reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
// Map implementation -*- C++ -*-

// Copyright (C) 2001-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_map.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{map}
 */

#ifndef _STL_MAP_H
#define _STL_MAP_H 1

#include <bits/functexcept.h>
#include <bits/concept_check.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#include <tuple>
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    class multimap;

  /**
   *  @brief A standard container made up of (key,value) pairs, which can be
   *  retrieved based on a key, in logarithmic time.
   *
   *  @ingroup associative_containers
   *
   *  @tparam _Key  Type of key objects.
   *  @tparam  _Tp  Type of mapped objects.
   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
   *  @tparam _Alloc  Allocator type, defaults to
   *                  allocator<pair<const _Key, _Tp>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and an
   *  <a href="tables.html#69">associative container</a> (using unique keys).
   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
   *  value_type is std::pair<const Key,T>.
   *
   *  Maps support bidirectional iterators.
   *
   *  The private tree data is declared exactly the same way for map and
   *  multimap; the distinction is made entirely in how the tree functions are
   *  called (*_unique versus *_equal, same as the standard).
  */
  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
    class map
    {
    public:
      typedef _Key					key_type;
      typedef _Tp					mapped_type;
      typedef std::pair<const _Key, _Tp>		value_type;
      typedef _Compare					key_compare;
      typedef _Alloc					allocator_type;

    private:
#ifdef _GLIBCXX_CONCEPT_CHECKS
      // concept requirements
      typedef typename _Alloc::value_type		_Alloc_value_type;
# if __cplusplus < 201103L
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
				_BinaryFunctionConcept)
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
#endif

    public:
      class value_compare
      : public std::binary_function<value_type, value_type, bool>
      {
	friend class map<_Key, _Tp, _Compare, _Alloc>;
      protected:
	_Compare comp;

	value_compare(_Compare __c)
	: comp(__c) { }

      public:
	bool operator()(const value_type& __x, const value_type& __y) const
	{ return comp(__x.first, __y.first); }
      };

    private:
      /// This turns a red-black tree into a [multi]map.
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
	rebind<value_type>::other _Pair_alloc_type;

      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
		       key_compare, _Pair_alloc_type> _Rep_type;

      /// The actual tree structure.
      _Rep_type _M_t;

      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;

    public:
      // many of these are specified differently in ISO, but the following are
      // "functionally equivalent"
      typedef typename _Alloc_traits::pointer		 pointer;
      typedef typename _Alloc_traits::const_pointer	 const_pointer;
      typedef typename _Alloc_traits::reference		 reference;
      typedef typename _Alloc_traits::const_reference	 const_reference;
      typedef typename _Rep_type::iterator		 iterator;
      typedef typename _Rep_type::const_iterator	 const_iterator;
      typedef typename _Rep_type::size_type		 size_type;
      typedef typename _Rep_type::difference_type	 difference_type;
      typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;

#if __cplusplus > 201402L
      using node_type = typename _Rep_type::node_type;
      using insert_return_type = typename _Rep_type::insert_return_type;
#endif

      // [23.3.1.1] construct/copy/destroy
      // (get_allocator() is also listed in this section)

      /**
       *  @brief  Default constructor creates no elements.
       */
#if __cplusplus < 201103L
      map() : _M_t() { }
#else
      map() = default;
#endif

      /**
       *  @brief  Creates a %map with no elements.
       *  @param  __comp  A comparison object.
       *  @param  __a  An allocator object.
       */
      explicit
      map(const _Compare& __comp,
	  const allocator_type& __a = allocator_type())
      : _M_t(__comp, _Pair_alloc_type(__a)) { }

      /**
       *  @brief  %Map copy constructor.
       *
       *  Whether the allocator is copied depends on the allocator traits.
       */
#if __cplusplus < 201103L
      map(const map& __x)
      : _M_t(__x._M_t) { }
#else
      map(const map&) = default;

      /**
       *  @brief  %Map move constructor.
       *
       *  The newly-created %map contains the exact contents of the moved
       *  instance. The moved instance is a valid, but unspecified, %map.
       */
      map(map&&) = default;

