, but the coalescer should have already eliminated these cases, so
  // don't bother dealing with it.
  if (GlobalSegment == GlobalLI->end())
    return;

  // If GlobalSegment is killed at the LocalLI->start, the call to find()
  // returned the next global segment. But if GlobalSegment overlaps with
  // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
  if (GlobalSegment->contains(LocalLI->beginIndex()))
    ++GlobalSegment;

  if (GlobalSegment == GlobalLI->end())
    return;

  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
  if (GlobalSegment != GlobalLI->begin()) {
    // Two address defs have no hole.
    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
                               GlobalSegment->start)) {
      return;
    }
    // If the prior global segment may be defined by the same two-address
    // instruction that also defines LocalLI, then can't make a hole here.
    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
                               LocalLI->beginIndex())) {
      return;
    }
    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
    // it would be a disconnected component in the live range.
    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
           "Disconnected LRG within the scheduling region.");
  }
  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
  if (!GlobalDef)
    return;

  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
  if (!GlobalSU)
    return;

  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
  // constraining the uses of the last local def to precede GlobalDef.
  SmallVector<SUnit*,8> LocalUses;
  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
  for (const SDep &Succ : LastLocalSU->Succs) {
    if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
      continue;
    if (Succ.getSUnit() == GlobalSU)
      continue;
    if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
      return;
    LocalUses.push_back(Succ.getSUnit());
  }
  // Open the top of the GlobalLI hole by constraining any earlier global uses
  // to precede the start of LocalLI.
  SmallVector<SUnit*,8> GlobalUses;
  MachineInstr *FirstLocalDef =
    LIS->getInstructionFromIndex(LocalLI->beginIndex());
  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
  for (const SDep &Pred : GlobalSU->Preds) {
    if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
      continue;
    if (Pred.getSUnit() == FirstLocalSU)
      continue;
    if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
      return;
    GlobalUses.push_back(Pred.getSUnit());
  }
  LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
  // Add the weak edges.
  for (SmallVectorImpl<SUnit*>::const_iterator
         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
    LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
                      << GlobalSU->NodeNum << ")\n");
    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
  }
  for (SmallVectorImpl<SUnit*>::const_iterator
         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
    LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
                      << FirstLocalSU->NodeNum << ")\n");
    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
  }
}

/// Callback from DAG postProcessing to create weak edges to encourage
/// copy elimination.
void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
  ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");

  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
  if (FirstPos == DAG->end())
    return;
  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
      *priorNonDebug(DAG->end(), DAG->begin()));

  for (SUnit &SU : DAG->SUnits) {
    if (!SU.getInstr()->isCopy())
      continue;

    constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
  }
}

//===----------------------------------------------------------------------===//
// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
// and possibly other custom schedulers.
//===----------------------------------------------------------------------===//

static const unsigned InvalidCycle = ~0U;

SchedBoundary::~SchedBoundary() { delete HazardRec; }

/// Given a Count of resource usage and a Latency value, return true if a
/// SchedBoundary becomes resource limited.
/// If we are checking after scheduling a node, we should return true when
/// we just reach the resource limit.
static bool checkResourceLimit(unsigned LFactor, unsigned Count,
                               unsigned Latency, bool AfterSchedNode) {
  int ResCntFactor = (int)(Count - (Latency * LFactor));
  if (AfterSchedNode)
    return ResCntFactor >= (int)LFactor;
  else
    return ResCntFactor > (int)LFactor;
}

void SchedBoundary::reset() {
  // A new HazardRec is created for each DAG and owned by SchedBoundary.
  // Destroying and reconstructing it is very expensive though. So keep
  // invalid, placeholder HazardRecs.
  if (HazardRec && HazardRec->isEnabled()) {
    delete HazardRec;
    HazardRec = nullptr;
  }
  Available.clear();
  Pending.clear();
  CheckPending = false;
  CurrCycle = 0;
  CurrMOps = 0;
  MinReadyCycle = std::numeric_limits<unsigned>::max();
  ExpectedLatency = 0;
  DependentLatency = 0;
  RetiredMOps = 0;
  MaxExecutedResCount = 0;
  ZoneCritResIdx = 0;
  IsResourceLimited = false;
  ReservedCycles.clear();
  ReservedCyclesIndex.clear();
#ifndef NDEBUG
  // Track the maximum number of stall cycles that could arise either from the
  // latency of a DAG edge or the number of cycles that a processor resource is
  // reserved (SchedBoundary::ReservedCycles).
  MaxObservedStall = 0;
#endif
  // Reserve a zero-count for invalid CritResIdx.
  ExecutedResCounts.resize(1);
  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
}

void SchedRemainder::
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
  reset();
  if (!SchedModel->hasInstrSchedModel())
    return;
  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
  for (SUnit &SU : DAG->SUnits) {
    const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
    RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
      * SchedModel->getMicroOpFactor();
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
      unsigned PIdx = PI->ProcResourceIdx;
      unsigned Factor = SchedModel->getResourceFactor(PIdx);
      RemainingCounts[PIdx] += (Factor * PI->Cycles);
    }
  }
}

void SchedBoundary::
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
  reset();
  DAG = dag;
  SchedModel = smodel;
  Rem = rem;
  if (SchedModel->hasInstrSchedModel()) {
    unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
    ReservedCyclesIndex.resize(ResourceCount);
    ExecutedResCounts.resize(ResourceCount);
    unsigned NumUnits = 0;

    for (unsigned i = 0; i < ResourceCount; ++i) {
      ReservedCyclesIndex[i] = NumUnits;
      NumUnits += SchedModel->getProcResource(i)->NumUnits;
    }

    ReservedCycles.resize(NumUnits, InvalidCycle);
  }
}

/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
/// these "soft stalls" differently than the hard stall cycles based on CPU
/// resources and computed by checkHazard(). A fully in-order model
/// (MicroOpBufferSize==0) will not make use of this since instructions are not
/// available for scheduling until they are ready. However, a weaker in-order
/// model may use this for heuristics. For example, if a processor has in-order
/// behavior when reading certain resources, this may come into play.
unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
  if (!SU->isUnbuffered)
    return 0;

  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
  if (ReadyCycle > CurrCycle)
    return ReadyCycle - CurrCycle;
  return 0;
}

/// Compute the next cycle at which the given processor resource unit
/// can be scheduled.
unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
                                                       unsigned Cycles) {
  unsigned NextUnreserved = ReservedCycles[InstanceIdx];
  // If this resource has never been used, always return cycle zero.
  if (NextUnreserved == InvalidCycle)
    return 0;
  // For bottom-up scheduling add the cycles needed for the current operation.
  if (!isTop())
    NextUnreserved += Cycles;
  return NextUnreserved;
}

