reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
//
// This pass aims to reduce the number of logical operations on bits in the CR
// register. These instructions have a fairly high latency and only a single
// pipeline at their disposal in modern PPC cores. Furthermore, they have a
// tendency to occur in fairly small blocks where there's little opportunity
// to hide the latency between the CR logical operation and its user.
//
//===---------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-reduce-cr-ops"

STATISTIC(NumContainedSingleUseBinOps,
          "Number of single-use binary CR logical ops contained in a block");
STATISTIC(NumToSplitBlocks,
          "Number of binary CR logical ops that can be used to split blocks");
STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
STATISTIC(TotalNullaryCRLogicals,
          "Number of nullary CR logical ops (CRSET/CRUNSET).");
STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
STATISTIC(NumBlocksSplitOnBinaryCROp,
          "Number of blocks split on CR binary logical ops.");
STATISTIC(NumNotSplitIdenticalOperands,
          "Number of blocks not split due to operands being identical.");
STATISTIC(NumNotSplitChainCopies,
          "Number of blocks not split due to operands being chained copies.");
STATISTIC(NumNotSplitWrongOpcode,
          "Number of blocks not split due to the wrong opcode.");

/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for any incoming values in the PHIs that are supposed to
/// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
/// Any such PHIs will be updated to reflect reality.
static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
                       MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
  for (auto &MI : Successor->instrs()) {
    if (!MI.isPHI())
      continue;
    // This is a really ugly-looking loop, but it was pillaged directly from
    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == OrigMBB) {
        // Check if the instruction is actually defined in NewMBB.
        if (MI.getOperand(i - 1).isReg()) {
          MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
          if (DefMI->getParent() == NewMBB ||
              !OrigMBB->isSuccessor(Successor)) {
            MO.setMBB(NewMBB);
            break;
          }
        }
      }
    }
  }
}

/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for PHIs that have an incoming value from \p OrigMBB
/// and will add the same incoming value from \p NewMBB.
/// NOTE: This should only be used if \p NewMBB is an immediate dominator of
/// \p OrigMBB.
static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
                                    MachineBasicBlock *OrigMBB,
                                    MachineBasicBlock *NewMBB,
                                    MachineRegisterInfo *MRI) {
  assert(OrigMBB->isSuccessor(NewMBB) &&
         "NewMBB must be a successor of OrigMBB");
  for (auto &MI : Successor->instrs()) {
    if (!MI.isPHI())
      continue;
    // This is a really ugly-looking loop, but it was pillaged directly from
    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == OrigMBB) {
        MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
        MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
        break;
      }
    }
  }
}

struct BlockSplitInfo {
  MachineInstr *OrigBranch;
  MachineInstr *SplitBefore;
  MachineInstr *SplitCond;
  bool InvertNewBranch;
  bool InvertOrigBranch;
  bool BranchToFallThrough;
  const MachineBranchProbabilityInfo *MBPI;
  MachineInstr *MIToDelete;
  MachineInstr *NewCond;
  bool allInstrsInSameMBB() {
    if (!OrigBranch || !SplitBefore || !SplitCond)
      return false;
    MachineBasicBlock *MBB = OrigBranch->getParent();
    if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
      return false;
    if (MIToDelete && MIToDelete->getParent() != MBB)
      return false;
    if (NewCond && NewCond->getParent() != MBB)
      return false;
    return true;
  }
};

/// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
/// branch is \p OrigBranch. The target of the new branch can either be the same
/// as the target of the original branch or the fallthrough successor of the
/// original block as determined by \p BranchToFallThrough. The branch
/// conditions will be inverted according to \p InvertNewBranch and
/// \p InvertOrigBranch. If an instruction that previously fed the branch is to
/// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
/// the branch condition. The branch probabilities will be set if the
/// MachineBranchProbabilityInfo isn't null.
static bool splitMBB(BlockSplitInfo &BSI) {
  assert(BSI.allInstrsInSameMBB() &&
         "All instructions must be in the same block.");

  MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
  MachineFunction *MF = ThisMBB->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
  if (ThisMBB->succ_size() != 2) {
    LLVM_DEBUG(
        dbgs() << "Don't know how to handle blocks that don't have exactly"
               << " two successors.\n");
    return false;
  }

  const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
  unsigned InvertedOpcode =
      OrigBROpcode == PPC::BC
          ? PPC::BCn
          : OrigBROpcode == PPC::BCn
                ? PPC::BC
                : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
  unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
  MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
  MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
                                           ? *ThisMBB->succ_rbegin()
                                           : *ThisMBB->succ_begin();
  MachineBasicBlock *NewBRTarget =
      BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;

  // It's impossible to know the precise branch probability after the split.
  // But it still needs to be reasonable, the whole probability to original
  // targets should not be changed.
  // After split NewBRTarget will get two incoming edges. Assume P0 is the
  // original branch probability to NewBRTarget, P1 and P2 are new branch
  // probabilies to NewBRTarget after split. If the two edge frequencies are
  // same, then
  //      F * P1 = F * P0 / 2            ==>  P1 = P0 / 2
  //      F * (1 - P1) * P2 = F * P1     ==>  P2 = P1 / (1 - P1)
  BranchProbability ProbToNewTarget, ProbFallThrough;     // Prob for new Br.
  BranchProbability ProbOrigTarget, ProbOrigFallThrough;  // Prob for orig Br.
  ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
  ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
  if (BSI.MBPI) {
    if (BSI.BranchToFallThrough) {
      ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
      ProbFallThrough = ProbToNewTarget.getCompl();
      ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
      ProbOrigTarget = ProbOrigFallThrough.getCompl();
    } else {
      ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
      ProbFallThrough = ProbToNewTarget.getCompl();
      ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
      ProbOrigFallThrough = ProbOrigTarget.getCompl();
    }
  }

  // Create a new basic block.
  MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
  const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
  MachineFunction::iterator It = ThisMBB->getIterator();
  MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(++It, NewMBB);

  // Move everything after SplitBefore into the new block.
  NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
  NewMBB->transferSuccessors(ThisMBB);
  if (!ProbOrigTarget.isUnknown()) {
    auto MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigTarget);
    NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
    MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigFallThrough);
    NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
  }

  // Add the two successors to ThisMBB.
  ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
  ThisMBB->addSuccessor(NewMBB, ProbFallThrough);

  // Add the branches to ThisMBB.
  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
          TII->get(NewBROpcode))
      .addReg(BSI.SplitCond->getOperand(0).getReg())
      .addMBB(NewBRTarget);
  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
          TII->get(PPC::B))
      .addMBB(NewMBB);
  if (BSI.MIToDelete)
    BSI.MIToDelete->eraseFromParent();

  // Change the condition on the original branch and invert it if requested.
  auto FirstTerminator = NewMBB->getFirstTerminator();
  if (BSI.NewCond) {
    assert(FirstTerminator->getOperand(0).isReg() &&
           "Can't update condition of unconditional branch.");
    FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
  }
  if (BSI.InvertOrigBranch)
    FirstTerminator->setDesc(TII->get(InvertedOpcode));

  // If any of the PHIs in the successors of NewMBB reference values that
  // now come from NewMBB, they need to be updated.
  for (auto *Succ : NewMBB->successors()) {
    updatePHIs(Succ, ThisMBB, NewMBB, MRI);
  }
  addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);

  LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
  LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
  LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
  return true;
}

