reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H

#include "MCTargetDesc/HexagonBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/MachineValueType.h"
#include <cstdint>
#include <vector>

#define GET_INSTRINFO_HEADER
#include "HexagonGenInstrInfo.inc"

namespace llvm {

class HexagonSubtarget;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineInstr;
class MachineOperand;
class TargetRegisterInfo;

class HexagonInstrInfo : public HexagonGenInstrInfo {
  const HexagonSubtarget &Subtarget;

  enum BundleAttribute {
    memShufDisabledMask = 0x4
  };

  virtual void anchor();

public:
  explicit HexagonInstrInfo(HexagonSubtarget &ST);

  /// TargetInstrInfo overrides.

  /// If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;

  /// If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;

  /// Check if the instruction or the bundle of instructions has
  /// load from stack slots. Return the frameindex and machine memory operand
  /// if true.
  bool hasLoadFromStackSlot(
      const MachineInstr &MI,
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;

  /// Check if the instruction or the bundle of instructions has
  /// store to stack slots. Return the frameindex and machine memory operand
  /// if true.
  bool hasStoreToStackSlot(
      const MachineInstr &MI,
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;

  /// Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with a conditional branch and it falls through to a
  ///    successor block, it sets TBB to be the branch destination block and a
  ///    list of operands that evaluate the condition. These operands can be
  ///    passed to other TargetInstrInfo methods to create new branches.
  /// 4. If this block ends with a conditional branch followed by an
  ///    unconditional branch, it returns the 'true' destination in TBB, the
  ///    'false' destination in FBB, and a list of operands that evaluate the
  ///    condition.  These operands can be passed to other TargetInstrInfo
  ///    methods to create new branches.
  ///
  /// Note that removeBranch and insertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify) const override;

  /// Remove the branching code at the end of the specific MBB.
  /// This is only invoked in cases where AnalyzeBranch returns success. It
  /// returns the number of instructions that were removed.
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;

  /// Insert branch code into the end of the specified MachineBasicBlock.
  /// The operands to this method are the same as those
  /// returned by AnalyzeBranch.  This is only invoked in cases where
  /// AnalyzeBranch returns success. It returns the number of instructions
  /// inserted.
  ///
  /// It is also invoked by tail merging to add unconditional branches in
  /// cases where AnalyzeBranch doesn't apply because there was no original
  /// branch to analyze.  At least this much must be implemented, else tail
  /// merging needs to be disabled.
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  /// Analyze loop L, which must be a single-basic-block loop, and if the
  /// conditions can be understood enough produce a PipelinerLoopInfo object.
  std::unique_ptr<PipelinerLoopInfo>
  analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;

  /// Return true if it's profitable to predicate
  /// instructions with accumulated instruction latency of "NumCycles"
  /// of the specified basic block, where the probability of the instructions
  /// being executed is given by Probability, and Confidence is a measure
  /// of our confidence that it will be properly predicted.
  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                           unsigned ExtraPredCycles,
                           BranchProbability Probability) const override;

  /// Second variant of isProfitableToIfCvt. This one
  /// checks for the case where two basic blocks from true and false path
  /// of a if-then-else (diamond) are predicated on mutally exclusive
  /// predicates, where the probability of the true path being taken is given
  /// by Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
                           unsigned NumTCycles, unsigned ExtraTCycles,
                           MachineBasicBlock &FMBB,
                           unsigned NumFCycles, unsigned ExtraFCycles,
                           BranchProbability Probability) const override;

  /// Return true if it's profitable for if-converter to duplicate instructions
  /// of specified accumulated instruction latencies in the specified MBB to
  /// enable if-conversion.
  /// The probability of the instructions being executed is given by
  /// Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                 BranchProbability Probability) const override;

  /// Emit instructions to copy a pair of physical registers.
  ///
  /// This function should support copies within any legal register class as
  /// well as any cross-class copies created during instruction selection.
  ///
  /// The source and destination registers may overlap, which may require a
  /// careful implementation when multiple copy instructions are required for
  /// large registers. See for example the ARM target.
  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
                   bool KillSrc) const override;