/// Compute the next cycle at which the given processor resource can be
/// scheduled.  Returns the next cycle and the index of the processor resource
/// instance in the reserved cycles vector.
std::pair<unsigned, unsigned>
SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
  unsigned MinNextUnreserved = InvalidCycle;
  unsigned InstanceIdx = 0;
  unsigned StartIndex = ReservedCyclesIndex[PIdx];
  unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
  assert(NumberOfInstances > 0 &&
         "Cannot have zero instances of a ProcResource");

  for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
       ++I) {
    unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
    if (MinNextUnreserved > NextUnreserved) {
      InstanceIdx = I;
      MinNextUnreserved = NextUnreserved;
    }
  }
  return std::make_pair(MinNextUnreserved, InstanceIdx);
}

/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool SchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled()
      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
    return true;
  }

  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
    LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
                      << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
    return true;
  }

  if (CurrMOps > 0 &&
      ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
       (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
    LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
                      << (isTop() ? "begin" : "end") << " group\n");
    return true;
  }

  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
    for (const MCWriteProcResEntry &PE :
          make_range(SchedModel->getWriteProcResBegin(SC),
                     SchedModel->getWriteProcResEnd(SC))) {
      unsigned ResIdx = PE.ProcResourceIdx;
      unsigned Cycles = PE.Cycles;
      unsigned NRCycle, InstanceIdx;
      std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
      if (NRCycle > CurrCycle) {
#ifndef NDEBUG
        MaxObservedStall = std::max(Cycles, MaxObservedStall);
#endif
        LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
                          << SchedModel->getResourceName(ResIdx)
                          << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
                          << "=" << NRCycle << "c\n");
        return true;
      }
    }
  }
  return false;
}

// Find the unscheduled node in ReadySUs with the highest latency.
unsigned SchedBoundary::
findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
  SUnit *LateSU = nullptr;
  unsigned RemLatency = 0;
  for (SUnit *SU : ReadySUs) {
    unsigned L = getUnscheduledLatency(SU);
    if (L > RemLatency) {
      RemLatency = L;
      LateSU = SU;
    }
  }
  if (LateSU) {
    LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
                      << LateSU->NodeNum << ") " << RemLatency << "c\n");
  }
  return RemLatency;
}

// Count resources in this zone and the remaining unscheduled
// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
// resource index, or zero if the zone is issue limited.
unsigned SchedBoundary::
getOtherResourceCount(unsigned &OtherCritIdx) {
  OtherCritIdx = 0;
  if (!SchedModel->hasInstrSchedModel())
    return 0;

  unsigned OtherCritCount = Rem->RemIssueCount
    + (RetiredMOps * SchedModel->getMicroOpFactor());
  LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
                    << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
       PIdx != PEnd; ++PIdx) {
    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
    if (OtherCount > OtherCritCount) {
      OtherCritCount = OtherCount;
      OtherCritIdx = PIdx;
    }
  }
  if (OtherCritIdx) {
    LLVM_DEBUG(
        dbgs() << "  " << Available.getName() << " + Remain CritRes: "
               << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
               << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
  }
  return OtherCritCount;
}

void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
  assert(SU->getInstr() && "Scheduled SUnit must have instr");

#ifndef NDEBUG
  // ReadyCycle was been bumped up to the CurrCycle when this node was
  // scheduled, but CurrCycle may have been eagerly advanced immediately after
  // scheduling, so may now be greater than ReadyCycle.
  if (ReadyCycle > CurrCycle)
    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
#endif

  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
      Available.size() >= ReadyListLimit)
    Pending.push(SU);
  else
    Available.push(SU);
}

/// Move the boundary of scheduled code by one cycle.
void SchedBoundary::bumpCycle(unsigned NextCycle) {
  if (SchedModel->getMicroOpBufferSize() == 0) {
    assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
           "MinReadyCycle uninitialized");
    if (MinReadyCycle > NextCycle)
      NextCycle = MinReadyCycle;
  }
  // Update the current micro-ops, which will issue in the next cycle.
  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;

  // Decrement DependentLatency based on the next cycle.
  if ((NextCycle - CurrCycle) > DependentLatency)
    DependentLatency = 0;
  else
    DependentLatency -= (NextCycle - CurrCycle);

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  } else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;
  IsResourceLimited =
      checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
                         getScheduledLatency(), true);

  LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
                    << '\n');
}

void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
  ExecutedResCounts[PIdx] += Count;
  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
    MaxExecutedResCount = ExecutedResCounts[PIdx];
}

/// Add the given processor resource to this scheduled zone.
///
/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
/// during which this resource is consumed.
///
/// \return the next cycle at which the instruction may execute without
/// oversubscribing resources.
unsigned SchedBoundary::
countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
  unsigned Factor = SchedModel->getResourceFactor(PIdx);
  unsigned Count = Factor * Cycles;
  LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
                    << Cycles << "x" << Factor << "u\n");

  // Update Executed resources counts.
  incExecutedResources(PIdx, Count);
  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
  Rem->RemainingCounts[PIdx] -= Count;

  // Check if this resource exceeds the current critical resource. If so, it
  // becomes the critical resource.
  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
    ZoneCritResIdx = PIdx;
    LLVM_DEBUG(dbgs() << "  *** Critical resource "
                      << SchedModel->getResourceName(PIdx) << ": "
                      << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
                      << "c\n");
  }
  // For reserved resources, record the highest cycle using the resource.
  unsigned NextAvailable, InstanceIdx;
  std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
  if (NextAvailable > CurrCycle) {
    LLVM_DEBUG(dbgs() << "  Resource conflict: "
                      << SchedModel->getResourceName(PIdx)
                      << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
                      << " reserved until @" << NextAvailable << "\n");
  }
  return NextAvailable;
}

/// Move the boundary of scheduled code by one SUnit.
void SchedBoundary::bumpNode(SUnit *SU) {
  // Update the reservation table.
  if (HazardRec->isEnabled()) {
    if (!isTop() && SU->isCall) {
      // Calls are scheduled with their preceding instructions. For bottom-up
      // scheduling, clear the pipeline state before emitting.
      HazardRec->Reset();
    }
    HazardRec->EmitInstruction(SU);
    // Scheduling an instruction may have made pending instructions available.
    CheckPending = true;
  }
  // checkHazard should prevent scheduling multiple instructions per cycle that
  // exceed the issue width.
  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
  assert(
      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
      "Cannot schedule this instruction's MicroOps in the current cycle.");

