1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
| //===-- xray_log_interface.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "xray/xray_log_interface.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "xray/xray_interface.h"
#include "xray_defs.h"
namespace __xray {
static SpinMutex XRayImplMutex;
static XRayLogImpl CurrentXRayImpl{nullptr, nullptr, nullptr, nullptr};
static XRayLogImpl *GlobalXRayImpl = nullptr;
// This is the default implementation of a buffer iterator, which always yields
// a null buffer.
XRayBuffer NullBufferIterator(XRayBuffer) XRAY_NEVER_INSTRUMENT {
return {nullptr, 0};
}
// This is the global function responsible for iterating through given buffers.
atomic_uintptr_t XRayBufferIterator{
reinterpret_cast<uintptr_t>(&NullBufferIterator)};
// We use a linked list of Mode to XRayLogImpl mappings. This is a linked list
// when it should be a map because we're avoiding having to depend on C++
// standard library data structures at this level of the implementation.
struct ModeImpl {
ModeImpl *Next;
const char *Mode;
XRayLogImpl Impl;
};
static ModeImpl SentinelModeImpl{
nullptr, nullptr, {nullptr, nullptr, nullptr, nullptr}};
static ModeImpl *ModeImpls = &SentinelModeImpl;
static const ModeImpl *CurrentMode = nullptr;
} // namespace __xray
using namespace __xray;
void __xray_log_set_buffer_iterator(XRayBuffer (*Iterator)(XRayBuffer))
XRAY_NEVER_INSTRUMENT {
atomic_store(&__xray::XRayBufferIterator,
reinterpret_cast<uintptr_t>(Iterator), memory_order_release);
}
void __xray_log_remove_buffer_iterator() XRAY_NEVER_INSTRUMENT {
__xray_log_set_buffer_iterator(&NullBufferIterator);
}
XRayLogRegisterStatus
__xray_log_register_mode(const char *Mode,
XRayLogImpl Impl) XRAY_NEVER_INSTRUMENT {
if (Impl.flush_log == nullptr || Impl.handle_arg0 == nullptr ||
Impl.log_finalize == nullptr || Impl.log_init == nullptr)
return XRayLogRegisterStatus::XRAY_INCOMPLETE_IMPL;
SpinMutexLock Guard(&XRayImplMutex);
// First, look for whether the mode already has a registered implementation.
for (ModeImpl *it = ModeImpls; it != &SentinelModeImpl; it = it->Next) {
if (!internal_strcmp(Mode, it->Mode))
return XRayLogRegisterStatus::XRAY_DUPLICATE_MODE;
}
auto *NewModeImpl = static_cast<ModeImpl *>(InternalAlloc(sizeof(ModeImpl)));
NewModeImpl->Next = ModeImpls;
NewModeImpl->Mode = internal_strdup(Mode);
NewModeImpl->Impl = Impl;
ModeImpls = NewModeImpl;
return XRayLogRegisterStatus::XRAY_REGISTRATION_OK;
}
XRayLogRegisterStatus
__xray_log_select_mode(const char *Mode) XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
for (ModeImpl *it = ModeImpls; it != &SentinelModeImpl; it = it->Next) {
if (!internal_strcmp(Mode, it->Mode)) {
CurrentMode = it;
CurrentXRayImpl = it->Impl;
GlobalXRayImpl = &CurrentXRayImpl;
__xray_set_handler(it->Impl.handle_arg0);
return XRayLogRegisterStatus::XRAY_REGISTRATION_OK;
}
}
return XRayLogRegisterStatus::XRAY_MODE_NOT_FOUND;
}
const char *__xray_log_get_current_mode() XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (CurrentMode != nullptr)
return CurrentMode->Mode;
return nullptr;
}
void __xray_set_log_impl(XRayLogImpl Impl) XRAY_NEVER_INSTRUMENT {
if (Impl.log_init == nullptr || Impl.log_finalize == nullptr ||
Impl.handle_arg0 == nullptr || Impl.flush_log == nullptr) {
SpinMutexLock Guard(&XRayImplMutex);
GlobalXRayImpl = nullptr;
CurrentMode = nullptr;
__xray_remove_handler();
__xray_remove_handler_arg1();
return;
}
SpinMutexLock Guard(&XRayImplMutex);
CurrentXRayImpl = Impl;
GlobalXRayImpl = &CurrentXRayImpl;
__xray_set_handler(Impl.handle_arg0);
}
void __xray_remove_log_impl() XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
GlobalXRayImpl = nullptr;
__xray_remove_handler();
__xray_remove_handler_arg1();
}
XRayLogInitStatus __xray_log_init(size_t BufferSize, size_t MaxBuffers,
void *Args,
size_t ArgsSize) XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (!GlobalXRayImpl)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
return GlobalXRayImpl->log_init(BufferSize, MaxBuffers, Args, ArgsSize);
}
XRayLogInitStatus __xray_log_init_mode(const char *Mode, const char *Config)
XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (!GlobalXRayImpl)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
if (Config == nullptr)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
// Check first whether the current mode is the same as what we expect.
if (CurrentMode == nullptr || internal_strcmp(CurrentMode->Mode, Mode) != 0)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
// Here we do some work to coerce the pointer we're provided, so that
// the implementations that still take void* pointers can handle the
// data provided in the Config argument.
return GlobalXRayImpl->log_init(
0, 0, const_cast<void *>(static_cast<const void *>(Config)), 0);
}
XRayLogInitStatus
__xray_log_init_mode_bin(const char *Mode, const char *Config,
size_t ConfigSize) XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (!GlobalXRayImpl)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
if (Config == nullptr)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
// Check first whether the current mode is the same as what we expect.
if (CurrentMode == nullptr || internal_strcmp(CurrentMode->Mode, Mode) != 0)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
// Here we do some work to coerce the pointer we're provided, so that
// the implementations that still take void* pointers can handle the
// data provided in the Config argument.
return GlobalXRayImpl->log_init(
0, 0, const_cast<void *>(static_cast<const void *>(Config)), ConfigSize);
}
XRayLogInitStatus __xray_log_finalize() XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (!GlobalXRayImpl)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
return GlobalXRayImpl->log_finalize();
}
XRayLogFlushStatus __xray_log_flushLog() XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayImplMutex);
if (!GlobalXRayImpl)
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
return GlobalXRayImpl->flush_log();
}
XRayLogFlushStatus __xray_log_process_buffers(
void (*Processor)(const char *, XRayBuffer)) XRAY_NEVER_INSTRUMENT {
// We want to make sure that there will be no changes to the global state for
// the log by synchronising on the XRayBufferIteratorMutex.
if (!GlobalXRayImpl)
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
auto Iterator = reinterpret_cast<XRayBuffer (*)(XRayBuffer)>(
atomic_load(&XRayBufferIterator, memory_order_acquire));
auto Buffer = (*Iterator)(XRayBuffer{nullptr, 0});
auto Mode = CurrentMode ? CurrentMode->Mode : nullptr;
while (Buffer.Data != nullptr) {
(*Processor)(Mode, Buffer);
Buffer = (*Iterator)(Buffer);
}
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
|