reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
//===-- LanaiMemAluCombiner.cpp - Pass to combine memory & ALU operations -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Simple pass to combine memory and ALU operations
//
// The Lanai ISA supports instructions where a load/store modifies the base
// register used in the load/store operation. This pass finds suitable
// load/store and ALU instructions and combines them into one instruction.
//
// For example,
//   ld [ %r6 -- ], %r12
// is a supported instruction that is not currently generated by the instruction
// selection pass of this backend. This pass generates these instructions by
// merging
//   add %r6, -4, %r6
// followed by
//   ld [ %r6 ], %r12
// in the same machine basic block into one machine instruction.
//===----------------------------------------------------------------------===//

#include "LanaiAluCode.h"
#include "LanaiTargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

#define GET_INSTRMAP_INFO
#include "LanaiGenInstrInfo.inc"

#define DEBUG_TYPE "lanai-mem-alu-combiner"

STATISTIC(NumLdStAluCombined, "Number of memory and ALU instructions combined");

static llvm::cl::opt<bool> DisableMemAluCombiner(
    "disable-lanai-mem-alu-combiner", llvm::cl::init(false),
    llvm::cl::desc("Do not combine ALU and memory operators"),
    llvm::cl::Hidden);

namespace llvm {
void initializeLanaiMemAluCombinerPass(PassRegistry &);
} // namespace llvm

namespace {
typedef MachineBasicBlock::iterator MbbIterator;
typedef MachineFunction::iterator MfIterator;

class LanaiMemAluCombiner : public MachineFunctionPass {
public:
  static char ID;
  explicit LanaiMemAluCombiner() : MachineFunctionPass(ID) {
    initializeLanaiMemAluCombinerPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Lanai load / store optimization pass";
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  MbbIterator findClosestSuitableAluInstr(MachineBasicBlock *BB,
                                          const MbbIterator &MemInstr,
                                          bool Decrement);
  void insertMergedInstruction(MachineBasicBlock *BB,
                               const MbbIterator &MemInstr,
                               const MbbIterator &AluInstr, bool Before);
  bool combineMemAluInBasicBlock(MachineBasicBlock *BB);

  // Target machine description which we query for register names, data
  // layout, etc.
  const TargetInstrInfo *TII;
};
} // namespace

char LanaiMemAluCombiner::ID = 0;

INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE,
                "Lanai memory ALU combiner pass", false, false)

namespace {
bool isSpls(uint16_t Opcode) { return Lanai::splsIdempotent(Opcode) == Opcode; }

// Determine the opcode for the merged instruction created by considering the
// old memory operation's opcode and whether the merged opcode will have an
// immediate offset.
unsigned mergedOpcode(unsigned OldOpcode, bool ImmediateOffset) {
  switch (OldOpcode) {
  case Lanai::LDW_RI:
  case Lanai::LDW_RR:
    if (ImmediateOffset)
      return Lanai::LDW_RI;
    return Lanai::LDW_RR;
  case Lanai::LDHs_RI:
  case Lanai::LDHs_RR:
    if (ImmediateOffset)
      return Lanai::LDHs_RI;
    return Lanai::LDHs_RR;
  case Lanai::LDHz_RI:
  case Lanai::LDHz_RR:
    if (ImmediateOffset)
      return Lanai::LDHz_RI;
    return Lanai::LDHz_RR;
  case Lanai::LDBs_RI:
  case Lanai::LDBs_RR:
    if (ImmediateOffset)
      return Lanai::LDBs_RI;
    return Lanai::LDBs_RR;
  case Lanai::LDBz_RI:
  case Lanai::LDBz_RR:
    if (ImmediateOffset)
      return Lanai::LDBz_RI;
    return Lanai::LDBz_RR;
  case Lanai::SW_RI:
  case Lanai::SW_RR:
    if (ImmediateOffset)
      return Lanai::SW_RI;
    return Lanai::SW_RR;
  case Lanai::STB_RI:
  case Lanai::STB_RR:
    if (ImmediateOffset)
      return Lanai::STB_RI;
    return Lanai::STB_RR;
  case Lanai::STH_RI:
  case Lanai::STH_RR:
    if (ImmediateOffset)
      return Lanai::STH_RI;
    return Lanai::STH_RR;
  default:
    return 0;
  }
}

// Check if the machine instruction has non-volatile memory operands of the type
// supported for combining with ALU instructions.
bool isNonVolatileMemoryOp(const MachineInstr &MI) {
  if (!MI.hasOneMemOperand())
    return false;

  // Determine if the machine instruction is a supported memory operation by
  // testing if the computed merge opcode is a valid memory operation opcode.
  if (mergedOpcode(MI.getOpcode(), false) == 0)
    return false;

  const MachineMemOperand *MemOperand = *MI.memoperands_begin();