static bool isBinary(MachineInstr &MI) {
  return MI.getNumOperands() == 3;
}

static bool isNullary(MachineInstr &MI) {
  return MI.getNumOperands() == 1;
}

/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
/// a flag to indicate if the first operand of \p CROp is used as the
/// SplitBefore operand, determines whether either of the branches are to be
/// inverted as well as whether the new target should be the original
/// fall-through block.
static void
computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
                                bool &InvertNewBranch, bool &InvertOrigBranch,
                                bool &TargetIsFallThrough) {
  // The conditions under which each of the output operands should be [un]set
  // can certainly be written much more concisely with just 3 if statements or
  // ternary expressions. However, this provides a much clearer overview to the
  // reader as to what is set for each <CROp, BROp, OpUsed> combination.
  if (BROp == PPC::BC || BROp == PPC::BCLR) {
    // Regular branches.
    switch (CROp) {
    default:
      llvm_unreachable("Don't know how to handle this CR logical.");
    case PPC::CROR:
      InvertNewBranch = false;
      InvertOrigBranch = false;
      TargetIsFallThrough = false;
      return;
    case PPC::CRAND:
      InvertNewBranch = true;
      InvertOrigBranch = false;
      TargetIsFallThrough = true;
      return;
    case PPC::CRNAND:
      InvertNewBranch = true;
      InvertOrigBranch = true;
      TargetIsFallThrough = false;
      return;
    case PPC::CRNOR:
      InvertNewBranch = false;
      InvertOrigBranch = true;
      TargetIsFallThrough = true;
      return;
    case PPC::CRORC:
      InvertNewBranch = UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = false;
      return;
    case PPC::CRANDC:
      InvertNewBranch = !UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = true;
      return;
    }
  } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
    // Negated branches.
    switch (CROp) {
    default:
      llvm_unreachable("Don't know how to handle this CR logical.");
    case PPC::CROR:
      InvertNewBranch = true;
      InvertOrigBranch = false;
      TargetIsFallThrough = true;
      return;
    case PPC::CRAND:
      InvertNewBranch = false;
      InvertOrigBranch = false;
      TargetIsFallThrough = false;
      return;
    case PPC::CRNAND:
      InvertNewBranch = false;
      InvertOrigBranch = true;
      TargetIsFallThrough = true;
      return;
    case PPC::CRNOR:
      InvertNewBranch = true;
      InvertOrigBranch = true;
      TargetIsFallThrough = false;
      return;
    case PPC::CRORC:
      InvertNewBranch = !UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = true;
      return;
    case PPC::CRANDC:
      InvertNewBranch = UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = false;
      return;
    }
  } else
    llvm_unreachable("Don't know how to handle this branch.");
}

namespace {

class PPCReduceCRLogicals : public MachineFunctionPass {

public:
  static char ID;
  struct CRLogicalOpInfo {
    MachineInstr *MI;
    // FIXME: If chains of copies are to be handled, this should be a vector.
    std::pair<MachineInstr*, MachineInstr*> CopyDefs;
    std::pair<MachineInstr*, MachineInstr*> TrueDefs;
    unsigned IsBinary : 1;
    unsigned IsNullary : 1;
    unsigned ContainedInBlock : 1;
    unsigned FeedsISEL : 1;
    unsigned FeedsBR : 1;
    unsigned FeedsLogical : 1;
    unsigned SingleUse : 1;
    unsigned DefsSingleUse : 1;
    unsigned SubregDef1;
    unsigned SubregDef2;
    CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
                        ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
                        FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
                        SubregDef1(0), SubregDef2(0) { }
    void dump();
  };

private:
  const PPCInstrInfo *TII;
  MachineFunction *MF;
  MachineRegisterInfo *MRI;
  const MachineBranchProbabilityInfo *MBPI;

  // A vector to contain all the CR logical operations
  SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps;
  void initialize(MachineFunction &MFParm);
  void collectCRLogicals();
  bool handleCROp(unsigned Idx);
  bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
  static bool isCRLogical(MachineInstr &MI) {
    unsigned Opc = MI.getOpcode();
    return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
      Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
      Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
      Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
  }
  bool simplifyCode() {
    bool Changed = false;
    // Not using a range-based for loop here as the vector may grow while being
    // operated on.
    for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
      Changed |= handleCROp(i);
    return Changed;
  }

public:
  PPCReduceCRLogicals() : MachineFunctionPass(ID) {
    initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
  }

  MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
                                  MachineInstr *&CpDef);
  bool runOnMachineFunction(MachineFunction &MF) override {
    if (skipFunction(MF.getFunction()))
      return false;

    // If the subtarget doesn't use CR bits, there's nothing to do.
    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
    if (!STI.useCRBits())
      return false;

    initialize(MF);
    collectCRLogicals();
    return simplifyCode();
  }
  CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
  dbgs() << "CRLogicalOpMI: ";
  MI->dump();
  dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
  dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
  dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
  dbgs() << ", DefsSingleUse: " << DefsSingleUse;
  dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
  dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
  if (!IsNullary) {
    dbgs() << "\nDefs:\n";
    TrueDefs.first->dump();
  }
  if (IsBinary)
    TrueDefs.second->dump();
  dbgs() << "\n";
  if (CopyDefs.first) {
    dbgs() << "CopyDef1: ";
    CopyDefs.first->dump();
  }
  if (CopyDefs.second) {
    dbgs() << "CopyDef2: ";
    CopyDefs.second->dump();
  }
}
#endif