      /**
       *  @brief  Builds a %map from an initializer_list.
       *  @param  __l  An initializer_list.
       *  @param  __comp  A comparison object.
       *  @param  __a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements in the
       *  initializer_list @a __l.
       *  This is linear in N if the range is already sorted, and NlogN
       *  otherwise (where N is @a __l.size()).
       */
      map(initializer_list<value_type> __l,
	  const _Compare& __comp = _Compare(),
	  const allocator_type& __a = allocator_type())
      : _M_t(__comp, _Pair_alloc_type(__a))
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }

      /// Allocator-extended default constructor.
      explicit
      map(const allocator_type& __a)
      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }

      /// Allocator-extended copy constructor.
      map(const map& __m, const allocator_type& __a)
      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }

      /// Allocator-extended move constructor.
      map(map&& __m, const allocator_type& __a)
      noexcept(is_nothrow_copy_constructible<_Compare>::value
	       && _Alloc_traits::_S_always_equal())
      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }

      /// Allocator-extended initialier-list constructor.
      map(initializer_list<value_type> __l, const allocator_type& __a)
      : _M_t(_Compare(), _Pair_alloc_type(__a))
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }

      /// Allocator-extended range constructor.
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last,
	    const allocator_type& __a)
	: _M_t(_Compare(), _Pair_alloc_type(__a))
	{ _M_t._M_insert_unique(__first, __last); }
#endif

      /**
       *  @brief  Builds a %map from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *
       *  Create a %map consisting of copies of the elements from
       *  [__first,__last).  This is linear in N if the range is
       *  already sorted, and NlogN otherwise (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last)
	: _M_t()
	{ _M_t._M_insert_unique(__first, __last); }

      /**
       *  @brief  Builds a %map from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @param  __comp  A comparison functor.
       *  @param  __a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements from
       *  [__first,__last).  This is linear in N if the range is
       *  already sorted, and NlogN otherwise (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last,
	    const _Compare& __comp,
	    const allocator_type& __a = allocator_type())
	: _M_t(__comp, _Pair_alloc_type(__a))
	{ _M_t._M_insert_unique(__first, __last); }

#if __cplusplus >= 201103L
      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      ~map() = default;
#endif

      /**
       *  @brief  %Map assignment operator.
       *
       *  Whether the allocator is copied depends on the allocator traits.
       */
#if __cplusplus < 201103L
      map&
      operator=(const map& __x)
      {
	_M_t = __x._M_t;
	return *this;
      }
#else
      map&
      operator=(const map&) = default;

      /// Move assignment operator.
      map&
      operator=(map&&) = default;

      /**
       *  @brief  %Map list assignment operator.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %map with copies of the elements in the
       *  initializer list @a __l.
       *
       *  Note that the assignment completely changes the %map and
       *  that the resulting %map's size is the same as the number
       *  of elements assigned.
       */
      map&
      operator=(initializer_list<value_type> __l)
      {
	_M_t._M_assign_unique(__l.begin(), __l.end());
	return *this;
      }
#endif

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return allocator_type(_M_t.get_allocator()); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first pair in the
       *  %map.
       *  Iteration is done in ascending order according to the keys.
       */
      iterator
      begin() _GLIBCXX_NOEXCEPT
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      begin() const _GLIBCXX_NOEXCEPT
      { return _M_t.begin(); }

      /**
       *  Returns a read/write iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order
       *  according to the keys.
       */
      iterator
      end() _GLIBCXX_NOEXCEPT
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      end() const _GLIBCXX_NOEXCEPT
      { return _M_t.end(); }

      /**
       *  Returns a read/write reverse iterator that points to the last pair in
       *  the %map.  Iteration is done in descending order according to the
       *  keys.
       */
      reverse_iterator
      rbegin() _GLIBCXX_NOEXCEPT
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      rbegin() const _GLIBCXX_NOEXCEPT
      { return _M_t.rbegin(); }

      /**
       *  Returns a read/write reverse iterator that points to one before the
       *  first pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      reverse_iterator
      rend() _GLIBCXX_NOEXCEPT
      { return _M_t.rend(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      rend() const _GLIBCXX_NOEXCEPT
      { return _M_t.rend(); }

