reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
//===-- AArch64PBQPRegAlloc.cpp - AArch64 specific PBQP constraints -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains the AArch64 / Cortex-A57 specific register allocation
// constraints for use by the PBQP register allocator.
//
// It is essentially a transcription of what is contained in
// AArch64A57FPLoadBalancing, which tries to use a balanced
// mix of odd and even D-registers when performing a critical sequence of
// independent, non-quadword FP/ASIMD floating-point multiply-accumulates.
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "aarch64-pbqp"

#include "AArch64PBQPRegAlloc.h"
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocPBQP.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {

#ifndef NDEBUG
bool isFPReg(unsigned reg) {
  return AArch64::FPR32RegClass.contains(reg) ||
         AArch64::FPR64RegClass.contains(reg) ||
         AArch64::FPR128RegClass.contains(reg);
}
#endif

bool isOdd(unsigned reg) {
  switch (reg) {
  default:
    llvm_unreachable("Register is not from the expected class !");
  case AArch64::S1:
  case AArch64::S3:
  case AArch64::S5:
  case AArch64::S7:
  case AArch64::S9:
  case AArch64::S11:
  case AArch64::S13:
  case AArch64::S15:
  case AArch64::S17:
  case AArch64::S19:
  case AArch64::S21:
  case AArch64::S23:
  case AArch64::S25:
  case AArch64::S27:
  case AArch64::S29:
  case AArch64::S31:
  case AArch64::D1:
  case AArch64::D3:
  case AArch64::D5:
  case AArch64::D7:
  case AArch64::D9:
  case AArch64::D11:
  case AArch64::D13:
  case AArch64::D15:
  case AArch64::D17:
  case AArch64::D19:
  case AArch64::D21:
  case AArch64::D23:
  case AArch64::D25:
  case AArch64::D27:
  case AArch64::D29:
  case AArch64::D31:
  case AArch64::Q1:
  case AArch64::Q3:
  case AArch64::Q5:
  case AArch64::Q7:
  case AArch64::Q9:
  case AArch64::Q11:
  case AArch64::Q13:
  case AArch64::Q15:
  case AArch64::Q17:
  case AArch64::Q19:
  case AArch64::Q21:
  case AArch64::Q23:
  case AArch64::Q25:
  case AArch64::Q27:
  case AArch64::Q29:
  case AArch64::Q31:
    return true;
  case AArch64::S0:
  case AArch64::S2:
  case AArch64::S4:
  case AArch64::S6:
  case AArch64::S8:
  case AArch64::S10:
  case AArch64::S12:
  case AArch64::S14:
  case AArch64::S16:
  case AArch64::S18:
  case AArch64::S20:
  case AArch64::S22:
  case AArch64::S24:
  case AArch64::S26:
  case AArch64::S28:
  case AArch64::S30:
  case AArch64::D0:
  case AArch64::D2:
  case AArch64::D4:
  case AArch64::D6:
  case AArch64::D8:
  case AArch64::D10:
  case AArch64::D12:
  case AArch64::D14:
  case AArch64::D16:
  case AArch64::D18:
  case AArch64::D20:
  case AArch64::D22:
  case AArch64::D24:
  case AArch64::D26:
  case AArch64::D28:
  case AArch64::D30:
  case AArch64::Q0:
  case AArch64::Q2:
  case AArch64::Q4:
  case AArch64::Q6:
  case AArch64::Q8:
  case AArch64::Q10:
  case AArch64::Q12:
  case AArch64::Q14:
  case AArch64::Q16:
  case AArch64::Q18:
  case AArch64::Q20:
  case AArch64::Q22:
  case AArch64::Q24:
  case AArch64::Q26:
  case AArch64::Q28:
  case AArch64::Q30:
    return false;

