reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86InstrFMA3Info.h"
#include "X86RegisterInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include <vector>

#define GET_INSTRINFO_HEADER
#include "X86GenInstrInfo.inc"

namespace llvm {
class MachineInstrBuilder;
class X86RegisterInfo;
class X86Subtarget;

namespace X86 {

enum AsmComments {
  // For instr that was compressed from EVEX to VEX.
  AC_EVEX_2_VEX = MachineInstr::TAsmComments
};

/// Return a pair of condition code for the given predicate and whether
/// the instruction operands should be swaped to match the condition code.
std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);

/// Return a setcc opcode based on whether it has a memory operand.
unsigned getSETOpc(bool HasMemoryOperand = false);

/// Return a cmov opcode for the given register size in bytes, and operand type.
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);

// Turn jCC instruction into condition code.
CondCode getCondFromBranch(const MachineInstr &MI);

// Turn setCC instruction into condition code.
CondCode getCondFromSETCC(const MachineInstr &MI);

// Turn CMov instruction into condition code.
CondCode getCondFromCMov(const MachineInstr &MI);

/// GetOppositeBranchCondition - Return the inverse of the specified cond,
/// e.g. turning COND_E to COND_NE.
CondCode GetOppositeBranchCondition(CondCode CC);

/// Get the VPCMP immediate for the given condition.
unsigned getVPCMPImmForCond(ISD::CondCode CC);

/// Get the VPCMP immediate if the opcodes are swapped.
unsigned getSwappedVPCMPImm(unsigned Imm);

/// Get the VPCOM immediate if the opcodes are swapped.
unsigned getSwappedVPCOMImm(unsigned Imm);

/// Get the VCMP immediate if the opcodes are swapped.
unsigned getSwappedVCMPImm(unsigned Imm);

} // namespace X86

/// isGlobalStubReference - Return true if the specified TargetFlag operand is
/// a reference to a stub for a global, not the global itself.
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
  switch (TargetFlag) {
  case X86II::MO_DLLIMPORT:               // dllimport stub.
  case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
  case X86II::MO_GOT:                     // normal GOT reference.
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
  case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
  case X86II::MO_COFFSTUB:                // COFF .refptr stub.
    return true;
  default:
    return false;
  }
}

/// isGlobalRelativeToPICBase - Return true if the specified global value
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
  switch (TargetFlag) {
  case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
  case X86II::MO_GOT:                     // isPICStyleGOT: other global.
  case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
  case X86II::MO_TLVP:                    // ??? Pretty sure..
    return true;
  default:
    return false;
  }
}

inline static bool isScale(const MachineOperand &MO) {
  return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
                        MO.getImm() == 4 || MO.getImm() == 8);
}

inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
  if (MI.getOperand(Op).isFI())
    return true;
  return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
         MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
         isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
         MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
         (MI.getOperand(Op + X86::AddrDisp).isImm() ||
          MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
          MI.getOperand(Op + X86::AddrDisp).isCPI() ||
          MI.getOperand(Op + X86::AddrDisp).isJTI());
}

inline static bool isMem(const MachineInstr &MI, unsigned Op) {
  if (MI.getOperand(Op).isFI())
    return true;
  return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
         MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
}

class X86InstrInfo final : public X86GenInstrInfo {
  X86Subtarget &Subtarget;
  const X86RegisterInfo RI;

  virtual void anchor();

  bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                         MachineBasicBlock *&FBB,
                         SmallVectorImpl<MachineOperand> &Cond,
                         SmallVectorImpl<MachineInstr *> &CondBranches,
                         bool AllowModify) const;

public:
  explicit X86InstrInfo(X86Subtarget &STI);

  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
  /// such, whenever a client has an instance of instruction info, it should
  /// always be able to get register info as well (through this method).
  ///
  const X86RegisterInfo &getRegisterInfo() const { return RI; }

  /// Returns the stack pointer adjustment that happens inside the frame
  /// setup..destroy sequence (e.g. by pushes, or inside the callee).
  int64_t getFrameAdjustment(const MachineInstr &I) const {
    assert(isFrameInstr(I));
    if (isFrameSetup(I))
      return I.getOperand(2).getImm();
    return I.getOperand(1).getImm();
  }