#if __cplusplus >= 201103L
      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      cbegin() const noexcept
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      cend() const noexcept
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      crbegin() const noexcept
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      crend() const noexcept
      { return _M_t.rend(); }
#endif

      // capacity
      /** Returns true if the %map is empty.  (Thus begin() would equal
       *  end().)
      */
      bool
      empty() const _GLIBCXX_NOEXCEPT
      { return _M_t.empty(); }

      /** Returns the size of the %map.  */
      size_type
      size() const _GLIBCXX_NOEXCEPT
      { return _M_t.size(); }

      /** Returns the maximum size of the %map.  */
      size_type
      max_size() const _GLIBCXX_NOEXCEPT
      { return _M_t.max_size(); }

      // [23.3.1.2] element access
      /**
       *  @brief  Subscript ( @c [] ) access to %map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data of the (key,data) %pair.
       *
       *  Allows for easy lookup with the subscript ( @c [] )
       *  operator.  Returns data associated with the key specified in
       *  subscript.  If the key does not exist, a pair with that key
       *  is created using default values, which is then returned.
       *
       *  Lookup requires logarithmic time.
       */
      mapped_type&
      operator[](const key_type& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
#if __cplusplus >= 201103L
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
					    std::tuple<const key_type&>(__k),
					    std::tuple<>());
#else
	  __i = insert(__i, value_type(__k, mapped_type()));
#endif
	return (*__i).second;
      }

#if __cplusplus >= 201103L
      mapped_type&
      operator[](key_type&& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
					std::forward_as_tuple(std::move(__k)),
					std::tuple<>());
	return (*__i).second;
      }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 464. Suggestion for new member functions in standard containers.
      /**
       *  @brief  Access to %map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data whose key is equivalent to @a __k, if
       *           such a data is present in the %map.
       *  @throw  std::out_of_range  If no such data is present.
       */
      mapped_type&
      at(const key_type& __k)
      {
	iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      const mapped_type&
      at(const key_type& __k) const
      {
	const_iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      // modifiers
#if __cplusplus >= 201103L
      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param __args  Arguments used to generate a new pair instance (see
       *	        std::piecewise_contruct for passing arguments to each
       *	        part of the pair constructor).
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *
       *  Insertion requires logarithmic time.
       */
      template<typename... _Args>
	std::pair<iterator, bool>
	emplace(_Args&&... __args)
	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }

      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param  __pos  An iterator that serves as a hint as to where the pair
       *                should be inserted.
       *  @param  __args  Arguments used to generate a new pair instance (see
       *	         std::piecewise_contruct for passing arguments to each
       *	         part of the pair constructor).
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument emplace()
       *  does.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __pos, _Args&&... __args)
	{
	  return _M_t._M_emplace_hint_unique(__pos,
					     std::forward<_Args>(__args)...);
	}
#endif

#if __cplusplus > 201402L
      /// Extract a node.
      node_type
      extract(const_iterator __pos)
      {
	__glibcxx_assert(__pos != end());
	return _M_t.extract(__pos);
      }

      /// Extract a node.
      node_type
      extract(const key_type& __x)
      { return _M_t.extract(__x); }

      /// Re-insert an extracted node.
      insert_return_type
      insert(node_type&& __nh)
      { return _M_t._M_reinsert_node_unique(std::move(__nh)); }

      /// Re-insert an extracted node.
      iterator
      insert(const_iterator __hint, node_type&& __nh)
      { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }

      template<typename, typename>
	friend class _Rb_tree_merge_helper;

      template<typename _C2>
	void
	merge(map<_Key, _Tp, _C2, _Alloc>& __source)
	{
	  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
	}

      template<typename _C2>
	void
	merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
	{ merge(__source); }

      template<typename _C2>
	void
	merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
	{
	  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
	}

      template<typename _C2>
	void
	merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
	{ merge(__source); }
#endif // C++17

#if __cplusplus > 201402L
#define __cpp_lib_map_try_emplace 201411
      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __args  Arguments used to generate the .second for a new pair
       *                instance.
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If a %pair is not inserted, this function has no effect.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename... _Args>
	pair<iterator, bool>
	try_emplace(const key_type& __k, _Args&&... __args)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(__k),
				 std::forward_as_tuple(
				   std::forward<_Args>(__args)...));
	      return {__i, true};
	    }
	  return {__i, false};
	}