  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
  LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");

  unsigned NextCycle = CurrCycle;
  switch (SchedModel->getMicroOpBufferSize()) {
  case 0:
    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
    break;
  case 1:
    if (ReadyCycle > NextCycle) {
      NextCycle = ReadyCycle;
      LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
    }
    break;
  default:
    // We don't currently model the OOO reorder buffer, so consider all
    // scheduled MOps to be "retired". We do loosely model in-order resource
    // latency. If this instruction uses an in-order resource, account for any
    // likely stall cycles.
    if (SU->isUnbuffered && ReadyCycle > NextCycle)
      NextCycle = ReadyCycle;
    break;
  }
  RetiredMOps += IncMOps;

  // Update resource counts and critical resource.
  if (SchedModel->hasInstrSchedModel()) {
    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
    Rem->RemIssueCount -= DecRemIssue;
    if (ZoneCritResIdx) {
      // Scale scheduled micro-ops for comparing with the critical resource.
      unsigned ScaledMOps =
        RetiredMOps * SchedModel->getMicroOpFactor();

      // If scaled micro-ops are now more than the previous critical resource by
      // a full cycle, then micro-ops issue becomes critical.
      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
          >= (int)SchedModel->getLatencyFactor()) {
        ZoneCritResIdx = 0;
        LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
                          << ScaledMOps / SchedModel->getLatencyFactor()
                          << "c\n");
      }
    }
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
      unsigned RCycle =
        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
      if (RCycle > NextCycle)
        NextCycle = RCycle;
    }
    if (SU->hasReservedResource) {
      // For reserved resources, record the highest cycle using the resource.
      // For top-down scheduling, this is the cycle in which we schedule this
      // instruction plus the number of cycles the operations reserves the
      // resource. For bottom-up is it simply the instruction's cycle.
      for (TargetSchedModel::ProcResIter
             PI = SchedModel->getWriteProcResBegin(SC),
             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
        unsigned PIdx = PI->ProcResourceIdx;
        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
          unsigned ReservedUntil, InstanceIdx;
          std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
          if (isTop()) {
            ReservedCycles[InstanceIdx] =
                std::max(ReservedUntil, NextCycle + PI->Cycles);
          } else
            ReservedCycles[InstanceIdx] = NextCycle;
        }
      }
    }
  }
  // Update ExpectedLatency and DependentLatency.
  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
  if (SU->getDepth() > TopLatency) {
    TopLatency = SU->getDepth();
    LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
                      << SU->NodeNum << ") " << TopLatency << "c\n");
  }
  if (SU->getHeight() > BotLatency) {
    BotLatency = SU->getHeight();
    LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
                      << SU->NodeNum << ") " << BotLatency << "c\n");
  }
  // If we stall for any reason, bump the cycle.
  if (NextCycle > CurrCycle)
    bumpCycle(NextCycle);
  else
    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
    // resource limited. If a stall occurred, bumpCycle does this.
    IsResourceLimited =
        checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
                           getScheduledLatency(), true);

  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
  // one cycle.  Since we commonly reach the max MOps here, opportunistically
  // bump the cycle to avoid uselessly checking everything in the readyQ.
  CurrMOps += IncMOps;

  // Bump the cycle count for issue group constraints.
  // This must be done after NextCycle has been adjust for all other stalls.
  // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
  // currCycle to X.
  if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
      (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
    LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
                      << " group\n");
    bumpCycle(++NextCycle);
  }

  while (CurrMOps >= SchedModel->getIssueWidth()) {
    LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
                      << CurrCycle << '\n');
    bumpCycle(++NextCycle);
  }
  LLVM_DEBUG(dumpScheduledState());
}

/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void SchedBoundary::releasePending() {
  // If the available queue is empty, it is safe to reset MinReadyCycle.
  if (Available.empty())
    MinReadyCycle = std::numeric_limits<unsigned>::max();

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    SUnit *SU = *(Pending.begin()+i);
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;

    if (ReadyCycle < MinReadyCycle)
      MinReadyCycle = ReadyCycle;

    if (!IsBuffered && ReadyCycle > CurrCycle)
      continue;

    if (checkHazard(SU))
      continue;

    if (Available.size() >= ReadyListLimit)
      break;

    Available.push(SU);
    Pending.remove(Pending.begin()+i);
    --i; --e;
  }
  CheckPending = false;
}

/// Remove SU from the ready set for this boundary.
void SchedBoundary::removeReady(SUnit *SU) {
  if (Available.isInQueue(SU))
    Available.remove(Available.find(SU));
  else {
    assert(Pending.isInQueue(SU) && "bad ready count");
    Pending.remove(Pending.find(SU));
  }
}

/// If this queue only has one ready candidate, return it. As a side effect,
/// defer any nodes that now hit a hazard, and advance the cycle until at least
/// one node is ready. If multiple instructions are ready, return NULL.
SUnit *SchedBoundary::pickOnlyChoice() {
  if (CheckPending)
    releasePending();

  if (CurrMOps > 0) {
    // Defer any ready instrs that now have a hazard.
    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
      if (checkHazard(*I)) {
        Pending.push(*I);
        I = Available.remove(I);
        continue;
      }
      ++I;
    }
  }
  for (unsigned i = 0; Available.empty(); ++i) {
//  FIXME: Re-enable assert once PR20057 is resolved.
//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
//           "permanent hazard");
    (void)i;
    bumpCycle(CurrCycle + 1);
    releasePending();
  }

  LLVM_DEBUG(Pending.dump());
  LLVM_DEBUG(Available.dump());

  if (Available.size() == 1)
    return *Available.begin();
  return nullptr;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
// This is useful information to dump after bumpNode.
// Note that the Queue contents are more useful before pickNodeFromQueue.
LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
  unsigned ResFactor;
  unsigned ResCount;
  if (ZoneCritResIdx) {
    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
    ResCount = getResourceCount(ZoneCritResIdx);
  } else {
    ResFactor = SchedModel->getMicroOpFactor();
    ResCount = RetiredMOps * ResFactor;
  }
  unsigned LFactor = SchedModel->getLatencyFactor();
  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
         << "  Retired: " << RetiredMOps;
  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
         << ResCount / ResFactor << " "
         << SchedModel->getResourceName(ZoneCritResIdx)
         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
         << (IsResourceLimited ? "  - Resource" : "  - Latency")
         << " limited.\n";
}
#endif

//===----------------------------------------------------------------------===//
// GenericScheduler - Generic implementation of MachineSchedStrategy.
//===----------------------------------------------------------------------===//

void GenericSchedulerBase::SchedCandidate::
initResourceDelta(const ScheduleDAGMI *DAG,
                  const TargetSchedModel *SchedModel) {
  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
    return;

