reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
//===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass makes sure that all branches are in range.  There are several ways
// in which this could be done.  One aggressive approach is to assume that all
// branches are in range and successively replace those that turn out not
// to be in range with a longer form (branch relaxation).  A simple
// implementation is to continually walk through the function relaxing
// branches until no more changes are needed and a fixed point is reached.
// However, in the pathological worst case, this implementation is
// quadratic in the number of blocks; relaxing branch N can make branch N-1
// go out of range, which in turn can make branch N-2 go out of range,
// and so on.
//
// An alternative approach is to assume that all branches must be
// converted to their long forms, then reinstate the short forms of
// branches that, even under this pessimistic assumption, turn out to be
// in range (branch shortening).  This too can be implemented as a function
// walk that is repeated until a fixed point is reached.  In general,
// the result of shortening is not as good as that of relaxation, and
// shortening is also quadratic in the worst case; shortening branch N
// can bring branch N-1 in range of the short form, which in turn can do
// the same for branch N-2, and so on.  The main advantage of shortening
// is that each walk through the function produces valid code, so it is
// possible to stop at any point after the first walk.  The quadraticness
// could therefore be handled with a maximum pass count, although the
// question then becomes: what maximum count should be used?
//
// On SystemZ, long branches are only needed for functions bigger than 64k,
// which are relatively rare to begin with, and the long branch sequences
// are actually relatively cheap.  It therefore doesn't seem worth spending
// much compilation time on the problem.  Instead, the approach we take is:
//
// (1) Work out the address that each block would have if no branches
//     need relaxing.  Exit the pass early if all branches are in range
//     according to this assumption.
//
// (2) Work out the address that each block would have if all branches
//     need relaxing.
//
// (3) Walk through the block calculating the final address of each instruction
//     and relaxing those that need to be relaxed.  For backward branches,
//     this check uses the final address of the target block, as calculated
//     earlier in the walk.  For forward branches, this check uses the
//     address of the target block that was calculated in (2).  Both checks
//     give a conservatively-correct range.
//
//===----------------------------------------------------------------------===//

#include "SystemZ.h"
#include "SystemZInstrInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "systemz-long-branch"

STATISTIC(LongBranches, "Number of long branches.");

namespace {

// Represents positional information about a basic block.
struct MBBInfo {
  // The address that we currently assume the block has.
  uint64_t Address = 0;

  // The size of the block in bytes, excluding terminators.
  // This value never changes.
  uint64_t Size = 0;

  // The minimum alignment of the block.
  // This value never changes.
  Align Alignment;

  // The number of terminators in this block.  This value never changes.
  unsigned NumTerminators = 0;

  MBBInfo() = default;
};

// Represents the state of a block terminator.
struct TerminatorInfo {
  // If this terminator is a relaxable branch, this points to the branch
  // instruction, otherwise it is null.
  MachineInstr *Branch = nullptr;

  // The address that we currently assume the terminator has.
  uint64_t Address = 0;

  // The current size of the terminator in bytes.
  uint64_t Size = 0;

  // If Branch is nonnull, this is the number of the target block,
  // otherwise it is unused.
  unsigned TargetBlock = 0;

  // If Branch is nonnull, this is the length of the longest relaxed form,
  // otherwise it is zero.
  unsigned ExtraRelaxSize = 0;

  TerminatorInfo() = default;
};

// Used to keep track of the current position while iterating over the blocks.
struct BlockPosition {
  // The address that we assume this position has.
  uint64_t Address = 0;

  // The number of low bits in Address that are known to be the same
  // as the runtime address.
  unsigned KnownBits;

  BlockPosition(unsigned InitialLogAlignment)
      : KnownBits(InitialLogAlignment) {}
};

class SystemZLongBranch : public MachineFunctionPass {
public:
  static char ID;

  SystemZLongBranch(const SystemZTargetMachine &tm)
    : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "SystemZ Long Branch"; }

  bool runOnMachineFunction(MachineFunction &F) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
  void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
                      bool AssumeRelaxed);
  TerminatorInfo describeTerminator(MachineInstr &MI);
  uint64_t initMBBInfo();
  bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
  bool mustRelaxABranch();
  void setWorstCaseAddresses();
  void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
  void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
  void relaxBranch(TerminatorInfo &Terminator);
  void relaxBranches();

  const SystemZInstrInfo *TII = nullptr;
  MachineFunction *MF;
  SmallVector<MBBInfo, 16> MBBs;
  SmallVector<TerminatorInfo, 16> Terminators;
};

char SystemZLongBranch::ID = 0;

const uint64_t MaxBackwardRange = 0x10000;
const uint64_t MaxForwardRange = 0xfffe;