      // move-capable overload
      template <typename... _Args>
	pair<iterator, bool>
	try_emplace(key_type&& __k, _Args&&... __args)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(std::move(__k)),
				 std::forward_as_tuple(
				   std::forward<_Args>(__args)...));
	      return {__i, true};
	    }
	  return {__i, false};
	}

      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                  pair should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __args  Arguments used to generate the .second for a new pair
       *                instance.
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument
       *  try_emplace() does. However, if insertion did not take place,
       *  this function has no effect.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      template <typename... _Args>
	iterator
	try_emplace(const_iterator __hint, const key_type& __k,
		    _Args&&... __args)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    __i = emplace_hint(iterator(__true_hint.second),
			       std::piecewise_construct,
			       std::forward_as_tuple(__k),
			       std::forward_as_tuple(
				 std::forward<_Args>(__args)...));
	  else
	    __i = iterator(__true_hint.first);
	  return __i;
	}

      // move-capable overload
      template <typename... _Args>
	iterator
	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    __i = emplace_hint(iterator(__true_hint.second),
			       std::piecewise_construct,
			       std::forward_as_tuple(std::move(__k)),
			       std::forward_as_tuple(
				 std::forward<_Args>(__args)...));
	  else
	    __i = iterator(__true_hint.first);
	  return __i;
	}
#endif

      /**
       *  @brief Attempts to insert a std::pair into the %map.
       *  @param __x Pair to be inserted (see std::make_pair for easy
       *	     creation of pairs).
       *
       *  @return  A pair, of which the first element is an iterator that
       *           points to the possibly inserted pair, and the second is
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *
       *  Insertion requires logarithmic time.
       *  @{
       */
      std::pair<iterator, bool>
      insert(const value_type& __x)
      { return _M_t._M_insert_unique(__x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      std::pair<iterator, bool>
      insert(value_type&& __x)
      { return _M_t._M_insert_unique(std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair>::value,
		      pair<iterator, bool>>
	insert(_Pair&& __x)
	{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
#endif
      // @}

#if __cplusplus >= 201103L
      /**
       *  @brief Attempts to insert a list of std::pairs into the %map.
       *  @param  __list  A std::initializer_list<value_type> of pairs to be
       *                  inserted.
       *
       *  Complexity similar to that of the range constructor.
       */
      void
      insert(std::initializer_list<value_type> __list)
      { insert(__list.begin(), __list.end()); }
#endif

      /**
       *  @brief Attempts to insert a std::pair into the %map.
       *  @param  __position  An iterator that serves as a hint as to where the
       *                    pair should be inserted.
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
       *               of pairs).
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *

       *  This function is not concerned about whether the insertion
       *  took place, and thus does not return a boolean like the
       *  single-argument insert() does.  Note that the first
       *  parameter is only a hint and can potentially improve the
       *  performance of the insertion process.  A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       *  @{
       */
      iterator
#if __cplusplus >= 201103L
      insert(const_iterator __position, const value_type& __x)
#else
      insert(iterator __position, const value_type& __x)
#endif
      { return _M_t._M_insert_unique_(__position, __x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      iterator
      insert(const_iterator __position, value_type&& __x)
      { return _M_t._M_insert_unique_(__position, std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
	insert(const_iterator __position, _Pair&& __x)
	{
	  return _M_t._M_emplace_hint_unique(__position,
					     std::forward<_Pair>(__x));
	}
#endif
      // @}

      /**
       *  @brief Template function that attempts to insert a range of elements.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   inserted.
       *  @param  __last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last)
	{ _M_t._M_insert_unique(__first, __last); }

#if __cplusplus > 201402L
#define __cpp_lib_map_insertion 201411
      /**
       *  @brief Attempts to insert or assign a std::pair into the %map.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __obj  Argument used to generate the .second for a pair
       *                instance.
       *
       *  @return  A pair, of which the first element is an iterator that
       *           points to the possibly inserted pair, and the second is
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If the %pair was already in the %map, the .second of the %pair
       *  is assigned from __obj.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename _Obj>
	pair<iterator, bool>
	insert_or_assign(const key_type& __k, _Obj&& __obj)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(__k),
				 std::forward_as_tuple(
				   std::forward<_Obj>(__obj)));
	      return {__i, true};
	    }
	  (*__i).second = std::forward<_Obj>(__obj);
	  return {__i, false};
	}