  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
      ResDelta.CritResources += PI->Cycles;
    if (PI->ProcResourceIdx == Policy.DemandResIdx)
      ResDelta.DemandedResources += PI->Cycles;
  }
}

/// Compute remaining latency. We need this both to determine whether the
/// overall schedule has become latency-limited and whether the instructions
/// outside this zone are resource or latency limited.
///
/// The "dependent" latency is updated incrementally during scheduling as the
/// max height/depth of scheduled nodes minus the cycles since it was
/// scheduled:
///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
///
/// The "independent" latency is the max ready queue depth:
///   ILat = max N.depth for N in Available|Pending
///
/// RemainingLatency is the greater of independent and dependent latency.
///
/// These computations are expensive, especially in DAGs with many edges, so
/// only do them if necessary.
static unsigned computeRemLatency(SchedBoundary &CurrZone) {
  unsigned RemLatency = CurrZone.getDependentLatency();
  RemLatency = std::max(RemLatency,
                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
  RemLatency = std::max(RemLatency,
                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
  return RemLatency;
}

/// Returns true if the current cycle plus remaning latency is greater than
/// the critical path in the scheduling region.
bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
                                               SchedBoundary &CurrZone,
                                               bool ComputeRemLatency,
                                               unsigned &RemLatency) const {
  // The current cycle is already greater than the critical path, so we are
  // already latency limited and don't need to compute the remaining latency.
  if (CurrZone.getCurrCycle() > Rem.CriticalPath)
    return true;

  // If we haven't scheduled anything yet, then we aren't latency limited.
  if (CurrZone.getCurrCycle() == 0)
    return false;

  if (ComputeRemLatency)
    RemLatency = computeRemLatency(CurrZone);

  return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
}

/// Set the CandPolicy given a scheduling zone given the current resources and
/// latencies inside and outside the zone.
void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
                                     SchedBoundary &CurrZone,
                                     SchedBoundary *OtherZone) {
  // Apply preemptive heuristics based on the total latency and resources
  // inside and outside this zone. Potential stalls should be considered before
  // following this policy.

  // Compute the critical resource outside the zone.
  unsigned OtherCritIdx = 0;
  unsigned OtherCount =
    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;

  bool OtherResLimited = false;
  unsigned RemLatency = 0;
  bool RemLatencyComputed = false;
  if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
    RemLatency = computeRemLatency(CurrZone);
    RemLatencyComputed = true;
    OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
                                         OtherCount, RemLatency, false);
  }

  // Schedule aggressively for latency in PostRA mode. We don't check for
  // acyclic latency during PostRA, and highly out-of-order processors will
  // skip PostRA scheduling.
  if (!OtherResLimited &&
      (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
                                       RemLatency))) {
    Policy.ReduceLatency |= true;
    LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
                      << " RemainingLatency " << RemLatency << " + "
                      << CurrZone.getCurrCycle() << "c > CritPath "
                      << Rem.CriticalPath << "\n");
  }
  // If the same resource is limiting inside and outside the zone, do nothing.
  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
    return;

  LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
    dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
           << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
  } if (OtherResLimited) dbgs()
                 << "  RemainingLimit: "
                 << SchedModel->getResourceName(OtherCritIdx) << "\n";
             if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
             << "  Latency limited both directions.\n");

  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();

  if (OtherResLimited)
    Policy.DemandResIdx = OtherCritIdx;
}

#ifndef NDEBUG
const char *GenericSchedulerBase::getReasonStr(
  GenericSchedulerBase::CandReason Reason) {
  switch (Reason) {
  case NoCand:         return "NOCAND    ";
  case Only1:          return "ONLY1     ";
  case PhysReg:        return "PHYS-REG  ";
  case RegExcess:      return "REG-EXCESS";
  case RegCritical:    return "REG-CRIT  ";
  case Stall:          return "STALL     ";
  case Cluster:        return "CLUSTER   ";
  case Weak:           return "WEAK      ";
  case RegMax:         return "REG-MAX   ";
  case ResourceReduce: return "RES-REDUCE";
  case ResourceDemand: return "RES-DEMAND";
  case TopDepthReduce: return "TOP-DEPTH ";
  case TopPathReduce:  return "TOP-PATH  ";
  case BotHeightReduce:return "BOT-HEIGHT";
  case BotPathReduce:  return "BOT-PATH  ";
  case NextDefUse:     return "DEF-USE   ";
  case NodeOrder:      return "ORDER     ";
  };
  llvm_unreachable("Unknown reason!");
}

void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
  PressureChange P;
  unsigned ResIdx = 0;
  unsigned Latency = 0;
  switch (Cand.Reason) {
  default:
    break;
  case RegExcess:
    P = Cand.RPDelta.Excess;
    break;
  case RegCritical:
    P = Cand.RPDelta.CriticalMax;
    break;
  case RegMax:
    P = Cand.RPDelta.CurrentMax;
    break;
  case ResourceReduce:
    ResIdx = Cand.Policy.ReduceResIdx;
    break;
  case ResourceDemand:
    ResIdx = Cand.Policy.DemandResIdx;
    break;
  case TopDepthReduce:
    Latency = Cand.SU->getDepth();
    break;
  case TopPathReduce:
    Latency = Cand.SU->getHeight();
    break;
  case BotHeightReduce:
    Latency = Cand.SU->getHeight();
    break;
  case BotPathReduce:
    Latency = Cand.SU->getDepth();
    break;
  }
  dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
  if (P.isValid())
    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
           << ":" << P.getUnitInc() << " ";
  else
    dbgs() << "      ";
  if (ResIdx)
    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
  else
    dbgs() << "         ";
  if (Latency)
    dbgs() << " " << Latency << " cycles ";
  else
    dbgs() << "          ";
  dbgs() << '\n';
}
#endif

namespace llvm {
/// Return true if this heuristic determines order.
bool tryLess(int TryVal, int CandVal,
             GenericSchedulerBase::SchedCandidate &TryCand,
             GenericSchedulerBase::SchedCandidate &Cand,
             GenericSchedulerBase::CandReason Reason) {
  if (TryVal < CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal > CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  return false;
}

bool tryGreater(int TryVal, int CandVal,
                GenericSchedulerBase::SchedCandidate &TryCand,
                GenericSchedulerBase::SchedCandidate &Cand,
                GenericSchedulerBase::CandReason Reason) {
  if (TryVal > CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal < CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  return false;
}

bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
                GenericSchedulerBase::SchedCandidate &Cand,
                SchedBoundary &Zone) {
  if (Zone.isTop()) {
    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
        return true;
    }
    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
      return true;
  } else {
    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
        return true;
    }
    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
      return true;
  }
  return false;
}
} // end namespace llvm

static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
  LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
                    << GenericSchedulerBase::getReasonStr(Reason) << '\n');
}

static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
  tracePick(Cand.Reason, Cand.AtTop);
}

void GenericScheduler::initialize(ScheduleDAGMI *dag) {
  assert(dag->hasVRegLiveness() &&
         "(PreRA)GenericScheduler needs vreg liveness");
  DAG = static_cast<ScheduleDAGMILive*>(dag);
  SchedModel = DAG->getSchedModel();
  TRI = DAG->TRI;

  Rem.init(DAG, SchedModel);
  Top.init(DAG, SchedModel, &Rem);
  Bot.init(DAG, SchedModel, &Rem);

  // Initialize resource counts.