PPCReduceCRLogicals::CRLogicalOpInfo
PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
  CRLogicalOpInfo Ret;
  Ret.MI = &MIParam;
  // Get the defs
  if (isNullary(MIParam)) {
    Ret.IsNullary = 1;
    Ret.TrueDefs = std::make_pair(nullptr, nullptr);
    Ret.CopyDefs = std::make_pair(nullptr, nullptr);
  } else {
    MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
                                           Ret.SubregDef1, Ret.CopyDefs.first);
    Ret.DefsSingleUse &=
      MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
    Ret.DefsSingleUse &=
      MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
    assert(Def1 && "Must be able to find a definition of operand 1.");
    if (isBinary(MIParam)) {
      Ret.IsBinary = 1;
      MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
                                             Ret.SubregDef2,
                                             Ret.CopyDefs.second);
      Ret.DefsSingleUse &=
        MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
      Ret.DefsSingleUse &=
        MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
      assert(Def2 && "Must be able to find a definition of operand 2.");
      Ret.TrueDefs = std::make_pair(Def1, Def2);
    } else {
      Ret.TrueDefs = std::make_pair(Def1, nullptr);
      Ret.CopyDefs.second = nullptr;
    }
  }

  Ret.ContainedInBlock = 1;
  // Get the uses
  for (MachineInstr &UseMI :
       MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
    unsigned Opc = UseMI.getOpcode();
    if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
      Ret.FeedsISEL = 1;
    if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
        Opc == PPC::BCLRn)
      Ret.FeedsBR = 1;
    Ret.FeedsLogical = isCRLogical(UseMI);
    if (UseMI.getParent() != MIParam.getParent())
      Ret.ContainedInBlock = 0;
  }
  Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;

  // We now know whether all the uses of the CR logical are in the same block.
  if (!Ret.IsNullary) {
    Ret.ContainedInBlock &=
      (MIParam.getParent() == Ret.TrueDefs.first->getParent());
    if (Ret.IsBinary)
      Ret.ContainedInBlock &=
        (MIParam.getParent() == Ret.TrueDefs.second->getParent());
  }
  LLVM_DEBUG(Ret.dump());
  if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
    NumContainedSingleUseBinOps++;
    if (Ret.FeedsBR && Ret.DefsSingleUse)
      NumToSplitBlocks++;
  }
  return Ret;
}

/// Looks through a COPY instruction to the actual definition of the CR-bit
/// register and returns the instruction that defines it.
/// FIXME: This currently handles what is by-far the most common case:
/// an instruction that defines a CR field followed by a single copy of a bit
/// from that field into a virtual register. If chains of copies need to be
/// handled, this should have a loop until a non-copy instruction is found.
MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
                                                     unsigned &Subreg,
                                                     MachineInstr *&CpDef) {
  Subreg = -1;
  if (!Register::isVirtualRegister(Reg))
    return nullptr;
  MachineInstr *Copy = MRI->getVRegDef(Reg);
  CpDef = Copy;
  if (!Copy->isCopy())
    return Copy;
  Register CopySrc = Copy->getOperand(1).getReg();
  Subreg = Copy->getOperand(1).getSubReg();
  if (!Register::isVirtualRegister(CopySrc)) {
    const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
    // Set the Subreg
    if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
      Subreg = PPC::sub_eq;
    if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
      Subreg = PPC::sub_lt;
    if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
      Subreg = PPC::sub_gt;
    if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
      Subreg = PPC::sub_un;
    // Loop backwards and return the first MI that modifies the physical CR Reg.
    MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
    while (Me != B)
      if ((--Me)->modifiesRegister(CopySrc, TRI))
        return &*Me;
    return nullptr;
  }
  return MRI->getVRegDef(CopySrc);
}

void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
  MF = &MFParam;
  MRI = &MF->getRegInfo();
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  AllCRLogicalOps.clear();
}

