reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallPtrSet class.  See SmallPtrSet.h for an
// overview of the algorithm.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>

using namespace llvm;

void SmallPtrSetImplBase::shrink_and_clear() {
  assert(!isSmall() && "Can't shrink a small set!");
  free(CurArray);

  // Reduce the number of buckets.
  unsigned Size = size();
  CurArraySize = Size > 16 ? 1 << (Log2_32_Ceil(Size) + 1) : 32;
  NumNonEmpty = NumTombstones = 0;

  // Install the new array.  Clear all the buckets to empty.
  CurArray = (const void**)safe_malloc(sizeof(void*) * CurArraySize);

  memset(CurArray, -1, CurArraySize*sizeof(void*));
}

std::pair<const void *const *, bool>
SmallPtrSetImplBase::insert_imp_big(const void *Ptr) {
  if (LLVM_UNLIKELY(size() * 4 >= CurArraySize * 3)) {
    // If more than 3/4 of the array is full, grow.
    Grow(CurArraySize < 64 ? 128 : CurArraySize * 2);
  } else if (LLVM_UNLIKELY(CurArraySize - NumNonEmpty < CurArraySize / 8)) {
    // If fewer of 1/8 of the array is empty (meaning that many are filled with
    // tombstones), rehash.
    Grow(CurArraySize);
  }

  // Okay, we know we have space.  Find a hash bucket.
  const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
  if (*Bucket == Ptr)
    return std::make_pair(Bucket, false); // Already inserted, good.

  // Otherwise, insert it!
  if (*Bucket == getTombstoneMarker())
    --NumTombstones;
  else
    ++NumNonEmpty; // Track density.
  *Bucket = Ptr;
  incrementEpoch();
  return std::make_pair(Bucket, true);
}

const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const {
  unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
  unsigned ArraySize = CurArraySize;
  unsigned ProbeAmt = 1;
  const void *const *Array = CurArray;
  const void *const *Tombstone = nullptr;
  while (true) {
    // If we found an empty bucket, the pointer doesn't exist in the set.
    // Return a tombstone if we've seen one so far, or the empty bucket if
    // not.
    if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker()))
      return Tombstone ? Tombstone : Array+Bucket;

    // Found Ptr's bucket?
    if (LLVM_LIKELY(Array[Bucket] == Ptr))
      return Array+Bucket;

    // If this is a tombstone, remember it.  If Ptr ends up not in the set, we
    // prefer to return it than something that would require more probing.
    if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
      Tombstone = Array+Bucket;  // Remember the first tombstone found.

    // It's a hash collision or a tombstone. Reprobe.
    Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
  }
}

/// Grow - Allocate a larger backing store for the buckets and move it over.
///
void SmallPtrSetImplBase::Grow(unsigned NewSize) {
  const void **OldBuckets = CurArray;
  const void **OldEnd = EndPointer();
  bool WasSmall = isSmall();

  // Install the new array.  Clear all the buckets to empty.
  const void **NewBuckets = (const void**) safe_malloc(sizeof(void*) * NewSize);

  // Reset member only if memory was allocated successfully
  CurArray = NewBuckets;
  CurArraySize = NewSize;
  memset(CurArray, -1, NewSize*sizeof(void*));

  // Copy over all valid entries.
  for (const void **BucketPtr = OldBuckets; BucketPtr != OldEnd; ++BucketPtr) {
    // Copy over the element if it is valid.
    const void *Elt = *BucketPtr;
    if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
      *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
  }

  if (!WasSmall)
    free(OldBuckets);
  NumNonEmpty -= NumTombstones;
  NumTombstones = 0;
}

SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
                                         const SmallPtrSetImplBase &that) {
  SmallArray = SmallStorage;

  // If we're becoming small, prepare to insert into our stack space
  if (that.isSmall()) {
    CurArray = SmallArray;
  // Otherwise, allocate new heap space (unless we were the same size)
  } else {
    CurArray = (const void**)safe_malloc(sizeof(void*) * that.CurArraySize);
  }

  // Copy over the that array.
  CopyHelper(that);
}

SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
                                         unsigned SmallSize,
                                         SmallPtrSetImplBase &&that) {
  SmallArray = SmallStorage;
  MoveHelper(SmallSize, std::move(that));
}

void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) {
  assert(&RHS != this && "Self-copy should be handled by the caller.");

  if (isSmall() && RHS.isSmall())
    assert(CurArraySize == RHS.CurArraySize &&
           "Cannot assign sets with different small sizes");