} // end anonymous namespace

// Position describes the state immediately before Block.  Update Block
// accordingly and move Position to the end of the block's non-terminator
// instructions.
void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
                                           MBBInfo &Block) {
  if (Log2(Block.Alignment) > Position.KnownBits) {
    // When calculating the address of Block, we need to conservatively
    // assume that Block had the worst possible misalignment.
    Position.Address +=
        (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
    Position.KnownBits = Log2(Block.Alignment);
  }

  // Align the addresses.
  Position.Address = alignTo(Position.Address, Block.Alignment);

  // Record the block's position.
  Block.Address = Position.Address;

  // Move past the non-terminators in the block.
  Position.Address += Block.Size;
}

// Position describes the state immediately before Terminator.
// Update Terminator accordingly and move Position past it.
// Assume that Terminator will be relaxed if AssumeRelaxed.
void SystemZLongBranch::skipTerminator(BlockPosition &Position,
                                       TerminatorInfo &Terminator,
                                       bool AssumeRelaxed) {
  Terminator.Address = Position.Address;
  Position.Address += Terminator.Size;
  if (AssumeRelaxed)
    Position.Address += Terminator.ExtraRelaxSize;
}

// Return a description of terminator instruction MI.
TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
  TerminatorInfo Terminator;
  Terminator.Size = TII->getInstSizeInBytes(MI);
  if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
    switch (MI.getOpcode()) {
    case SystemZ::J:
      // Relaxes to JG, which is 2 bytes longer.
      Terminator.ExtraRelaxSize = 2;
      break;
    case SystemZ::BRC:
      // Relaxes to BRCL, which is 2 bytes longer.
      Terminator.ExtraRelaxSize = 2;
      break;
    case SystemZ::BRCT:
    case SystemZ::BRCTG:
      // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
      Terminator.ExtraRelaxSize = 6;
      break;
    case SystemZ::BRCTH:
      // Never needs to be relaxed.
      Terminator.ExtraRelaxSize = 0;
      break;
    case SystemZ::CRJ:
    case SystemZ::CLRJ:
      // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
      Terminator.ExtraRelaxSize = 2;
      break;
    case SystemZ::CGRJ:
    case SystemZ::CLGRJ:
      // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
      Terminator.ExtraRelaxSize = 4;
      break;
    case SystemZ::CIJ:
    case SystemZ::CGIJ:
      // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
      Terminator.ExtraRelaxSize = 4;
      break;
    case SystemZ::CLIJ:
    case SystemZ::CLGIJ:
      // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
      Terminator.ExtraRelaxSize = 6;
      break;
    default:
      llvm_unreachable("Unrecognized branch instruction");
    }
    Terminator.Branch = &MI;
    Terminator.TargetBlock =
      TII->getBranchInfo(MI).getMBBTarget()->getNumber();
  }
  return Terminator;
}

// Fill MBBs and Terminators, setting the addresses on the assumption
// that no branches need relaxation.  Return the size of the function under
// this assumption.
uint64_t SystemZLongBranch::initMBBInfo() {
  MF->RenumberBlocks();
  unsigned NumBlocks = MF->size();

  MBBs.clear();
  MBBs.resize(NumBlocks);

  Terminators.clear();
  Terminators.reserve(NumBlocks);

  BlockPosition Position(Log2(MF->getAlignment()));
  for (unsigned I = 0; I < NumBlocks; ++I) {
    MachineBasicBlock *MBB = MF->getBlockNumbered(I);
    MBBInfo &Block = MBBs[I];

    // Record the alignment, for quick access.
    Block.Alignment = MBB->getAlignment();

    // Calculate the size of the fixed part of the block.
    MachineBasicBlock::iterator MI = MBB->begin();
    MachineBasicBlock::iterator End = MBB->end();
    while (MI != End && !MI->isTerminator()) {
      Block.Size += TII->getInstSizeInBytes(*MI);
      ++MI;
    }
    skipNonTerminators(Position, Block);