/// Contains all the implemented transformations on CR logical operations.
/// For example, a binary CR logical can be used to split a block on its inputs,
/// a unary CR logical might be used to change the condition code on a
/// comparison feeding it. A nullary CR logical might simply be removable
/// if the user of the bit it [un]sets can be transformed.
bool PPCReduceCRLogicals::handleCROp(unsigned Idx) {
  // We can definitely split a block on the inputs to a binary CR operation
  // whose defs and (single) use are within the same block.
  bool Changed = false;
  CRLogicalOpInfo CRI = AllCRLogicalOps[Idx];
  if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
      CRI.DefsSingleUse) {
    Changed = splitBlockOnBinaryCROp(CRI);
    if (Changed)
      NumBlocksSplitOnBinaryCROp++;
  }
  return Changed;
}

/// Splits a block that contains a CR-logical operation that feeds a branch
/// and whose operands are produced within the block.
/// Example:
///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
/// Becomes:
///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
///
///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
  if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
    LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
    NumNotSplitIdenticalOperands++;
    return false;
  }
  if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
      CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
    LLVM_DEBUG(
        dbgs() << "Unable to split because one of the operands is a PHI or "
                  "chain of copies.\n");
    NumNotSplitChainCopies++;
    return false;
  }
  // Note: keep in sync with computeBranchTargetAndInversion().
  if (CRI.MI->getOpcode() != PPC::CROR &&
      CRI.MI->getOpcode() != PPC::CRAND &&
      CRI.MI->getOpcode() != PPC::CRNOR &&
      CRI.MI->getOpcode() != PPC::CRNAND &&
      CRI.MI->getOpcode() != PPC::CRORC &&
      CRI.MI->getOpcode() != PPC::CRANDC) {
    LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
    NumNotSplitWrongOpcode++;
    return false;
  }
  LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
  MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
  MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;

  bool UsingDef1 = false;
  MachineInstr *SplitBefore = &*Def2It;
  for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
    if (Def1It == Def2It) { // Def2 comes before Def1.
      SplitBefore = &*Def1It;
      UsingDef1 = true;
      break;
    }
  }

  LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
  LLVM_DEBUG(CRI.MI->getParent()->dump());
  LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());

  // Get the branch instruction.
  MachineInstr *Branch =
    MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();

  // We want the new block to have no code in it other than the definition
  // of the input to the CR logical and the CR logical itself. So we move
  // those to the bottom of the block (just before the branch). Then we
  // will split before the CR logical.
  MachineBasicBlock *MBB = SplitBefore->getParent();
  auto FirstTerminator = MBB->getFirstTerminator();
  MachineBasicBlock::iterator FirstInstrToMove =
    UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
  MachineBasicBlock::iterator SecondInstrToMove =
    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;

  // The instructions that need to be moved are not guaranteed to be
  // contiguous. Move them individually.
  // FIXME: If one of the operands is a chain of (single use) copies, they
  // can all be moved and we can still split.
  MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
  if (FirstInstrToMove != SecondInstrToMove)
    MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
  MBB->splice(FirstTerminator, MBB, CRI.MI);

  unsigned Opc = CRI.MI->getOpcode();
  bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
  computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
                                  InvertNewBranch, InvertOrigBranch,
                                  TargetIsFallThrough);
  MachineInstr *SplitCond =
    UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
  LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
  LLVM_DEBUG(dbgs() << " the original branch and the target is the "
                    << (TargetIsFallThrough ? "fallthrough block\n"
                                            : "orig. target block\n"));
  LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
  BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
    InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
  bool Changed = splitMBB(BSI);
  // If we've split on a CR logical that is fed by a CR logical,
  // recompute the source CR logical as it may be usable for splitting.
  if (Changed) {
    bool Input1CRlogical =
      CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
    bool Input2CRlogical =
      CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
    if (Input1CRlogical)
      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
    if (Input2CRlogical)
      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
  }
  return Changed;
}

void PPCReduceCRLogicals::collectCRLogicals() {
  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB) {
      if (isCRLogical(MI)) {
        AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
        TotalCRLogicals++;
        if (AllCRLogicalOps.back().IsNullary)
          TotalNullaryCRLogicals++;
        else if (AllCRLogicalOps.back().IsBinary)
          TotalBinaryCRLogicals++;
        else
          TotalUnaryCRLogicals++;
      }
    }
  }
}

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
                      "PowerPC Reduce CR logical Operation", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
                    "PowerPC Reduce CR logical Operation", false, false)

char PPCReduceCRLogicals::ID = 0;
FunctionPass*
llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }