reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//

#include "AggressiveAntiDepBreaker.h"
#include "AntiDepBreaker.h"
#include "CriticalAntiDepBreaker.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "post-RA-sched"

STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");

// Post-RA scheduling is enabled with
// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
// override the target.
static cl::opt<bool>
EnablePostRAScheduler("post-RA-scheduler",
                       cl::desc("Enable scheduling after register allocation"),
                       cl::init(false), cl::Hidden);
static cl::opt<std::string>
EnableAntiDepBreaking("break-anti-dependencies",
                      cl::desc("Break post-RA scheduling anti-dependencies: "
                               "\"critical\", \"all\", or \"none\""),
                      cl::init("none"), cl::Hidden);

// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
static cl::opt<int>
DebugDiv("postra-sched-debugdiv",
                      cl::desc("Debug control MBBs that are scheduled"),
                      cl::init(0), cl::Hidden);
static cl::opt<int>
DebugMod("postra-sched-debugmod",
                      cl::desc("Debug control MBBs that are scheduled"),
                      cl::init(0), cl::Hidden);

AntiDepBreaker::~AntiDepBreaker() { }

namespace {
  class PostRAScheduler : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

  public:
    static char ID;
    PostRAScheduler() : MachineFunctionPass(ID) {}

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<TargetPassConfig>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    bool runOnMachineFunction(MachineFunction &Fn) override;

  private:
    bool enablePostRAScheduler(
        const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
        TargetSubtargetInfo::AntiDepBreakMode &Mode,
        TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
  };
  char PostRAScheduler::ID = 0;

  class SchedulePostRATDList : public ScheduleDAGInstrs {
    /// AvailableQueue - The priority queue to use for the available SUnits.
    ///
    LatencyPriorityQueue AvailableQueue;

    /// PendingQueue - This contains all of the instructions whose operands have
    /// been issued, but their results are not ready yet (due to the latency of
    /// the operation).  Once the operands becomes available, the instruction is
    /// added to the AvailableQueue.
    std::vector<SUnit*> PendingQueue;

    /// HazardRec - The hazard recognizer to use.
    ScheduleHazardRecognizer *HazardRec;

    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    AntiDepBreaker *AntiDepBreak;

    /// AA - AliasAnalysis for making memory reference queries.
    AliasAnalysis *AA;

    /// The schedule. Null SUnit*'s represent noop instructions.
    std::vector<SUnit*> Sequence;

    /// Ordered list of DAG postprocessing steps.
    std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;

    /// The index in BB of RegionEnd.
    ///
    /// This is the instruction number from the top of the current block, not
    /// the SlotIndex. It is only used by the AntiDepBreaker.
    unsigned EndIndex;

  public:
    SchedulePostRATDList(
        MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
        const RegisterClassInfo &,
        TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
        SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);

    ~SchedulePostRATDList() override;

    /// startBlock - Initialize register live-range state for scheduling in
    /// this block.
    ///
    void startBlock(MachineBasicBlock *BB) override;

    // Set the index of RegionEnd within the current BB.
    void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }

    /// Initialize the scheduler state for the next scheduling region.
    void enterRegion(MachineBasicBlock *bb,
                     MachineBasicBlock::iterator begin,
                     MachineBasicBlock::iterator end,
                     unsigned regioninstrs) override;

    /// Notify that the scheduler has finished scheduling the current region.
    void exitRegion() override;

    /// Schedule - Schedule the instruction range using list scheduling.
    ///
    void schedule() override;

    void EmitSchedule();

    /// Observe - Update liveness information to account for the current
    /// instruction, which will not be scheduled.
    ///
    void Observe(MachineInstr &MI, unsigned Count);

    /// finishBlock - Clean up register live-range state.
    ///
    void finishBlock() override;

  private:
    /// Apply each ScheduleDAGMutation step in order.
    void postprocessDAG();

    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    void ReleaseSuccessors(SUnit *SU);
    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    void ListScheduleTopDown();

    void dumpSchedule() const;
    void emitNoop(unsigned CurCycle);
  };
}

char &llvm::PostRASchedulerID = PostRAScheduler::ID;

INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
                "Post RA top-down list latency scheduler", false, false)