  /// Store the specified register of the given register class to the specified
  /// stack frame index. The store instruction is to be added to the given
  /// machine basic block before the specified machine instruction. If isKill
  /// is true, the register operand is the last use and must be marked kill.
  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI,
                           unsigned SrcReg, bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  /// Load the specified register of the given register class from the specified
  /// stack frame index. The load instruction is to be added to the given
  /// machine basic block before the specified machine instruction.
  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            unsigned DestReg, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  /// This function is called for all pseudo instructions
  /// that remain after register allocation. Many pseudo instructions are
  /// created to help register allocation. This is the place to convert them
  /// into real instructions. The target can edit MI in place, or it can insert
  /// new instructions and erase MI. The function should return true if
  /// anything was changed.
  bool expandPostRAPseudo(MachineInstr &MI) const override;

  /// Get the base register and byte offset of a load/store instr.
  bool getMemOperandWithOffset(const MachineInstr &LdSt,
                               const MachineOperand *&BaseOp,
                               int64_t &Offset,
                               const TargetRegisterInfo *TRI) const override;

  /// Reverses the branch condition of the specified condition list,
  /// returning false on success and true if it cannot be reversed.
  bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
        const override;

  /// Insert a noop into the instruction stream at the specified point.
  void insertNoop(MachineBasicBlock &MBB,
                  MachineBasicBlock::iterator MI) const override;

  /// Returns true if the instruction is already predicated.
  bool isPredicated(const MachineInstr &MI) const override;

  /// Return true for post-incremented instructions.
  bool isPostIncrement(const MachineInstr &MI) const override;

  /// Convert the instruction into a predicated instruction.
  /// It returns true if the operation was successful.
  bool PredicateInstruction(MachineInstr &MI,
                            ArrayRef<MachineOperand> Cond) const override;

  /// Returns true if the first specified predicate
  /// subsumes the second, e.g. GE subsumes GT.
  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const override;

  /// If the specified instruction defines any predicate
  /// or condition code register(s) used for predication, returns true as well
  /// as the definition predicate(s) by reference.
  bool DefinesPredicate(MachineInstr &MI,
                        std::vector<MachineOperand> &Pred) const override;

  /// Return true if the specified instruction can be predicated.
  /// By default, this returns true for every instruction with a
  /// PredicateOperand.
  bool isPredicable(const MachineInstr &MI) const override;

  /// Test if the given instruction should be considered a scheduling boundary.
  /// This primarily includes labels and terminators.
  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  /// Measure the specified inline asm to determine an approximation of its
  /// length.
  unsigned getInlineAsmLength(
    const char *Str,
    const MCAsmInfo &MAI,
    const TargetSubtargetInfo *STI = nullptr) const override;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions after register allocation.
  ScheduleHazardRecognizer*
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                     const ScheduleDAG *DAG) const override;

  /// For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                      unsigned &SrcReg2, int &Mask, int &Value) const override;

  /// Compute the instruction latency of a given instruction.
  /// If the instruction has higher cost when predicated, it's returned via
  /// PredCost.
  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = nullptr) const override;

  /// Create machine specific model for scheduling.
  DFAPacketizer *
  CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;

  // Sometimes, it is possible for the target
  // to tell, even without aliasing information, that two MIs access different
  // memory addresses. This function returns true if two MIs access different
  // memory addresses and false otherwise.
  bool
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
                                  const MachineInstr &MIb) const override;

  /// For instructions with a base and offset, return the position of the
  /// base register and offset operands.
  bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
                                unsigned &OffsetPos) const override;

  /// If the instruction is an increment of a constant value, return the amount.
  bool getIncrementValue(const MachineInstr &MI, int &Value) const override;

  /// getOperandLatency - Compute and return the use operand latency of a given
  /// pair of def and use.
  /// In most cases, the static scheduling itinerary was enough to determine the
  /// operand latency. But it may not be possible for instructions with variable
  /// number of defs / uses.
  ///
  /// This is a raw interface to the itinerary that may be directly overriden by
  /// a target. Use computeOperandLatency to get the best estimate of latency.
  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MachineInstr &DefMI, unsigned DefIdx,
                        const MachineInstr &UseMI,
                        unsigned UseIdx) const override;

  /// Decompose the machine operand's target flags into two values - the direct
  /// target flag value and any of bit flags that are applied.
  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;

  /// Return an array that contains the direct target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;

  /// Return an array that contains the bitmask target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const override;

  bool isTailCall(const MachineInstr &MI) const override;

  /// HexagonInstrInfo specifics.