  /// Sets the stack pointer adjustment made inside the frame made up by this
  /// instruction.
  void setFrameAdjustment(MachineInstr &I, int64_t V) const {
    assert(isFrameInstr(I));
    if (isFrameSetup(I))
      I.getOperand(2).setImm(V);
    else
      I.getOperand(1).setImm(V);
  }

  /// getSPAdjust - This returns the stack pointer adjustment made by
  /// this instruction. For x86, we need to handle more complex call
  /// sequences involving PUSHes.
  int getSPAdjust(const MachineInstr &MI) const override;

  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
  /// extension instruction. That is, it's like a copy where it's legal for the
  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
  /// true, then it's expected the pre-extension value is available as a subreg
  /// of the result register. This also returns the sub-register index in
  /// SubIdx.
  bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
                             unsigned &DstReg, unsigned &SubIdx) const override;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex,
                               unsigned &MemBytes) const override;
  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
  /// stack locations as well.  This uses a heuristic so it isn't
  /// reliable for correctness.
  unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                     int &FrameIndex) const override;

  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex,
                              unsigned &MemBytes) const override;
  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
  /// stack locations as well.  This uses a heuristic so it isn't
  /// reliable for correctness.
  unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
                                    int &FrameIndex) const override;

  bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
                                         AAResults *AA) const override;
  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                     unsigned DestReg, unsigned SubIdx,
                     const MachineInstr &Orig,
                     const TargetRegisterInfo &TRI) const override;

  /// Given an operand within a MachineInstr, insert preceding code to put it
  /// into the right format for a particular kind of LEA instruction. This may
  /// involve using an appropriate super-register instead (with an implicit use
  /// of the original) or creating a new virtual register and inserting COPY
  /// instructions to get the data into the right class.
  ///
  /// Reference parameters are set to indicate how caller should add this
  /// operand to the LEA instruction.
  bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
                      unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
                      bool &isKill, MachineOperand &ImplicitOp,
                      LiveVariables *LV) const;

  /// convertToThreeAddress - This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into a true
  /// three-address instruction on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the new instruction.
  ///
  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
                                      MachineInstr &MI,
                                      LiveVariables *LV) const override;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
  /// input values can be re-defined in this method only if the input values
  /// are not pre-defined, which is designated by the special value
  /// 'CommuteAnyOperandIndex' assigned to it.
  /// If both of indices are pre-defined and refer to some operands, then the
  /// method simply returns true if the corresponding operands are commutable
  /// and returns false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
                             unsigned &SrcOpIdx2) const override;

  /// Returns an adjusted FMA opcode that must be used in FMA instruction that
  /// performs the same computations as the given \p MI but which has the
  /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
  /// It may return 0 if it is unsafe to commute the operands.
  /// Note that a machine instruction (instead of its opcode) is passed as the
  /// first parameter to make it possible to analyze the instruction's uses and
  /// commute the first operand of FMA even when it seems unsafe when you look
  /// at the opcode. For example, it is Ok to commute the first operand of
  /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
  ///
  /// The returned FMA opcode may differ from the opcode in the given \p MI.
  /// For example, commuting the operands #1 and #3 in the following FMA
  ///     FMA213 #1, #2, #3
  /// results into instruction with adjusted opcode:
  ///     FMA231 #3, #2, #1
  unsigned
  getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
                                 unsigned SrcOpIdx2,
                                 const X86InstrFMA3Group &FMA3Group) const;

  // Branch analysis.
  bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
  bool isUnconditionalTailCall(const MachineInstr &MI) const override;
  bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
                                  const MachineInstr &TailCall) const override;
  void replaceBranchWithTailCall(MachineBasicBlock &MBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 const MachineInstr &TailCall) const override;

  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify) const override;

  bool getMemOperandWithOffset(const MachineInstr &LdSt,
                               const MachineOperand *&BaseOp,
                               int64_t &Offset,
                               const TargetRegisterInfo *TRI) const override;
  bool analyzeBranchPredicate(MachineBasicBlock &MBB,
                              TargetInstrInfo::MachineBranchPredicate &MBP,
                              bool AllowModify = false) const override;

  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;
  bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
                       unsigned, unsigned, int &, int &, int &) const override;
  void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                    const DebugLoc &DL, unsigned DstReg,
                    ArrayRef<MachineOperand> Cond, unsigned TrueReg,
                    unsigned FalseReg) const override;
  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                   const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
                   bool KillSrc) const override;
  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI, unsigned SrcReg,
                           bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI, unsigned DestReg,
                            int FrameIndex, const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  /// Check whether the target can fold a load that feeds a subreg operand
  /// (or a subreg operand that feeds a store).
  bool isSubregFoldable() const override { return true; }

  /// foldMemoryOperand - If this target supports it, fold a load or store of
  /// the specified stack slot into the specified machine instruction for the
  /// specified operand(s).  If this is possible, the target should perform the
  /// folding and return true, otherwise it should return false.  If it folds
  /// the instruction, it is likely that the MachineInstruction the iterator
  /// references has been changed.
  MachineInstr *
  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                        ArrayRef<unsigned> Ops,
                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
                        LiveIntervals *LIS = nullptr,
                        VirtRegMap *VRM = nullptr) const override;

  /// foldMemoryOperand - Same as the previous version except it allows folding
  /// of any load and store from / to any address, not just from a specific
  /// stack slot.
  MachineInstr *foldMemoryOperandImpl(
      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
      LiveIntervals *LIS = nullptr) const override;

  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  /// a store or a load and a store into two or more instruction. If this is
  /// possible, returns true as well as the new instructions by reference.
  bool
  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
                      bool UnfoldLoad, bool UnfoldStore,
                      SmallVectorImpl<MachineInstr *> &NewMIs) const override;

  bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                           SmallVectorImpl<SDNode *> &NewNodes) const override;

  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
  /// instruction after load / store are unfolded from an instruction of the
  /// specified opcode. It returns zero if the specified unfolding is not
  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
  /// index of the operand which will hold the register holding the loaded
  /// value.
  unsigned
  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
                             unsigned *LoadRegIndex = nullptr) const override;

  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
  /// to determine if two loads are loading from the same base address. It
  /// should only return true if the base pointers are the same and the
  /// only differences between the two addresses are the offset. It also returns
  /// the offsets by reference.
  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
                               int64_t &Offset2) const override;

  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
  /// should be scheduled togther. On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
                               int64_t Offset2,
                               unsigned NumLoads) const override;

  void getNoop(MCInst &NopInst) const override;

  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;

  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
  /// instruction that defines the specified register class.
  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;

  /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
  /// would clobber the EFLAGS condition register. Note the result may be
  /// conservative. If it cannot definitely determine the safety after visiting
  /// a few instructions in each direction it assumes it's not safe.
  bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator I) const {
    return MBB.computeRegisterLiveness(&RI, X86::EFLAGS, I, 4) ==
           MachineBasicBlock::LQR_Dead;
  }

  /// True if MI has a condition code def, e.g. EFLAGS, that is
  /// not marked dead.
  bool hasLiveCondCodeDef(MachineInstr &MI) const;

  /// getGlobalBaseReg - Return a virtual register initialized with the
  /// the global base register value. Output instructions required to
  /// initialize the register in the function entry block, if necessary.
  ///
  unsigned getGlobalBaseReg(MachineFunction *MF) const;

  std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr &MI) const override;

  uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;

  void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;

  bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;

  unsigned
  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
                               const TargetRegisterInfo *TRI) const override;
  unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
                                const TargetRegisterInfo *TRI) const override;
  void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
                                 const TargetRegisterInfo *TRI) const override;

  MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                                      unsigned OpNum,
                                      ArrayRef<MachineOperand> MOs,
                                      MachineBasicBlock::iterator InsertPt,
                                      unsigned Size, unsigned Alignment,
                                      bool AllowCommute) const;

  bool isHighLatencyDef(int opc) const override;