SchedulePostRATDList::SchedulePostRATDList(
    MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
    const RegisterClassInfo &RCI,
    TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
    : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {

  const InstrItineraryData *InstrItins =
      MF.getSubtarget().getInstrItineraryData();
  HazardRec =
      MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
          InstrItins, this);
  MF.getSubtarget().getPostRAMutations(Mutations);

  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
          MRI.tracksLiveness()) &&
         "Live-ins must be accurate for anti-dependency breaking");
  AntiDepBreak =
    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
}

SchedulePostRATDList::~SchedulePostRATDList() {
  delete HazardRec;
  delete AntiDepBreak;
}

/// Initialize state associated with the next scheduling region.
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
                 MachineBasicBlock::iterator begin,
                 MachineBasicBlock::iterator end,
                 unsigned regioninstrs) {
  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
  Sequence.clear();
}

/// Print the schedule before exiting the region.
void SchedulePostRATDList::exitRegion() {
  LLVM_DEBUG({
    dbgs() << "*** Final schedule ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
  ScheduleDAGInstrs::exitRegion();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dumpSchedule - dump the scheduled Sequence.
LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      dumpNode(*SU);
    else
      dbgs() << "**** NOOP ****\n";
  }
}
#endif

bool PostRAScheduler::enablePostRAScheduler(
    const TargetSubtargetInfo &ST,
    CodeGenOpt::Level OptLevel,
    TargetSubtargetInfo::AntiDepBreakMode &Mode,
    TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
  Mode = ST.getAntiDepBreakMode();
  ST.getCriticalPathRCs(CriticalPathRCs);

  // Check for explicit enable/disable of post-ra scheduling.
  if (EnablePostRAScheduler.getPosition() > 0)
    return EnablePostRAScheduler;

  return ST.enablePostRAScheduler() &&
         OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
}

bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
  if (skipFunction(Fn.getFunction()))
    return false;

  TII = Fn.getSubtarget().getInstrInfo();
  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
  AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();

  RegClassInfo.runOnMachineFunction(Fn);

  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    TargetSubtargetInfo::ANTIDEP_NONE;
  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;

  // Check that post-RA scheduling is enabled for this target.
  // This may upgrade the AntiDepMode.
  if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
                             AntiDepMode, CriticalPathRCs))
    return false;

  // Check for antidep breaking override...
  if (EnableAntiDepBreaking.getPosition() > 0) {
    AntiDepMode = (EnableAntiDepBreaking == "all")
      ? TargetSubtargetInfo::ANTIDEP_ALL
      : ((EnableAntiDepBreaking == "critical")
         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
         : TargetSubtargetInfo::ANTIDEP_NONE);
  }

  LLVM_DEBUG(dbgs() << "PostRAScheduler\n");

  SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
                                 CriticalPathRCs);

  // Loop over all of the basic blocks
  for (auto &MBB : Fn) {
#ifndef NDEBUG
    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    if (DebugDiv > 0) {
      static int bbcnt = 0;
      if (bbcnt++ % DebugDiv != DebugMod)
        continue;
      dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
             << printMBBReference(MBB) << " ***\n";
    }
#endif

    // Initialize register live-range state for scheduling in this block.
    Scheduler.startBlock(&MBB);

    // Schedule each sequence of instructions not interrupted by a label
    // or anything else that effectively needs to shut down scheduling.
    MachineBasicBlock::iterator Current = MBB.end();
    unsigned Count = MBB.size(), CurrentCount = Count;
    for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
      MachineInstr &MI = *std::prev(I);
      --Count;
      // Calls are not scheduling boundaries before register allocation, but
      // post-ra we don't gain anything by scheduling across calls since we
      // don't need to worry about register pressure.
      if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
        Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
        Scheduler.setEndIndex(CurrentCount);
        Scheduler.schedule();
        Scheduler.exitRegion();
        Scheduler.EmitSchedule();
        Current = &MI;
        CurrentCount = Count;
        Scheduler.Observe(MI, CurrentCount);
      }
      I = MI;
      if (MI.isBundle())
        Count -= MI.getBundleSize();
    }
    assert(Count == 0 && "Instruction count mismatch!");
    assert((MBB.begin() == Current || CurrentCount != 0) &&
           "Instruction count mismatch!");
    Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
    Scheduler.setEndIndex(CurrentCount);
    Scheduler.schedule();
    Scheduler.exitRegion();
    Scheduler.EmitSchedule();

    // Clean up register live-range state.
    Scheduler.finishBlock();