      // move-capable overload
      template <typename _Obj>
	pair<iterator, bool>
	insert_or_assign(key_type&& __k, _Obj&& __obj)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(std::move(__k)),
				 std::forward_as_tuple(
				   std::forward<_Obj>(__obj)));
	      return {__i, true};
	    }
	  (*__i).second = std::forward<_Obj>(__obj);
	  return {__i, false};
	}

      /**
       *  @brief Attempts to insert or assign a std::pair into the %map.
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                  pair should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __obj  Argument used to generate the .second for a pair
       *                instance.
       *
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If the %pair was already in the %map, the .second of the %pair
       *  is assigned from __obj.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename _Obj>
	iterator
	insert_or_assign(const_iterator __hint,
			 const key_type& __k, _Obj&& __obj)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    {
	      return emplace_hint(iterator(__true_hint.second),
				  std::piecewise_construct,
				  std::forward_as_tuple(__k),
				  std::forward_as_tuple(
				    std::forward<_Obj>(__obj)));
	    }
	  __i = iterator(__true_hint.first);
	  (*__i).second = std::forward<_Obj>(__obj);
	  return __i;
	}

      // move-capable overload
      template <typename _Obj>
	iterator
	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    {
	      return emplace_hint(iterator(__true_hint.second),
				  std::piecewise_construct,
				  std::forward_as_tuple(std::move(__k)),
				  std::forward_as_tuple(
				    std::forward<_Obj>(__obj)));
	    }
	  __i = iterator(__true_hint.first);
	  (*__i).second = std::forward<_Obj>(__obj);
	  return __i;
	}
#endif

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases an element from a %map.
       *  @param  __position  An iterator pointing to the element to be erased.
       *  @return An iterator pointing to the element immediately following
       *          @a position prior to the element being erased. If no such
       *          element exists, end() is returned.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       *
       *  @{
       */
      iterator
      erase(const_iterator __position)
      { return _M_t.erase(__position); }

      // LWG 2059
      _GLIBCXX_ABI_TAG_CXX11
      iterator
      erase(iterator __position)
      { return _M_t.erase(__position); }
      // @}
#else
      /**
       *  @brief Erases an element from a %map.
       *  @param  __position  An iterator pointing to the element to be erased.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       */
      void
      erase(iterator __position)
      { _M_t.erase(__position); }
#endif

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  __x  Key of element to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all the elements located by the given key from
       *  a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      size_type
      erase(const key_type& __x)
      { return _M_t.erase(__x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases a [first,last) range of elements from a %map.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   erased.
       *  @param __last Iterator pointing to the end of the range to
       *                be erased.
       *  @return The iterator @a __last.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __first, const_iterator __last)
      { return _M_t.erase(__first, __last); }
#else
      /**
       *  @brief Erases a [__first,__last) range of elements from a %map.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   erased.
       *  @param __last Iterator pointing to the end of the range to
       *                be erased.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      void
      erase(iterator __first, iterator __last)
      { _M_t.erase(__first, __last); }
#endif

      /**
       *  @brief  Swaps data with another %map.
       *  @param  __x  A %map of the same element and allocator types.
       *
       *  This exchanges the elements between two maps in constant
       *  time.  (It is only swapping a pointer, an integer, and an
       *  instance of the @c Compare type (which itself is often
       *  stateless and empty), so it should be quite fast.)  Note
       *  that the global std::swap() function is specialized such
       *  that std::swap(m1,m2) will feed to this function.
       *
       *  Whether the allocators are swapped depends on the allocator traits.
       */
      void
      swap(map& __x)
      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
      { _M_t.swap(__x._M_t); }

      /**
       *  Erases all elements in a %map.  Note that this function only
       *  erases the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      void
      clear() _GLIBCXX_NOEXCEPT
      { _M_t.clear(); }