  unsigned createVR(MachineFunction *MF, MVT VT) const;
  MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
                              MachineBasicBlock *TargetBB,
                              SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;

  bool isBaseImmOffset(const MachineInstr &MI) const;
  bool isAbsoluteSet(const MachineInstr &MI) const;
  bool isAccumulator(const MachineInstr &MI) const;
  bool isAddrModeWithOffset(const MachineInstr &MI) const;
  bool isComplex(const MachineInstr &MI) const;
  bool isCompoundBranchInstr(const MachineInstr &MI) const;
  bool isConstExtended(const MachineInstr &MI) const;
  bool isDeallocRet(const MachineInstr &MI) const;
  bool isDependent(const MachineInstr &ProdMI,
                   const MachineInstr &ConsMI) const;
  bool isDotCurInst(const MachineInstr &MI) const;
  bool isDotNewInst(const MachineInstr &MI) const;
  bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
  bool isEarlySourceInstr(const MachineInstr &MI) const;
  bool isEndLoopN(unsigned Opcode) const;
  bool isExpr(unsigned OpType) const;
  bool isExtendable(const MachineInstr &MI) const;
  bool isExtended(const MachineInstr &MI) const;
  bool isFloat(const MachineInstr &MI) const;
  bool isHVXMemWithAIndirect(const MachineInstr &I,
                             const MachineInstr &J) const;
  bool isIndirectCall(const MachineInstr &MI) const;
  bool isIndirectL4Return(const MachineInstr &MI) const;
  bool isJumpR(const MachineInstr &MI) const;
  bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
  bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
                                  const MachineInstr &ESMI) const;
  bool isLateResultInstr(const MachineInstr &MI) const;
  bool isLateSourceInstr(const MachineInstr &MI) const;
  bool isLoopN(const MachineInstr &MI) const;
  bool isMemOp(const MachineInstr &MI) const;
  bool isNewValue(const MachineInstr &MI) const;
  bool isNewValue(unsigned Opcode) const;
  bool isNewValueInst(const MachineInstr &MI) const;
  bool isNewValueJump(const MachineInstr &MI) const;
  bool isNewValueJump(unsigned Opcode) const;
  bool isNewValueStore(const MachineInstr &MI) const;
  bool isNewValueStore(unsigned Opcode) const;
  bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
  bool isPredicatedNew(const MachineInstr &MI) const;
  bool isPredicatedNew(unsigned Opcode) const;
  bool isPredicatedTrue(const MachineInstr &MI) const;
  bool isPredicatedTrue(unsigned Opcode) const;
  bool isPredicated(unsigned Opcode) const;
  bool isPredicateLate(unsigned Opcode) const;
  bool isPredictedTaken(unsigned Opcode) const;
  bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
  bool isSignExtendingLoad(const MachineInstr &MI) const;
  bool isSolo(const MachineInstr &MI) const;
  bool isSpillPredRegOp(const MachineInstr &MI) const;
  bool isTC1(const MachineInstr &MI) const;
  bool isTC2(const MachineInstr &MI) const;
  bool isTC2Early(const MachineInstr &MI) const;
  bool isTC4x(const MachineInstr &MI) const;
  bool isToBeScheduledASAP(const MachineInstr &MI1,
                           const MachineInstr &MI2) const;
  bool isHVXVec(const MachineInstr &MI) const;
  bool isValidAutoIncImm(const EVT VT, const int Offset) const;
  bool isValidOffset(unsigned Opcode, int Offset,
                     const TargetRegisterInfo *TRI, bool Extend = true) const;
  bool isVecAcc(const MachineInstr &MI) const;
  bool isVecALU(const MachineInstr &MI) const;
  bool isVecUsableNextPacket(const MachineInstr &ProdMI,
                             const MachineInstr &ConsMI) const;
  bool isZeroExtendingLoad(const MachineInstr &MI) const;

  bool addLatencyToSchedule(const MachineInstr &MI1,
                            const MachineInstr &MI2) const;
  bool canExecuteInBundle(const MachineInstr &First,
                          const MachineInstr &Second) const;
  bool doesNotReturn(const MachineInstr &CallMI) const;
  bool hasEHLabel(const MachineBasicBlock *B) const;
  bool hasNonExtEquivalent(const MachineInstr &MI) const;
  bool hasPseudoInstrPair(const MachineInstr &MI) const;
  bool hasUncondBranch(const MachineBasicBlock *B) const;
  bool mayBeCurLoad(const MachineInstr &MI) const;
  bool mayBeNewStore(const MachineInstr &MI) const;
  bool producesStall(const MachineInstr &ProdMI,
                     const MachineInstr &ConsMI) const;
  bool producesStall(const MachineInstr &MI,
                     MachineBasicBlock::const_instr_iterator MII) const;
  bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
  bool PredOpcodeHasJMP_c(unsigned Opcode) const;
  bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;