  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
  // are disabled, then these HazardRecs will be disabled.
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
  if (!Top.HazardRec) {
    Top.HazardRec =
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
            Itin, DAG);
  }
  if (!Bot.HazardRec) {
    Bot.HazardRec =
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
            Itin, DAG);
  }
  TopCand.SU = nullptr;
  BotCand.SU = nullptr;
}

/// Initialize the per-region scheduling policy.
void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
                                  MachineBasicBlock::iterator End,
                                  unsigned NumRegionInstrs) {
  const MachineFunction &MF = *Begin->getMF();
  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();

  // Avoid setting up the register pressure tracker for small regions to save
  // compile time. As a rough heuristic, only track pressure when the number of
  // schedulable instructions exceeds half the integer register file.
  RegionPolicy.ShouldTrackPressure = true;
  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
    if (TLI->isTypeLegal(LegalIntVT)) {
      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
        TLI->getRegClassFor(LegalIntVT));
      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
    }
  }

  // For generic targets, we default to bottom-up, because it's simpler and more
  // compile-time optimizations have been implemented in that direction.
  RegionPolicy.OnlyBottomUp = true;

  // Allow the subtarget to override default policy.
  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);

  // After subtarget overrides, apply command line options.
  if (!EnableRegPressure) {
    RegionPolicy.ShouldTrackPressure = false;
    RegionPolicy.ShouldTrackLaneMasks = false;
  }

  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
  // e.g. -misched-bottomup=false allows scheduling in both directions.
  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
  if (ForceBottomUp.getNumOccurrences() > 0) {
    RegionPolicy.OnlyBottomUp = ForceBottomUp;
    if (RegionPolicy.OnlyBottomUp)
      RegionPolicy.OnlyTopDown = false;
  }
  if (ForceTopDown.getNumOccurrences() > 0) {
    RegionPolicy.OnlyTopDown = ForceTopDown;
    if (RegionPolicy.OnlyTopDown)
      RegionPolicy.OnlyBottomUp = false;
  }
}

void GenericScheduler::dumpPolicy() const {
  // Cannot completely remove virtual function even in release mode.
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  dbgs() << "GenericScheduler RegionPolicy: "
         << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
         << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
         << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
         << "\n";
#endif
}

/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
/// critical path by more cycles than it takes to drain the instruction buffer.
/// We estimate an upper bounds on in-flight instructions as:
///
/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
/// InFlightIterations = AcyclicPath / CyclesPerIteration
/// InFlightResources = InFlightIterations * LoopResources
///
/// TODO: Check execution resources in addition to IssueCount.
void GenericScheduler::checkAcyclicLatency() {
  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
    return;

  // Scaled number of cycles per loop iteration.
  unsigned IterCount =
    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
             Rem.RemIssueCount);
  // Scaled acyclic critical path.
  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
  unsigned InFlightCount =
    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
  unsigned BufferLimit =
    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();

  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;

  LLVM_DEBUG(
      dbgs() << "IssueCycles="
             << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
             << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
             << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
             << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
             << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
      if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
}

void GenericScheduler::registerRoots() {
  Rem.CriticalPath = DAG->ExitSU.getDepth();

  // Some roots may not feed into ExitSU. Check all of them in case.
  for (const SUnit *SU : Bot.Available) {
    if (SU->getDepth() > Rem.CriticalPath)
      Rem.CriticalPath = SU->getDepth();
  }
  LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
  if (DumpCriticalPathLength) {
    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
  }

  if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
    checkAcyclicLatency();
  }
}

namespace llvm {
bool tryPressure(const PressureChange &TryP,
                 const PressureChange &CandP,
                 GenericSchedulerBase::SchedCandidate &TryCand,
                 GenericSchedulerBase::SchedCandidate &Cand,
                 GenericSchedulerBase::CandReason Reason,
                 const TargetRegisterInfo *TRI,
                 const MachineFunction &MF) {
  // If one candidate decreases and the other increases, go with it.
  // Invalid candidates have UnitInc==0.
  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
                 Reason)) {
    return true;
  }
  // Do not compare the magnitude of pressure changes between top and bottom
  // boundary.
  if (Cand.AtTop != TryCand.AtTop)
    return false;

  // If both candidates affect the same set in the same boundary, go with the
  // smallest increase.
  unsigned TryPSet = TryP.getPSetOrMax();
  unsigned CandPSet = CandP.getPSetOrMax();
  if (TryPSet == CandPSet) {
    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
                   Reason);
  }

  int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
                                 std::numeric_limits<int>::max();

  int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
                                   std::numeric_limits<int>::max();

  // If the candidates are decreasing pressure, reverse priority.
  if (TryP.getUnitInc() < 0)
    std::swap(TryRank, CandRank);
  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
}

unsigned getWeakLeft(const SUnit *SU, bool isTop) {
  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
}

/// Minimize physical register live ranges. Regalloc wants them adjacent to
/// their physreg def/use.
///
/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
/// with the operation that produces or consumes the physreg. We'll do this when
/// regalloc has support for parallel copies.
int biasPhysReg(const SUnit *SU, bool isTop) {
  const MachineInstr *MI = SU->getInstr();

  if (MI->isCopy()) {
    unsigned ScheduledOper = isTop ? 1 : 0;
    unsigned UnscheduledOper = isTop ? 0 : 1;
    // If we have already scheduled the physreg produce/consumer, immediately
    // schedule the copy.
    if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
      return 1;
    // If the physreg is at the boundary, defer it. Otherwise schedule it
    // immediately to free the dependent. We can hoist the copy later.
    bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
    if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
      return AtBoundary ? -1 : 1;
  }

  if (MI->isMoveImmediate()) {
    // If we have a move immediate and all successors have been assigned, bias
    // towards scheduling this later. Make sure all register defs are to
    // physical registers.
    bool DoBias = true;
    for (const MachineOperand &Op : MI->defs()) {
      if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
        DoBias = false;
        break;
      }
    }