    // Update register kills
    Scheduler.fixupKills(MBB);
  }

  return true;
}

/// StartBlock - Initialize register live-range state for scheduling in
/// this block.
///
void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
  // Call the superclass.
  ScheduleDAGInstrs::startBlock(BB);

  // Reset the hazard recognizer and anti-dep breaker.
  HazardRec->Reset();
  if (AntiDepBreak)
    AntiDepBreak->StartBlock(BB);
}

/// Schedule - Schedule the instruction range using list scheduling.
///
void SchedulePostRATDList::schedule() {
  // Build the scheduling graph.
  buildSchedGraph(AA);

  if (AntiDepBreak) {
    unsigned Broken =
      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
                                          EndIndex, DbgValues);

    if (Broken != 0) {
      // We made changes. Update the dependency graph.
      // Theoretically we could update the graph in place:
      // When a live range is changed to use a different register, remove
      // the def's anti-dependence *and* output-dependence edges due to
      // that register, and add new anti-dependence and output-dependence
      // edges based on the next live range of the register.
      ScheduleDAG::clearDAG();
      buildSchedGraph(AA);

      NumFixedAnti += Broken;
    }
  }

  postprocessDAG();

  LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
  LLVM_DEBUG(dump());

  AvailableQueue.initNodes(SUnits);
  ListScheduleTopDown();
  AvailableQueue.releaseState();
}

/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
  if (AntiDepBreak)
    AntiDepBreak->Observe(MI, Count, EndIndex);
}

/// FinishBlock - Clean up register live-range state.
///
void SchedulePostRATDList::finishBlock() {
  if (AntiDepBreak)
    AntiDepBreak->FinishBlock();

  // Call the superclass.
  ScheduleDAGInstrs::finishBlock();
}

/// Apply each ScheduleDAGMutation step in order.
void SchedulePostRATDList::postprocessDAG() {
  for (auto &M : Mutations)
    M->apply(this);
}

//===----------------------------------------------------------------------===//
//  Top-Down Scheduling
//===----------------------------------------------------------------------===//

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    --SuccSU->WeakPredsLeft;
    return;
  }
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    dumpNode(*SuccSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif
  --SuccSU->NumPredsLeft;

  // Standard scheduler algorithms will recompute the depth of the successor
  // here as such:
  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
  //
  // However, we lazily compute node depth instead. Note that
  // ScheduleNodeTopDown has already updated the depth of this node which causes
  // all descendents to be marked dirty. Setting the successor depth explicitly
  // here would cause depth to be recomputed for all its ancestors. If the
  // successor is not yet ready (because of a transitively redundant edge) then
  // this causes depth computation to be quadratic in the size of the DAG.

  // If all the node's predecessors are scheduled, this node is ready
  // to be scheduled. Ignore the special ExitSU node.
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    PendingQueue.push_back(SuccSU);
}

/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    ReleaseSucc(SU, &*I);
  }
}

/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
  LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
  LLVM_DEBUG(dumpNode(*SU));

  Sequence.push_back(SU);
  assert(CurCycle >= SU->getDepth() &&
         "Node scheduled above its depth!");
  SU->setDepthToAtLeast(CurCycle);

  ReleaseSuccessors(SU);
  SU->isScheduled = true;
  AvailableQueue.scheduledNode(SU);
}

/// emitNoop - Add a noop to the current instruction sequence.
void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
  LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
  HazardRec->EmitNoop();
  Sequence.push_back(nullptr);   // NULL here means noop
  ++NumNoops;
}

/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
  unsigned CurCycle = 0;

  // We're scheduling top-down but we're visiting the regions in
  // bottom-up order, so we don't know the hazards at the start of a
  // region. So assume no hazards (this should usually be ok as most
  // blocks are a single region).
  HazardRec->Reset();

  // Release any successors of the special Entry node.
  ReleaseSuccessors(&EntrySU);

  // Add all leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
      AvailableQueue.push(&SUnits[i]);
      SUnits[i].isAvailable = true;
    }
  }

  // In any cycle where we can't schedule any instructions, we must
  // stall or emit a noop, depending on the target.
  bool CycleHasInsts = false;

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  std::vector<SUnit*> NotReady;
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    // Check to see if any of the pending instructions are ready to issue.  If
    // so, add them to the available queue.
    unsigned MinDepth = ~0u;
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
      if (PendingQueue[i]->getDepth() <= CurCycle) {
        AvailableQueue.push(PendingQueue[i]);
        PendingQueue[i]->isAvailable = true;
        PendingQueue[i] = PendingQueue.back();
        PendingQueue.pop_back();
        --i; --e;
      } else if (PendingQueue[i]->getDepth() < MinDepth)
        MinDepth = PendingQueue[i]->getDepth();
    }

    LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
               AvailableQueue.dump(this));

    SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
    bool HasNoopHazards = false;
    while (!AvailableQueue.empty()) {
      SUnit *CurSUnit = AvailableQueue.pop();

      ScheduleHazardRecognizer::HazardType HT =
        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
      if (HT == ScheduleHazardRecognizer::NoHazard) {
        if (HazardRec->ShouldPreferAnother(CurSUnit)) {
          if (!NotPreferredSUnit) {
            // If this is the first non-preferred node for this cycle, then
            // record it and continue searching for a preferred node. If this
            // is not the first non-preferred node, then treat it as though
            // there had been a hazard.
            NotPreferredSUnit = CurSUnit;
            continue;
          }
        } else {
          FoundSUnit = CurSUnit;
          break;
        }
      }

      // Remember if this is a noop hazard.
      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;

      NotReady.push_back(CurSUnit);
    }

    // If we have a non-preferred node, push it back onto the available list.
    // If we did not find a preferred node, then schedule this first
    // non-preferred node.
    if (NotPreferredSUnit) {
      if (!FoundSUnit) {
        LLVM_DEBUG(
            dbgs() << "*** Will schedule a non-preferred instruction...\n");
        FoundSUnit = NotPreferredSUnit;
      } else {
        AvailableQueue.push(NotPreferredSUnit);
      }

      NotPreferredSUnit = nullptr;
    }

    // Add the nodes that aren't ready back onto the available list.
    if (!NotReady.empty()) {
      AvailableQueue.push_all(NotReady);
      NotReady.clear();
    }

    // If we found a node to schedule...
    if (FoundSUnit) {
      // If we need to emit noops prior to this instruction, then do so.
      unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
      for (unsigned i = 0; i != NumPreNoops; ++i)
        emitNoop(CurCycle);

      // ... schedule the node...
      ScheduleNodeTopDown(FoundSUnit, CurCycle);
      HazardRec->EmitInstruction(FoundSUnit);
      CycleHasInsts = true;
      if (HazardRec->atIssueLimit()) {
        LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
                          << '\n');
        HazardRec->AdvanceCycle();
        ++CurCycle;
        CycleHasInsts = false;
      }
    } else {
      if (CycleHasInsts) {
        LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
        HazardRec->AdvanceCycle();
      } else if (!HasNoopHazards) {
        // Otherwise, we have a pipeline stall, but no other problem,
        // just advance the current cycle and try again.
        LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
        HazardRec->AdvanceCycle();
        ++NumStalls;
      } else {
        // Otherwise, we have no instructions to issue and we have instructions
        // that will fault if we don't do this right.  This is the case for
        // processors without pipeline interlocks and other cases.
        emitNoop(CurCycle);
      }

      ++CurCycle;
      CycleHasInsts = false;
    }
  }

#ifndef NDEBUG
  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
  unsigned Noops = 0;
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    if (!Sequence[i])
      ++Noops;
  assert(Sequence.size() - Noops == ScheduledNodes &&
         "The number of nodes scheduled doesn't match the expected number!");
#endif // NDEBUG
}

// EmitSchedule - Emit the machine code in scheduled order.
void SchedulePostRATDList::EmitSchedule() {
  RegionBegin = RegionEnd;

  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue)
    BB->splice(RegionEnd, BB, FirstDbgValue);

  // Then re-insert them according to the given schedule.
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      BB->splice(RegionEnd, BB, SU->getInstr());
    else
      // Null SUnit* is a noop.
      TII->insertNoop(*BB, RegionEnd);

    // Update the Begin iterator, as the first instruction in the block
    // may have been scheduled later.
    if (i == 0)
      RegionBegin = std::prev(RegionEnd);
  }

  // Reinsert any remaining debug_values.
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrivMI = P.second;
    BB->splice(++OrigPrivMI, BB, DbgValue);
  }
  DbgValues.clear();
  FirstDbgValue = nullptr;
}