  // Don't move volatile memory accesses
  // TODO: unclear if we need to be as conservative about atomics
  if (MemOperand->isVolatile() || MemOperand->isAtomic())
    return false;

  return true;
}

// Test to see if two machine operands are of the same type. This test is less
// strict than the MachineOperand::isIdenticalTo function.
bool isSameOperand(const MachineOperand &Op1, const MachineOperand &Op2) {
  if (Op1.getType() != Op2.getType())
    return false;

  switch (Op1.getType()) {
  case MachineOperand::MO_Register:
    return Op1.getReg() == Op2.getReg();
  case MachineOperand::MO_Immediate:
    return Op1.getImm() == Op2.getImm();
  default:
    return false;
  }
}

bool isZeroOperand(const MachineOperand &Op) {
  return ((Op.isReg() && Op.getReg() == Lanai::R0) ||
          (Op.isImm() && Op.getImm() == 0));
}

// Determines whether a register is used by an instruction.
bool InstrUsesReg(const MbbIterator &Instr, const MachineOperand *Reg) {
  for (MachineInstr::const_mop_iterator Mop = Instr->operands_begin();
       Mop != Instr->operands_end(); ++Mop) {
    if (isSameOperand(*Mop, *Reg))
      return true;
  }
  return false;
}

// Converts between machine opcode and AluCode.
// Flag using/modifying ALU operations should not be considered for merging and
// are omitted from this list.
LPAC::AluCode mergedAluCode(unsigned AluOpcode) {
  switch (AluOpcode) {
  case Lanai::ADD_I_LO:
  case Lanai::ADD_R:
    return LPAC::ADD;
  case Lanai::SUB_I_LO:
  case Lanai::SUB_R:
    return LPAC::SUB;
  case Lanai::AND_I_LO:
  case Lanai::AND_R:
    return LPAC::AND;
  case Lanai::OR_I_LO:
  case Lanai::OR_R:
    return LPAC::OR;
  case Lanai::XOR_I_LO:
  case Lanai::XOR_R:
    return LPAC::XOR;
  case Lanai::SHL_R:
    return LPAC::SHL;
  case Lanai::SRL_R:
    return LPAC::SRL;
  case Lanai::SRA_R:
    return LPAC::SRA;
  case Lanai::SA_I:
  case Lanai::SL_I:
  default:
    return LPAC::UNKNOWN;
  }
}

// Insert a new combined memory and ALU operation instruction.
//
// This function builds a new machine instruction using the MachineInstrBuilder
// class and inserts it before the memory instruction.
void LanaiMemAluCombiner::insertMergedInstruction(MachineBasicBlock *BB,
                                                  const MbbIterator &MemInstr,
                                                  const MbbIterator &AluInstr,
                                                  bool Before) {
  // Insert new combined load/store + alu operation
  MachineOperand Dest = MemInstr->getOperand(0);
  MachineOperand Base = MemInstr->getOperand(1);
  MachineOperand MemOffset = MemInstr->getOperand(2);
  MachineOperand AluOffset = AluInstr->getOperand(2);

  // Abort if ALU offset is not a register or immediate
  assert((AluOffset.isReg() || AluOffset.isImm()) &&
         "Unsupported operand type in merge");

  // Determined merged instructions opcode and ALU code
  LPAC::AluCode AluOpcode = mergedAluCode(AluInstr->getOpcode());
  unsigned NewOpc = mergedOpcode(MemInstr->getOpcode(), AluOffset.isImm());

  assert(AluOpcode != LPAC::UNKNOWN && "Unknown ALU code in merging");
  assert(NewOpc != 0 && "Unknown merged node opcode");

  // Build and insert new machine instruction
  MachineInstrBuilder InstrBuilder =
      BuildMI(*BB, MemInstr, MemInstr->getDebugLoc(), TII->get(NewOpc));
  InstrBuilder.addReg(Dest.getReg(), getDefRegState(true));
  InstrBuilder.addReg(Base.getReg(), getKillRegState(true));

  // Add offset to machine instruction
  if (AluOffset.isReg())
    InstrBuilder.addReg(AluOffset.getReg());
  else if (AluOffset.isImm())
    InstrBuilder.addImm(AluOffset.getImm());
  else
    llvm_unreachable("Unsupported ld/st ALU merge.");

  // Create a pre-op if the ALU operation preceded the memory operation or the
  // MemOffset is non-zero (i.e. the memory value should be adjusted before
  // accessing it), else create a post-op.
  if (Before || !isZeroOperand(MemOffset))
    InstrBuilder.addImm(LPAC::makePreOp(AluOpcode));
  else
    InstrBuilder.addImm(LPAC::makePostOp(AluOpcode));

  // Transfer memory operands.
  InstrBuilder.setMemRefs(MemInstr->memoperands());
}