  }
}

bool haveSameParity(unsigned reg1, unsigned reg2) {
  assert(isFPReg(reg1) && "Expecting an FP register for reg1");
  assert(isFPReg(reg2) && "Expecting an FP register for reg2");

  return isOdd(reg1) == isOdd(reg2);
}

}

bool A57ChainingConstraint::addIntraChainConstraint(PBQPRAGraph &G, unsigned Rd,
                                                 unsigned Ra) {
  if (Rd == Ra)
    return false;

  LiveIntervals &LIs = G.getMetadata().LIS;

  if (Register::isPhysicalRegister(Rd) || Register::isPhysicalRegister(Ra)) {
    LLVM_DEBUG(dbgs() << "Rd is a physical reg:"
                      << Register::isPhysicalRegister(Rd) << '\n');
    LLVM_DEBUG(dbgs() << "Ra is a physical reg:"
                      << Register::isPhysicalRegister(Ra) << '\n');
    return false;
  }

  PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
  PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(Ra);

  const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
    &G.getNodeMetadata(node1).getAllowedRegs();
  const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRaAllowed =
    &G.getNodeMetadata(node2).getAllowedRegs();

  PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);

  // The edge does not exist. Create one with the appropriate interference
  // costs.
  if (edge == G.invalidEdgeId()) {
    const LiveInterval &ld = LIs.getInterval(Rd);
    const LiveInterval &la = LIs.getInterval(Ra);
    bool livesOverlap = ld.overlaps(la);

    PBQPRAGraph::RawMatrix costs(vRdAllowed->size() + 1,
                                 vRaAllowed->size() + 1, 0);
    for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
      unsigned pRd = (*vRdAllowed)[i];
      for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
        unsigned pRa = (*vRaAllowed)[j];
        if (livesOverlap && TRI->regsOverlap(pRd, pRa))
          costs[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
        else
          costs[i + 1][j + 1] = haveSameParity(pRd, pRa) ? 0.0 : 1.0;
      }
    }
    G.addEdge(node1, node2, std::move(costs));
    return true;
  }

  if (G.getEdgeNode1Id(edge) == node2) {
    std::swap(node1, node2);
    std::swap(vRdAllowed, vRaAllowed);
  }

  // Enforce minCost(sameParity(RaClass)) > maxCost(otherParity(RdClass))
  PBQPRAGraph::RawMatrix costs(G.getEdgeCosts(edge));
  for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
    unsigned pRd = (*vRdAllowed)[i];

    // Get the maximum cost (excluding unallocatable reg) for same parity
    // registers
    PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
    for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
      unsigned pRa = (*vRaAllowed)[j];
      if (haveSameParity(pRd, pRa))
        if (costs[i + 1][j + 1] !=
                std::numeric_limits<PBQP::PBQPNum>::infinity() &&
            costs[i + 1][j + 1] > sameParityMax)
          sameParityMax = costs[i + 1][j + 1];
    }

    // Ensure all registers with a different parity have a higher cost
    // than sameParityMax
    for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
      unsigned pRa = (*vRaAllowed)[j];
      if (!haveSameParity(pRd, pRa))
        if (sameParityMax > costs[i + 1][j + 1])
          costs[i + 1][j + 1] = sameParityMax + 1.0;
    }
  }
  G.updateEdgeCosts(edge, std::move(costs));

  return true;
}

void A57ChainingConstraint::addInterChainConstraint(PBQPRAGraph &G, unsigned Rd,
                                                 unsigned Ra) {
  LiveIntervals &LIs = G.getMetadata().LIS;

  // Do some Chain management
  if (Chains.count(Ra)) {
    if (Rd != Ra) {
      LLVM_DEBUG(dbgs() << "Moving acc chain from " << printReg(Ra, TRI)
                        << " to " << printReg(Rd, TRI) << '\n';);
      Chains.remove(Ra);
      Chains.insert(Rd);
    }
  } else {
    LLVM_DEBUG(dbgs() << "Creating new acc chain for " << printReg(Rd, TRI)
                      << '\n';);
    Chains.insert(Rd);
  }

  PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);

  const LiveInterval &ld = LIs.getInterval(Rd);
  for (auto r : Chains) {
    // Skip self
    if (r == Rd)
      continue;

    const LiveInterval &lr = LIs.getInterval(r);
    if (ld.overlaps(lr)) {
      const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
        &G.getNodeMetadata(node1).getAllowedRegs();

      PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(r);
      const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRrAllowed =
        &G.getNodeMetadata(node2).getAllowedRegs();

      PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
      assert(edge != G.invalidEdgeId() &&
             "PBQP error ! The edge should exist !");

      LLVM_DEBUG(dbgs() << "Refining constraint !\n";);

      if (G.getEdgeNode1Id(edge) == node2) {
        std::swap(node1, node2);
        std::swap(vRdAllowed, vRrAllowed);
      }

      // Enforce that cost is higher with all other Chains of the same parity
      PBQP::Matrix costs(G.getEdgeCosts(edge));
      for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
        unsigned pRd = (*vRdAllowed)[i];

        // Get the maximum cost (excluding unallocatable reg) for all other
        // parity registers
        PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
        for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
          unsigned pRa = (*vRrAllowed)[j];
          if (!haveSameParity(pRd, pRa))
            if (costs[i + 1][j + 1] !=
                    std::numeric_limits<PBQP::PBQPNum>::infinity() &&
                costs[i + 1][j + 1] > sameParityMax)
              sameParityMax = costs[i + 1][j + 1];
        }

        // Ensure all registers with same parity have a higher cost
        // than sameParityMax
        for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
          unsigned pRa = (*vRrAllowed)[j];
          if (haveSameParity(pRd, pRa))
            if (sameParityMax > costs[i + 1][j + 1])
              costs[i + 1][j + 1] = sameParityMax + 1.0;
        }
      }
      G.updateEdgeCosts(edge, std::move(costs));
    }
  }
}

static bool regJustKilledBefore(const LiveIntervals &LIs, unsigned reg,
                                const MachineInstr &MI) {
  const LiveInterval &LI = LIs.getInterval(reg);
  SlotIndex SI = LIs.getInstructionIndex(MI);
  return LI.expiredAt(SI);
}

void A57ChainingConstraint::apply(PBQPRAGraph &G) {
  const MachineFunction &MF = G.getMetadata().MF;
  LiveIntervals &LIs = G.getMetadata().LIS;

  TRI = MF.getSubtarget().getRegisterInfo();
  LLVM_DEBUG(MF.dump());

  for (const auto &MBB: MF) {
    Chains.clear(); // FIXME: really needed ? Could not work at MF level ?

    for (const auto &MI: MBB) {

      // Forget Chains which have expired
      for (auto r : Chains) {
        SmallVector<unsigned, 8> toDel;
        if(regJustKilledBefore(LIs, r, MI)) {
          LLVM_DEBUG(dbgs() << "Killing chain " << printReg(r, TRI) << " at ";
                     MI.print(dbgs()););
          toDel.push_back(r);
        }

        while (!toDel.empty()) {
          Chains.remove(toDel.back());
          toDel.pop_back();
        }
      }

      switch (MI.getOpcode()) {
      case AArch64::FMSUBSrrr:
      case AArch64::FMADDSrrr:
      case AArch64::FNMSUBSrrr:
      case AArch64::FNMADDSrrr:
      case AArch64::FMSUBDrrr:
      case AArch64::FMADDDrrr:
      case AArch64::FNMSUBDrrr:
      case AArch64::FNMADDDrrr: {
        Register Rd = MI.getOperand(0).getReg();
        Register Ra = MI.getOperand(3).getReg();

        if (addIntraChainConstraint(G, Rd, Ra))
          addInterChainConstraint(G, Rd, Ra);
        break;
      }

      case AArch64::FMLAv2f32:
      case AArch64::FMLSv2f32: {
        Register Rd = MI.getOperand(0).getReg();
        addInterChainConstraint(G, Rd, Rd);
        break;
      }

      default:
        break;
      }
    }
  }
}