    if (DoBias)
      return isTop ? -1 : 1;
  }

  return 0;
}
} // end namespace llvm

void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
                                     bool AtTop,
                                     const RegPressureTracker &RPTracker,
                                     RegPressureTracker &TempTracker) {
  Cand.SU = SU;
  Cand.AtTop = AtTop;
  if (DAG->isTrackingPressure()) {
    if (AtTop) {
      TempTracker.getMaxDownwardPressureDelta(
        Cand.SU->getInstr(),
        Cand.RPDelta,
        DAG->getRegionCriticalPSets(),
        DAG->getRegPressure().MaxSetPressure);
    } else {
      if (VerifyScheduling) {
        TempTracker.getMaxUpwardPressureDelta(
          Cand.SU->getInstr(),
          &DAG->getPressureDiff(Cand.SU),
          Cand.RPDelta,
          DAG->getRegionCriticalPSets(),
          DAG->getRegPressure().MaxSetPressure);
      } else {
        RPTracker.getUpwardPressureDelta(
          Cand.SU->getInstr(),
          DAG->getPressureDiff(Cand.SU),
          Cand.RPDelta,
          DAG->getRegionCriticalPSets(),
          DAG->getRegPressure().MaxSetPressure);
      }
    }
  }
  LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
             << "  Try  SU(" << Cand.SU->NodeNum << ") "
             << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
             << Cand.RPDelta.Excess.getUnitInc() << "\n");
}

/// Apply a set of heuristics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
/// queue. But it's really done to make the heuristics easier to debug and
/// statistically analyze.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
/// \param Zone describes the scheduled zone that we are extending, or nullptr
//              if Cand is from a different zone than TryCand.
void GenericScheduler::tryCandidate(SchedCandidate &Cand,
                                    SchedCandidate &TryCand,
                                    SchedBoundary *Zone) const {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return;
  }

  // Bias PhysReg Defs and copies to their uses and defined respectively.
  if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
                 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
    return;

  // Avoid exceeding the target's limit.
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
                                               Cand.RPDelta.Excess,
                                               TryCand, Cand, RegExcess, TRI,
                                               DAG->MF))
    return;

  // Avoid increasing the max critical pressure in the scheduled region.
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
                                               Cand.RPDelta.CriticalMax,
                                               TryCand, Cand, RegCritical, TRI,
                                               DAG->MF))
    return;

  // We only compare a subset of features when comparing nodes between
  // Top and Bottom boundary. Some properties are simply incomparable, in many
  // other instances we should only override the other boundary if something
  // is a clear good pick on one boundary. Skip heuristics that are more
  // "tie-breaking" in nature.
  bool SameBoundary = Zone != nullptr;
  if (SameBoundary) {
    // For loops that are acyclic path limited, aggressively schedule for
    // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
    // heuristics to take precedence.
    if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
        tryLatency(TryCand, Cand, *Zone))
      return;

    // Prioritize instructions that read unbuffered resources by stall cycles.
    if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
                Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
      return;
  }

  // Keep clustered nodes together to encourage downstream peephole
  // optimizations which may reduce resource requirements.
  //
  // This is a best effort to set things up for a post-RA pass. Optimizations
  // like generating loads of multiple registers should ideally be done within
  // the scheduler pass by combining the loads during DAG postprocessing.
  const SUnit *CandNextClusterSU =
    Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
  const SUnit *TryCandNextClusterSU =
    TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
  if (tryGreater(TryCand.SU == TryCandNextClusterSU,
                 Cand.SU == CandNextClusterSU,
                 TryCand, Cand, Cluster))
    return;

  if (SameBoundary) {
    // Weak edges are for clustering and other constraints.
    if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
                getWeakLeft(Cand.SU, Cand.AtTop),
                TryCand, Cand, Weak))
      return;
  }

  // Avoid increasing the max pressure of the entire region.
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
                                               Cand.RPDelta.CurrentMax,
                                               TryCand, Cand, RegMax, TRI,
                                               DAG->MF))
    return;

  if (SameBoundary) {
    // Avoid critical resource consumption and balance the schedule.
    TryCand.initResourceDelta(DAG, SchedModel);
    if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
                TryCand, Cand, ResourceReduce))
      return;
    if (tryGreater(TryCand.ResDelta.DemandedResources,
                   Cand.ResDelta.DemandedResources,
                   TryCand, Cand, ResourceDemand))
      return;

    // Avoid serializing long latency dependence chains.
    // For acyclic path limited loops, latency was already checked above.
    if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
        !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
      return;

    // Fall through to original instruction order.
    if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
        || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
      TryCand.Reason = NodeOrder;
    }
  }
}

/// Pick the best candidate from the queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
                                         const CandPolicy &ZonePolicy,
                                         const RegPressureTracker &RPTracker,
                                         SchedCandidate &Cand) {
  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  ReadyQueue &Q = Zone.Available;
  for (SUnit *SU : Q) {

    SchedCandidate TryCand(ZonePolicy);
    initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
    // Pass SchedBoundary only when comparing nodes from the same boundary.
    SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
    tryCandidate(Cand, TryCand, ZoneArg);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(DAG, SchedModel);
      Cand.setBest(TryCand);
      LLVM_DEBUG(traceCandidate(Cand));
    }
  }
}

/// Pick the best candidate node from either the top or bottom queue.
SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    tracePick(Only1, false);
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    tracePick(Only1, true);
    return SU;
  }
  // Set the bottom-up policy based on the state of the current bottom zone and
  // the instructions outside the zone, including the top zone.
  CandPolicy BotPolicy;
  setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
  // Set the top-down policy based on the state of the current top zone and
  // the instructions outside the zone, including the bottom zone.
  CandPolicy TopPolicy;
  setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);

  // See if BotCand is still valid (because we previously scheduled from Top).
  LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
  if (!BotCand.isValid() || BotCand.SU->isScheduled ||
      BotCand.Policy != BotPolicy) {
    BotCand.reset(CandPolicy());
    pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
    assert(BotCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
      assert(TCand.SU == BotCand.SU &&
             "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Check if the top Q has a better candidate.
  LLVM_DEBUG(dbgs() << "Picking from Top:\n");
  if (!TopCand.isValid() || TopCand.SU->isScheduled ||
      TopCand.Policy != TopPolicy) {
    TopCand.reset(CandPolicy());
    pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
    assert(TopCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
      assert(TCand.SU == TopCand.SU &&
           "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Pick best from BotCand and TopCand.
  assert(BotCand.isValid());
  assert(TopCand.isValid());
  SchedCandidate Cand = BotCand;
  TopCand.Reason = NoCand;
  tryCandidate(Cand, TopCand, nullptr);
  if (TopCand.Reason != NoCand) {
    Cand.setBest(TopCand);
    LLVM_DEBUG(traceCandidate(Cand));
  }

  IsTopNode = Cand.AtTop;
  tracePick(Cand);
  return Cand.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    if (RegionPolicy.OnlyTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        TopCand.reset(NoPolicy);
        pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
        tracePick(TopCand);
        SU = TopCand.SU;
      }
      IsTopNode = true;
    } else if (RegionPolicy.OnlyBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        BotCand.reset(NoPolicy);
        pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
        tracePick(BotCand);
        SU = BotCand.SU;
      }
      IsTopNode = false;
    } else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                    << *SU->getInstr());
  return SU;
}

void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
  MachineBasicBlock::iterator InsertPos = SU->getInstr();
  if (!isTop)
    ++InsertPos;
  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;

  // Find already scheduled copies with a single physreg dependence and move
  // them just above the scheduled instruction.
  for (SDep &Dep : Deps) {
    if (Dep.getKind() != SDep::Data ||
        !Register::isPhysicalRegister(Dep.getReg()))
      continue;
    SUnit *DepSU = Dep.getSUnit();
    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
      continue;
    MachineInstr *Copy = DepSU->getInstr();
    if (!Copy->isCopy() && !Copy->isMoveImmediate())
      continue;
    LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
               DAG->dumpNode(*Dep.getSUnit()));
    DAG->moveInstruction(Copy, InsertPos);
  }
}

/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
/// update it's state based on the current cycle before MachineSchedStrategy
/// does.
///
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
/// them here. See comments in biasPhysReg.
void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  if (IsTopNode) {
    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
    Top.bumpNode(SU);
    if (SU->hasPhysRegUses)
      reschedulePhysReg(SU, true);
  } else {
    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
    Bot.bumpNode(SU);
    if (SU->hasPhysRegDefs)
      reschedulePhysReg(SU, false);
  }
}

/// Create the standard converging machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
  ScheduleDAGMILive *DAG =
      new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
  // Register DAG post-processors.
  //
  // FIXME: extend the mutation API to allow earlier mutations to instantiate
  // data and pass it to later mutations. Have a single mutation that gathers
  // the interesting nodes in one pass.
  DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
  return DAG;
}

static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
  return createGenericSchedLive(C);
}

static MachineSchedRegistry
GenericSchedRegistry("converge", "Standard converging scheduler.",
                     createConveringSched);

//===----------------------------------------------------------------------===//
// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
//===----------------------------------------------------------------------===//

void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
  DAG = Dag;
  SchedModel = DAG->getSchedModel();
  TRI = DAG->TRI;

  Rem.init(DAG, SchedModel);
  Top.init(DAG, SchedModel, &Rem);
  BotRoots.clear();

  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
  // or are disabled, then these HazardRecs will be disabled.
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
  if (!Top.HazardRec) {
    Top.HazardRec =
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
            Itin, DAG);
  }
}

void PostGenericScheduler::registerRoots() {
  Rem.CriticalPath = DAG->ExitSU.getDepth();

  // Some roots may not feed into ExitSU. Check all of them in case.
  for (const SUnit *SU : BotRoots) {
    if (SU->getDepth() > Rem.CriticalPath)
      Rem.CriticalPath = SU->getDepth();
  }
  LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
  if (DumpCriticalPathLength) {
    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
  }
}

/// Apply a set of heuristics to a new candidate for PostRA scheduling.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
                                        SchedCandidate &TryCand) {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return;
  }

  // Prioritize instructions that read unbuffered resources by stall cycles.
  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
    return;

  // Keep clustered nodes together.
  if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
                 Cand.SU == DAG->getNextClusterSucc(),
                 TryCand, Cand, Cluster))
    return;

  // Avoid critical resource consumption and balance the schedule.
  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
              TryCand, Cand, ResourceReduce))
    return;
  if (tryGreater(TryCand.ResDelta.DemandedResources,
                 Cand.ResDelta.DemandedResources,
                 TryCand, Cand, ResourceDemand))
    return;

  // Avoid serializing long latency dependence chains.
  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
    return;
  }

  // Fall through to original instruction order.
  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
    TryCand.Reason = NodeOrder;
}

void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
  ReadyQueue &Q = Top.Available;
  for (SUnit *SU : Q) {
    SchedCandidate TryCand(Cand.Policy);
    TryCand.SU = SU;
    TryCand.AtTop = true;
    TryCand.initResourceDelta(DAG, SchedModel);
    tryCandidate(Cand, TryCand);
    if (TryCand.Reason != NoCand) {
      Cand.setBest(TryCand);
      LLVM_DEBUG(traceCandidate(Cand));
    }
  }
}

/// Pick the next node to schedule.
SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    SU = Top.pickOnlyChoice();
    if (SU) {
      tracePick(Only1, true);
    } else {
      CandPolicy NoPolicy;
      SchedCandidate TopCand(NoPolicy);
      // Set the top-down policy based on the state of the current top zone and
      // the instructions outside the zone, including the bottom zone.
      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
      pickNodeFromQueue(TopCand);
      assert(TopCand.Reason != NoCand && "failed to find a candidate");
      tracePick(TopCand);
      SU = TopCand.SU;
    }
  } while (SU->isScheduled);

  IsTopNode = true;
  Top.removeReady(SU);

  LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                    << *SU->getInstr());
  return SU;
}

/// Called after ScheduleDAGMI has scheduled an instruction and updated
/// scheduled/remaining flags in the DAG nodes.
void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
  Top.bumpNode(SU);
}

ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
  return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
                           /*RemoveKillFlags=*/true);
}

//===----------------------------------------------------------------------===//
// ILP Scheduler. Currently for experimental analysis of heuristics.
//===----------------------------------------------------------------------===//

namespace {

/// Order nodes by the ILP metric.
struct ILPOrder {
  const SchedDFSResult *DFSResult = nullptr;
  const BitVector *ScheduledTrees = nullptr;
  bool MaximizeILP;

  ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}

  /// Apply a less-than relation on node priority.
  ///
  /// (Return true if A comes after B in the Q.)
  bool operator()(const SUnit *A, const SUnit *B) const {
    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
    if (SchedTreeA != SchedTreeB) {
      // Unscheduled trees have lower priority.
      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
        return ScheduledTrees->test(SchedTreeB);

      // Trees with shallower connections have have lower priority.
      if (DFSResult->getSubtreeLevel(SchedTreeA)
          != DFSResult->getSubtreeLevel(SchedTreeB)) {
        return DFSResult->getSubtreeLevel(SchedTreeA)
          < DFSResult->getSubtreeLevel(SchedTreeB);
      }
    }
    if (MaximizeILP)
      return DFSResult->getILP(A) < DFSResult->getILP(B);
    else
      return DFSResult->getILP(A) > DFSResult->getILP(B);
  }
};