// Function determines if ALU operation (in alu_iter) can be combined with
// a load/store with base and offset.
bool isSuitableAluInstr(bool IsSpls, const MbbIterator &AluIter,
                        const MachineOperand &Base,
                        const MachineOperand &Offset) {
  // ALU operations have 3 operands
  if (AluIter->getNumOperands() != 3)
    return false;

  MachineOperand &Dest = AluIter->getOperand(0);
  MachineOperand &Op1 = AluIter->getOperand(1);
  MachineOperand &Op2 = AluIter->getOperand(2);

  // Only match instructions using the base register as destination and with the
  // base and first operand equal
  if (!isSameOperand(Dest, Base) || !isSameOperand(Dest, Op1))
    return false;

  if (Op2.isImm()) {
    // It is not a match if the 2nd operand in the ALU operation is an
    // immediate but the ALU operation is not an addition.
    if (AluIter->getOpcode() != Lanai::ADD_I_LO)
      return false;

    if (Offset.isReg() && Offset.getReg() == Lanai::R0)
      return true;

    if (Offset.isImm() &&
        ((Offset.getImm() == 0 &&
          // Check that the Op2 would fit in the immediate field of the
          // memory operation.
          ((IsSpls && isInt<10>(Op2.getImm())) ||
           (!IsSpls && isInt<16>(Op2.getImm())))) ||
         Offset.getImm() == Op2.getImm()))
      return true;
  } else if (Op2.isReg()) {
    // The Offset and 2nd operand are both registers and equal
    if (Offset.isReg() && Op2.getReg() == Offset.getReg())
      return true;
  } else
    // Only consider operations with register or immediate values
    return false;

  return false;
}

MbbIterator LanaiMemAluCombiner::findClosestSuitableAluInstr(
    MachineBasicBlock *BB, const MbbIterator &MemInstr, const bool Decrement) {
  MachineOperand *Base = &MemInstr->getOperand(1);
  MachineOperand *Offset = &MemInstr->getOperand(2);
  bool IsSpls = isSpls(MemInstr->getOpcode());

  MbbIterator First = MemInstr;
  MbbIterator Last = Decrement ? BB->begin() : BB->end();

  while (First != Last) {
    Decrement ? --First : ++First;

    if (First == Last)
      break;

    // Skip over debug instructions
    if (First->isDebugInstr())
      continue;

    if (isSuitableAluInstr(IsSpls, First, *Base, *Offset)) {
      return First;
    }

    // Usage of the base or offset register is not a form suitable for merging.
    if (First != Last) {
      if (InstrUsesReg(First, Base))
        break;
      if (Offset->isReg() && InstrUsesReg(First, Offset))
        break;
    }
  }

  return MemInstr;
}

bool LanaiMemAluCombiner::combineMemAluInBasicBlock(MachineBasicBlock *BB) {
  bool Modified = false;

  MbbIterator MBBIter = BB->begin(), End = BB->end();
  while (MBBIter != End) {
    bool IsMemOp = isNonVolatileMemoryOp(*MBBIter);

    if (IsMemOp) {
      MachineOperand AluOperand = MBBIter->getOperand(3);
      unsigned int DestReg = MBBIter->getOperand(0).getReg(),
                   BaseReg = MBBIter->getOperand(1).getReg();
      assert(AluOperand.isImm() && "Unexpected memory operator type");
      LPAC::AluCode AluOpcode = static_cast<LPAC::AluCode>(AluOperand.getImm());

      // Skip memory operations that already modify the base register or if
      // the destination and base register are the same
      if (!LPAC::modifiesOp(AluOpcode) && DestReg != BaseReg) {
        for (int Inc = 0; Inc <= 1; ++Inc) {
          MbbIterator AluIter =
              findClosestSuitableAluInstr(BB, MBBIter, Inc == 0);
          if (AluIter != MBBIter) {
            insertMergedInstruction(BB, MBBIter, AluIter, Inc == 0);

            ++NumLdStAluCombined;
            Modified = true;

            // Erase the matching ALU instruction
            BB->erase(AluIter);
            // Erase old load/store instruction
            BB->erase(MBBIter++);
            break;
          }
        }
      }
    }
    if (MBBIter == End)
      break;
    ++MBBIter;
  }

  return Modified;
}

// Driver function that iterates over the machine basic building blocks of a
// machine function
bool LanaiMemAluCombiner::runOnMachineFunction(MachineFunction &MF) {
  if (DisableMemAluCombiner)
    return false;

  TII = MF.getSubtarget<LanaiSubtarget>().getInstrInfo();
  bool Modified = false;
  for (MfIterator MFI = MF.begin(); MFI != MF.end(); ++MFI) {
    Modified |= combineMemAluInBasicBlock(&*MFI);
  }
  return Modified;
}
} // namespace

FunctionPass *llvm::createLanaiMemAluCombinerPass() {
  return new LanaiMemAluCombiner();
}