  unsigned getAddrMode(const MachineInstr &MI) const;
  MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
                                   unsigned &AccessSize) const;
  SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
  unsigned getCExtOpNum(const MachineInstr &MI) const;
  HexagonII::CompoundGroup
  getCompoundCandidateGroup(const MachineInstr &MI) const;
  unsigned getCompoundOpcode(const MachineInstr &GA,
                             const MachineInstr &GB) const;
  int getCondOpcode(int Opc, bool sense) const;
  int getDotCurOp(const MachineInstr &MI) const;
  int getNonDotCurOp(const MachineInstr &MI) const;
  int getDotNewOp(const MachineInstr &MI) const;
  int getDotNewPredJumpOp(const MachineInstr &MI,
                          const MachineBranchProbabilityInfo *MBPI) const;
  int getDotNewPredOp(const MachineInstr &MI,
                      const MachineBranchProbabilityInfo *MBPI) const;
  int getDotOldOp(const MachineInstr &MI) const;
  HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
                                                         const;
  short getEquivalentHWInstr(const MachineInstr &MI) const;
  unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
                                      const MachineInstr &MI) const;
  bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
  unsigned getInvertedPredicatedOpcode(const int Opc) const;
  int getMaxValue(const MachineInstr &MI) const;
  unsigned getMemAccessSize(const MachineInstr &MI) const;
  int getMinValue(const MachineInstr &MI) const;
  short getNonExtOpcode(const MachineInstr &MI) const;
  bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
                  unsigned &PredRegPos, unsigned &PredRegFlags) const;
  short getPseudoInstrPair(const MachineInstr &MI) const;
  short getRegForm(const MachineInstr &MI) const;
  unsigned getSize(const MachineInstr &MI) const;
  uint64_t getType(const MachineInstr &MI) const;
  unsigned getUnits(const MachineInstr &MI) const;

  MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;

  /// getInstrTimingClassLatency - Compute the instruction latency of a given
  /// instruction using Timing Class information, if available.
  unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
  unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;

  void immediateExtend(MachineInstr &MI) const;
  bool invertAndChangeJumpTarget(MachineInstr &MI,
                                 MachineBasicBlock *NewTarget) const;
  void genAllInsnTimingClasses(MachineFunction &MF) const;
  bool reversePredSense(MachineInstr &MI) const;
  unsigned reversePrediction(unsigned Opcode) const;
  bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;

  void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
  bool getBundleNoShuf(const MachineInstr &MIB) const;
  // Addressing mode relations.
  short changeAddrMode_abs_io(short Opc) const;
  short changeAddrMode_io_abs(short Opc) const;
  short changeAddrMode_io_pi(short Opc) const;
  short changeAddrMode_io_rr(short Opc) const;
  short changeAddrMode_pi_io(short Opc) const;
  short changeAddrMode_rr_io(short Opc) const;
  short changeAddrMode_rr_ur(short Opc) const;
  short changeAddrMode_ur_rr(short Opc) const;

  short changeAddrMode_abs_io(const MachineInstr &MI) const {
    return changeAddrMode_abs_io(MI.getOpcode());
  }
  short changeAddrMode_io_abs(const MachineInstr &MI) const {
    return changeAddrMode_io_abs(MI.getOpcode());
  }
  short changeAddrMode_io_rr(const MachineInstr &MI) const {
    return changeAddrMode_io_rr(MI.getOpcode());
  }
  short changeAddrMode_rr_io(const MachineInstr &MI) const {
    return changeAddrMode_rr_io(MI.getOpcode());
  }
  short changeAddrMode_rr_ur(const MachineInstr &MI) const {
    return changeAddrMode_rr_ur(MI.getOpcode());
  }
  short changeAddrMode_ur_rr(const MachineInstr &MI) const {
    return changeAddrMode_ur_rr(MI.getOpcode());
  }
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H