    // Add the terminators.
    while (MI != End) {
      if (!MI->isDebugInstr()) {
        assert(MI->isTerminator() && "Terminator followed by non-terminator");
        Terminators.push_back(describeTerminator(*MI));
        skipTerminator(Position, Terminators.back(), false);
        ++Block.NumTerminators;
      }
      ++MI;
    }
  }

  return Position.Address;
}

// Return true if, under current assumptions, Terminator would need to be
// relaxed if it were placed at address Address.
bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
                                        uint64_t Address) {
  if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
    return false;

  const MBBInfo &Target = MBBs[Terminator.TargetBlock];
  if (Address >= Target.Address) {
    if (Address - Target.Address <= MaxBackwardRange)
      return false;
  } else {
    if (Target.Address - Address <= MaxForwardRange)
      return false;
  }

  return true;
}

// Return true if, under current assumptions, any terminator needs
// to be relaxed.
bool SystemZLongBranch::mustRelaxABranch() {
  for (auto &Terminator : Terminators)
    if (mustRelaxBranch(Terminator, Terminator.Address))
      return true;
  return false;
}

// Set the address of each block on the assumption that all branches
// must be long.
void SystemZLongBranch::setWorstCaseAddresses() {
  SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
  BlockPosition Position(Log2(MF->getAlignment()));
  for (auto &Block : MBBs) {
    skipNonTerminators(Position, Block);
    for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
      skipTerminator(Position, *TI, true);
      ++TI;
    }
  }
}

// Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
// by a BRCL on the result.
void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
                                           unsigned AddOpcode) {
  MachineBasicBlock *MBB = MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
      .add(MI->getOperand(0))
      .add(MI->getOperand(1))
      .addImm(-1);
  MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
                           .addImm(SystemZ::CCMASK_ICMP)
                           .addImm(SystemZ::CCMASK_CMP_NE)
                           .add(MI->getOperand(2));
  // The implicit use of CC is a killing use.
  BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
  MI->eraseFromParent();
}

// Split MI into the comparison given by CompareOpcode followed
// a BRCL on the result.
void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
                                           unsigned CompareOpcode) {
  MachineBasicBlock *MBB = MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
      .add(MI->getOperand(0))
      .add(MI->getOperand(1));
  MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
                           .addImm(SystemZ::CCMASK_ICMP)
                           .add(MI->getOperand(2))
                           .add(MI->getOperand(3));
  // The implicit use of CC is a killing use.
  BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
  MI->eraseFromParent();
}

// Relax the branch described by Terminator.
void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
  MachineInstr *Branch = Terminator.Branch;
  switch (Branch->getOpcode()) {
  case SystemZ::J:
    Branch->setDesc(TII->get(SystemZ::JG));
    break;
  case SystemZ::BRC:
    Branch->setDesc(TII->get(SystemZ::BRCL));
    break;
  case SystemZ::BRCT:
    splitBranchOnCount(Branch, SystemZ::AHI);
    break;
  case SystemZ::BRCTG:
    splitBranchOnCount(Branch, SystemZ::AGHI);
    break;
  case SystemZ::CRJ:
    splitCompareBranch(Branch, SystemZ::CR);
    break;
  case SystemZ::CGRJ:
    splitCompareBranch(Branch, SystemZ::CGR);
    break;
  case SystemZ::CIJ:
    splitCompareBranch(Branch, SystemZ::CHI);
    break;
  case SystemZ::CGIJ:
    splitCompareBranch(Branch, SystemZ::CGHI);
    break;
  case SystemZ::CLRJ:
    splitCompareBranch(Branch, SystemZ::CLR);
    break;
  case SystemZ::CLGRJ:
    splitCompareBranch(Branch, SystemZ::CLGR);
    break;
  case SystemZ::CLIJ:
    splitCompareBranch(Branch, SystemZ::CLFI);
    break;
  case SystemZ::CLGIJ:
    splitCompareBranch(Branch, SystemZ::CLGFI);
    break;
  default:
    llvm_unreachable("Unrecognized branch");
  }

  Terminator.Size += Terminator.ExtraRelaxSize;
  Terminator.ExtraRelaxSize = 0;
  Terminator.Branch = nullptr;

  ++LongBranches;
}

// Run a shortening pass and relax any branches that need to be relaxed.
void SystemZLongBranch::relaxBranches() {
  SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
  BlockPosition Position(Log2(MF->getAlignment()));
  for (auto &Block : MBBs) {
    skipNonTerminators(Position, Block);
    for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
      assert(Position.Address <= TI->Address &&
             "Addresses shouldn't go forwards");
      if (mustRelaxBranch(*TI, Position.Address))
        relaxBranch(*TI);
      skipTerminator(Position, *TI, false);
      ++TI;
    }
  }
}

bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
  TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
  MF = &F;
  uint64_t Size = initMBBInfo();
  if (Size <= MaxForwardRange || !mustRelaxABranch())
    return false;

  setWorstCaseAddresses();
  relaxBranches();
  return true;
}

FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
  return new SystemZLongBranch(TM);
}