/// Schedule based on the ILP metric.
class ILPScheduler : public MachineSchedStrategy {
  ScheduleDAGMILive *DAG = nullptr;
  ILPOrder Cmp;

  std::vector<SUnit*> ReadyQ;

public:
  ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}

  void initialize(ScheduleDAGMI *dag) override {
    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
    DAG = static_cast<ScheduleDAGMILive*>(dag);
    DAG->computeDFSResult();
    Cmp.DFSResult = DAG->getDFSResult();
    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
    ReadyQ.clear();
  }

  void registerRoots() override {
    // Restore the heap in ReadyQ with the updated DFS results.
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }

  /// Implement MachineSchedStrategy interface.
  /// -----------------------------------------

  /// Callback to select the highest priority node from the ready Q.
  SUnit *pickNode(bool &IsTopNode) override {
    if (ReadyQ.empty()) return nullptr;
    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
    SUnit *SU = ReadyQ.back();
    ReadyQ.pop_back();
    IsTopNode = false;
    LLVM_DEBUG(dbgs() << "Pick node "
                      << "SU(" << SU->NodeNum << ") "
                      << " ILP: " << DAG->getDFSResult()->getILP(SU)
                      << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
                      << " @"
                      << DAG->getDFSResult()->getSubtreeLevel(
                             DAG->getDFSResult()->getSubtreeID(SU))
                      << '\n'
                      << "Scheduling " << *SU->getInstr());
    return SU;
  }

  /// Scheduler callback to notify that a new subtree is scheduled.
  void scheduleTree(unsigned SubtreeID) override {
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }

  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
  /// DFSResults, and resort the priority Q.
  void schedNode(SUnit *SU, bool IsTopNode) override {
    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
  }

  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }

  void releaseBottomNode(SUnit *SU) override {
    ReadyQ.push_back(SU);
    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }
};

} // end anonymous namespace

static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
}
static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
}

static MachineSchedRegistry ILPMaxRegistry(
  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
static MachineSchedRegistry ILPMinRegistry(
  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);

//===----------------------------------------------------------------------===//
// Machine Instruction Shuffler for Correctness Testing
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
namespace {

/// Apply a less-than relation on the node order, which corresponds to the
/// instruction order prior to scheduling. IsReverse implements greater-than.
template<bool IsReverse>
struct SUnitOrder {
  bool operator()(SUnit *A, SUnit *B) const {
    if (IsReverse)
      return A->NodeNum > B->NodeNum;
    else
      return A->NodeNum < B->NodeNum;
  }
};

/// Reorder instructions as much as possible.
class InstructionShuffler : public MachineSchedStrategy {
  bool IsAlternating;
  bool IsTopDown;

  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
  // gives nodes with a higher number higher priority causing the latest
  // instructions to be scheduled first.
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
    TopQ;

  // When scheduling bottom-up, use greater-than as the queue priority.
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
    BottomQ;

public:
  InstructionShuffler(bool alternate, bool topdown)
    : IsAlternating(alternate), IsTopDown(topdown) {}

  void initialize(ScheduleDAGMI*) override {
    TopQ.clear();
    BottomQ.clear();
  }

  /// Implement MachineSchedStrategy interface.
  /// -----------------------------------------

  SUnit *pickNode(bool &IsTopNode) override {
    SUnit *SU;
    if (IsTopDown) {
      do {
        if (TopQ.empty()) return nullptr;
        SU = TopQ.top();
        TopQ.pop();
      } while (SU->isScheduled);
      IsTopNode = true;
    } else {
      do {
        if (BottomQ.empty()) return nullptr;
        SU = BottomQ.top();
        BottomQ.pop();
      } while (SU->isScheduled);
      IsTopNode = false;
    }
    if (IsAlternating)
      IsTopDown = !IsTopDown;
    return SU;
  }

  void schedNode(SUnit *SU, bool IsTopNode) override {}

  void releaseTopNode(SUnit *SU) override {
    TopQ.push(SU);
  }
  void releaseBottomNode(SUnit *SU) override {
    BottomQ.push(SU);
  }
};

} // end anonymous namespace

static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
  bool Alternate = !ForceTopDown && !ForceBottomUp;
  bool TopDown = !ForceBottomUp;
  assert((TopDown || !ForceTopDown) &&
         "-misched-topdown incompatible with -misched-bottomup");
  return new ScheduleDAGMILive(
      C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
}

static MachineSchedRegistry ShufflerRegistry(
  "shuffle", "Shuffle machine instructions alternating directions",
  createInstructionShuffler);
#endif // !NDEBUG

//===----------------------------------------------------------------------===//
// GraphWriter support for ScheduleDAGMILive.
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
namespace llvm {

template<> struct GraphTraits<
  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};

template<>
struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

  static std::string getGraphName(const ScheduleDAG *G) {
    return G->MF.getName();
  }

  static bool renderGraphFromBottomUp() {
    return true;
  }

  static bool isNodeHidden(const SUnit *Node) {
    if (ViewMISchedCutoff == 0)
      return false;
    return (Node->Preds.size() > ViewMISchedCutoff
         || Node->Succs.size() > ViewMISchedCutoff);
  }

  /// If you want to override the dot attributes printed for a particular
  /// edge, override this method.
  static std::string getEdgeAttributes(const SUnit *Node,
                                       SUnitIterator EI,
                                       const ScheduleDAG *Graph) {
    if (EI.isArtificialDep())
      return "color=cyan,style=dashed";
    if (EI.isCtrlDep())
      return "color=blue,style=dashed";
    return "";
  }

  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
    std::string Str;
    raw_string_ostream SS(Str);
    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
    SS << "SU:" << SU->NodeNum;
    if (DFS)
      SS << " I:" << DFS->getNumInstrs(SU);
    return SS.str();
  }

  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
    return G->getGraphNodeLabel(SU);
  }

  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
    std::string Str("shape=Mrecord");
    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
    if (DFS) {
      Str += ",style=filled,fillcolor=\"#";
      Str += DOT::getColorString(DFS->getSubtreeID(N));
      Str += '"';
    }
    return Str;
  }
};

} // end namespace llvm
#endif // NDEBUG

/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
/// rendered using 'dot'.
void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
#ifndef NDEBUG
  ViewGraph(this, Name, false, Title);
#else
  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif  // NDEBUG
}

/// Out-of-line implementation with no arguments is handy for gdb.
void ScheduleDAGMI::viewGraph() {
  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
}