  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                             const MachineRegisterInfo *MRI,
                             const MachineInstr &DefMI, unsigned DefIdx,
                             const MachineInstr &UseMI,
                             unsigned UseIdx) const override;

  bool useMachineCombiner() const override { return true; }

  bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;

  bool hasReassociableOperands(const MachineInstr &Inst,
                               const MachineBasicBlock *MBB) const override;

  void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
                             MachineInstr &NewMI1,
                             MachineInstr &NewMI2) const override;

  /// analyzeCompare - For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                      unsigned &SrcReg2, int &CmpMask,
                      int &CmpValue) const override;

  /// optimizeCompareInstr - Check if there exists an earlier instruction that
  /// operates on the same source operands and sets flags in the same way as
  /// Compare; remove Compare if possible.
  bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
                            unsigned SrcReg2, int CmpMask, int CmpValue,
                            const MachineRegisterInfo *MRI) const override;

  /// optimizeLoadInstr - Try to remove the load by folding it to a register
  /// operand at the use. We fold the load instructions if and only if the
  /// def and use are in the same BB. We only look at one load and see
  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
  /// defined by the load we are trying to fold. DefMI returns the machine
  /// instruction that defines FoldAsLoadDefReg, and the function returns
  /// the machine instruction generated due to folding.
  MachineInstr *optimizeLoadInstr(MachineInstr &MI,
                                  const MachineRegisterInfo *MRI,
                                  unsigned &FoldAsLoadDefReg,
                                  MachineInstr *&DefMI) const override;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;

  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;

  virtual outliner::OutlinedFunction getOutliningCandidateInfo(
      std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;

  bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
                                   bool OutlineFromLinkOnceODRs) const override;

  outliner::InstrType
  getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;

  void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
                          const outliner::OutlinedFunction &OF) const override;

  MachineBasicBlock::iterator
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
                     const outliner::Candidate &C) const override;

#define GET_INSTRINFO_HELPER_DECLS
#include "X86GenInstrInfo.inc"

  static bool hasLockPrefix(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & X86II::LOCK;
  }

  Optional<ParamLoadedValue>
  describeLoadedValue(const MachineInstr &MI) const override;

protected:
  /// Commutes the operands in the given instruction by changing the operands
  /// order and/or changing the instruction's opcode and/or the immediate value
  /// operand.
  ///
  /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
  /// to be commuted.
  ///
  /// Do not call this method for a non-commutable instruction or
  /// non-commutable operands.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned CommuteOpIdx1,
                                       unsigned CommuteOpIdx2) const override;

  /// If the specific machine instruction is a instruction that moves/copies
  /// value from one register to another register return true along with
  /// @Source machine operand and @Destination machine operand.
  bool isCopyInstrImpl(const MachineInstr &MI, const MachineOperand *&Source,
                       const MachineOperand *&Destination) const override;

private:
  /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
  /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
  /// super-register and then truncating back down to a 8/16-bit sub-register.
  MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
                                             MachineFunction::iterator &MFI,
                                             MachineInstr &MI,
                                             LiveVariables *LV,
                                             bool Is8BitOp) const;

  /// Handles memory folding for special case instructions, for instance those
  /// requiring custom manipulation of the address.
  MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
                                        unsigned OpNum,
                                        ArrayRef<MachineOperand> MOs,
                                        MachineBasicBlock::iterator InsertPt,
                                        unsigned Size, unsigned Align) const;

  /// isFrameOperand - Return true and the FrameIndex if the specified
  /// operand and follow operands form a reference to the stack frame.
  bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
                      int &FrameIndex) const;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction with 3 vector inputs.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
  /// input values can be re-defined in this method only if the input values
  /// are not pre-defined, which is designated by the special value
  /// 'CommuteAnyOperandIndex' assigned to it.
  /// If both of indices are pre-defined and refer to some operands, then the
  /// method simply returns true if the corresponding operands are commutable
  /// and returns false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  ///
  /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
  bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
                                     unsigned &SrcOpIdx1,
                                     unsigned &SrcOpIdx2,
                                     bool IsIntrinsic = false) const;
};

} // namespace llvm

#endif