      // observers
      /**
       *  Returns the key comparison object out of which the %map was
       *  constructed.
       */
      key_compare
      key_comp() const
      { return _M_t.key_comp(); }

      /**
       *  Returns a value comparison object, built from the key comparison
       *  object out of which the %map was constructed.
       */
      value_compare
      value_comp() const
      { return value_compare(_M_t.key_comp()); }

      // [23.3.1.3] map operations

      //@{
      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  __x  Key of (key, value) %pair to be located.
       *  @return  Iterator pointing to sought-after element, or end() if not
       *           found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after %pair.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */

      iterator
      find(const key_type& __x)
      { return _M_t.find(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
	{ return _M_t._M_find_tr(__x); }
#endif
      //@}

      //@{
      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  __x  Key of (key, value) %pair to be located.
       *  @return  Read-only (constant) iterator pointing to sought-after
       *           element, or end() if not found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns a constant
       *  iterator pointing to the sought after %pair. If unsuccessful it
       *  returns the past-the-end ( @c end() ) iterator.
       */

      const_iterator
      find(const key_type& __x) const
      { return _M_t.find(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
	{ return _M_t._M_find_tr(__x); }
#endif
      //@}

      //@{
      /**
       *  @brief  Finds the number of elements with given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Number of elements with specified key.
       *
       *  This function only makes sense for multimaps; for map the result will
       *  either be 0 (not present) or 1 (present).
       */
      size_type
      count(const key_type& __x) const
      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
	{ return _M_t._M_count_tr(__x); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Iterator pointing to first element equal to or greater
       *           than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      iterator
      lower_bound(const key_type& __x)
      { return _M_t.lower_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	lower_bound(const _Kt& __x)
	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first element
       *           equal to or greater than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      const_iterator
      lower_bound(const key_type& __x) const
      { return _M_t.lower_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	lower_bound(const _Kt& __x) const
	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return Iterator pointing to the first element
       *          greater than key, or end().
       */
      iterator
      upper_bound(const key_type& __x)
      { return _M_t.upper_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	upper_bound(const _Kt& __x)
	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first iterator
       *           greater than key, or end().
       */
      const_iterator
      upper_bound(const key_type& __x) const
      { return _M_t.upper_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	upper_bound(const _Kt& __x) const
	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_t.equal_range(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	equal_range(const _Kt& __x)
	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
#endif
      //@}

      //@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Pair of read-only (constant) iterators that possibly points
       *           to the subsequence matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_t.equal_range(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	equal_range(const _Kt& __x) const
	-> decltype(pair<const_iterator, const_iterator>(
	      _M_t._M_equal_range_tr(__x)))
	{
	  return pair<const_iterator, const_iterator>(
	      _M_t._M_equal_range_tr(__x));
	}
#endif
      //@}

      template<typename _K1, typename _T1, typename _C1, typename _A1>
	friend bool
	operator==(const map<_K1, _T1, _C1, _A1>&,
		   const map<_K1, _T1, _C1, _A1>&);

      template<typename _K1, typename _T1, typename _C1, typename _A1>
	friend bool
	operator<(const map<_K1, _T1, _C1, _A1>&,
		  const map<_K1, _T1, _C1, _A1>&);
    };

  /**
   *  @brief  Map equality comparison.
   *  @param  __x  A %map.
   *  @param  __y  A %map of the same type as @a x.
   *  @return  True iff the size and elements of the maps are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  maps.  Maps are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t == __y._M_t; }

  /**
   *  @brief  Map ordering relation.
   *  @param  __x  A %map.
   *  @param  __y  A %map of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  maps.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t < __y._M_t; }

  /// Based on operator==
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::map::swap().
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline void
    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_CONTAINER

#if __cplusplus > 201402L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
  // Allow std::map access to internals of compatible maps.
  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
	   typename _Cmp2>
    struct
    _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
			  _Cmp2>
    {
    private:
      friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;

      static auto&
      _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
      { return __map._M_t; }

      static auto&
      _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
      { return __map._M_t; }
    };
_GLIBCXX_END_NAMESPACE_VERSION
#endif // C++17

} // namespace std

#endif /* _STL_MAP_H */