  // If we're becoming small, prepare to insert into our stack space
  if (RHS.isSmall()) {
    if (!isSmall())
      free(CurArray);
    CurArray = SmallArray;
  // Otherwise, allocate new heap space (unless we were the same size)
  } else if (CurArraySize != RHS.CurArraySize) {
    if (isSmall())
      CurArray = (const void**)safe_malloc(sizeof(void*) * RHS.CurArraySize);
    else {
      const void **T = (const void**)safe_realloc(CurArray,
                                             sizeof(void*) * RHS.CurArraySize);
      CurArray = T;
    }
  }

  CopyHelper(RHS);
}

void SmallPtrSetImplBase::CopyHelper(const SmallPtrSetImplBase &RHS) {
  // Copy over the new array size
  CurArraySize = RHS.CurArraySize;

  // Copy over the contents from the other set
  std::copy(RHS.CurArray, RHS.EndPointer(), CurArray);

  NumNonEmpty = RHS.NumNonEmpty;
  NumTombstones = RHS.NumTombstones;
}

void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize,
                                   SmallPtrSetImplBase &&RHS) {
  if (!isSmall())
    free(CurArray);
  MoveHelper(SmallSize, std::move(RHS));
}

void SmallPtrSetImplBase::MoveHelper(unsigned SmallSize,
                                     SmallPtrSetImplBase &&RHS) {
  assert(&RHS != this && "Self-move should be handled by the caller.");

  if (RHS.isSmall()) {
    // Copy a small RHS rather than moving.
    CurArray = SmallArray;
    std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, CurArray);
  } else {
    CurArray = RHS.CurArray;
    RHS.CurArray = RHS.SmallArray;
  }

  // Copy the rest of the trivial members.
  CurArraySize = RHS.CurArraySize;
  NumNonEmpty = RHS.NumNonEmpty;
  NumTombstones = RHS.NumTombstones;

  // Make the RHS small and empty.
  RHS.CurArraySize = SmallSize;
  assert(RHS.CurArray == RHS.SmallArray);
  RHS.NumNonEmpty = 0;
  RHS.NumTombstones = 0;
}

void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) {
  if (this == &RHS) return;

  // We can only avoid copying elements if neither set is small.
  if (!this->isSmall() && !RHS.isSmall()) {
    std::swap(this->CurArray, RHS.CurArray);
    std::swap(this->CurArraySize, RHS.CurArraySize);
    std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
    std::swap(this->NumTombstones, RHS.NumTombstones);
    return;
  }

  // FIXME: From here on we assume that both sets have the same small size.

  // If only RHS is small, copy the small elements into LHS and move the pointer
  // from LHS to RHS.
  if (!this->isSmall() && RHS.isSmall()) {
    assert(RHS.CurArray == RHS.SmallArray);
    std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, this->SmallArray);
    std::swap(RHS.CurArraySize, this->CurArraySize);
    std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
    std::swap(this->NumTombstones, RHS.NumTombstones);
    RHS.CurArray = this->CurArray;
    this->CurArray = this->SmallArray;
    return;
  }

  // If only LHS is small, copy the small elements into RHS and move the pointer
  // from RHS to LHS.
  if (this->isSmall() && !RHS.isSmall()) {
    assert(this->CurArray == this->SmallArray);
    std::copy(this->CurArray, this->CurArray + this->NumNonEmpty,
              RHS.SmallArray);
    std::swap(RHS.CurArraySize, this->CurArraySize);
    std::swap(RHS.NumNonEmpty, this->NumNonEmpty);
    std::swap(RHS.NumTombstones, this->NumTombstones);
    this->CurArray = RHS.CurArray;
    RHS.CurArray = RHS.SmallArray;
    return;
  }

  // Both a small, just swap the small elements.
  assert(this->isSmall() && RHS.isSmall());
  unsigned MinNonEmpty = std::min(this->NumNonEmpty, RHS.NumNonEmpty);
  std::swap_ranges(this->SmallArray, this->SmallArray + MinNonEmpty,
                   RHS.SmallArray);
  if (this->NumNonEmpty > MinNonEmpty) {
    std::copy(this->SmallArray + MinNonEmpty,
              this->SmallArray + this->NumNonEmpty,
              RHS.SmallArray + MinNonEmpty);
  } else {
    std::copy(RHS.SmallArray + MinNonEmpty, RHS.SmallArray + RHS.NumNonEmpty,
              this->SmallArray + MinNonEmpty);
  }
  assert(this->CurArraySize == RHS.CurArraySize);
  std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
  std::swap(this->NumTombstones, RHS.NumTombstones);
}