reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the APSInt class, which is a simple class that
// represents an arbitrary sized integer that knows its signedness.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H

#include "llvm/ADT/APInt.h"

namespace llvm {

class LLVM_NODISCARD APSInt : public APInt {
  bool IsUnsigned;

public:
  /// Default constructor that creates an uninitialized APInt.
  explicit APSInt() : IsUnsigned(false) {}

  /// APSInt ctor - Create an APSInt with the specified width, default to
  /// unsigned.
  explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
   : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}

  explicit APSInt(APInt I, bool isUnsigned = true)
   : APInt(std::move(I)), IsUnsigned(isUnsigned) {}

  /// Construct an APSInt from a string representation.
  ///
  /// This constructor interprets the string \p Str using the radix of 10.
  /// The interpretation stops at the end of the string. The bit width of the
  /// constructed APSInt is determined automatically.
  ///
  /// \param Str the string to be interpreted.
  explicit APSInt(StringRef Str);

  /// Determine sign of this APSInt.
  ///
  /// \returns true if this APSInt is negative, false otherwise
  bool isNegative() const { return isSigned() && APInt::isNegative(); }

  /// Determine if this APSInt Value is non-negative (>= 0)
  ///
  /// \returns true if this APSInt is non-negative, false otherwise
  bool isNonNegative() const { return !isNegative(); }

  /// Determine if this APSInt Value is positive.
  ///
  /// This tests if the value of this APSInt is positive (> 0). Note
  /// that 0 is not a positive value.
  ///
  /// \returns true if this APSInt is positive.
  bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }

  APSInt &operator=(APInt RHS) {
    // Retain our current sign.
    APInt::operator=(std::move(RHS));
    return *this;
  }

  APSInt &operator=(uint64_t RHS) {
    // Retain our current sign.
    APInt::operator=(RHS);
    return *this;
  }

  // Query sign information.
  bool isSigned() const { return !IsUnsigned; }
  bool isUnsigned() const { return IsUnsigned; }
  void setIsUnsigned(bool Val) { IsUnsigned = Val; }
  void setIsSigned(bool Val) { IsUnsigned = !Val; }

  /// toString - Append this APSInt to the specified SmallString.
  void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    APInt::toString(Str, Radix, isSigned());
  }
  /// toString - Converts an APInt to a std::string.  This is an inefficient
  /// method; you should prefer passing in a SmallString instead.
  std::string toString(unsigned Radix) const {
    return APInt::toString(Radix, isSigned());
  }
  using APInt::toString;

  /// Get the correctly-extended \c int64_t value.
  int64_t getExtValue() const {
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    return isSigned() ? getSExtValue() : getZExtValue();
  }

  APSInt trunc(uint32_t width) const {
    return APSInt(APInt::trunc(width), IsUnsigned);
  }

  APSInt extend(uint32_t width) const {
    if (IsUnsigned)
      return APSInt(zext(width), IsUnsigned);
    else
      return APSInt(sext(width), IsUnsigned);
  }

  APSInt extOrTrunc(uint32_t width) const {
    if (IsUnsigned)
      return APSInt(zextOrTrunc(width), IsUnsigned);
    else
      return APSInt(sextOrTrunc(width), IsUnsigned);
  }

  const APSInt &operator%=(const APSInt &RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    if (IsUnsigned)
      *this = urem(RHS);
    else
      *this = srem(RHS);
    return *this;
  }
  const APSInt &operator/=(const APSInt &RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    if (IsUnsigned)
      *this = udiv(RHS);
    else
      *this = sdiv(RHS);
    return *this;
  }
  APSInt operator%(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
  }
  APSInt operator/(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
  }

  APSInt operator>>(unsigned Amt) const {
    return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
  }
  APSInt& operator>>=(unsigned Amt) {
    if (IsUnsigned)
      lshrInPlace(Amt);
    else
      ashrInPlace(Amt);
    return *this;
  }

  inline bool operator<(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ult(RHS) : slt(RHS);
  }
  inline bool operator>(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ugt(RHS) : sgt(RHS);
  }
  inline bool operator<=(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ule(RHS) : sle(RHS);
  }
  inline bool operator>=(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? uge(RHS) : sge(RHS);
  }
  inline bool operator==(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return eq(RHS);
  }
  inline bool operator!=(const APSInt& RHS) const {
    return !((*this) == RHS);
  }

  bool operator==(int64_t RHS) const {
    return compareValues(*this, get(RHS)) == 0;
  }
  bool operator!=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) != 0;
  }
  bool operator<=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) <= 0;
  }
  bool operator>=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) >= 0;
  }
  bool operator<(int64_t RHS) const {
    return compareValues(*this, get(RHS)) < 0;
  }
  bool operator>(int64_t RHS) const {
    return compareValues(*this, get(RHS)) > 0;
  }

  // The remaining operators just wrap the logic of APInt, but retain the
  // signedness information.

  APSInt operator<<(unsigned Bits) const {
    return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
  }
  APSInt& operator<<=(unsigned Amt) {
    static_cast<APInt&>(*this) <<= Amt;
    return *this;
  }

  APSInt& operator++() {
    ++(static_cast<APInt&>(*this));
    return *this;
  }
  APSInt& operator--() {
    --(static_cast<APInt&>(*this));
    return *this;
  }
  APSInt operator++(int) {
    return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
  }
  APSInt operator--(int) {
    return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
  }
  APSInt operator-() const {
    return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
  }
  APSInt& operator+=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) += RHS;
    return *this;
  }
  APSInt& operator-=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) -= RHS;
    return *this;
  }
  APSInt& operator*=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) *= RHS;
    return *this;
  }
  APSInt& operator&=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) &= RHS;
    return *this;
  }
  APSInt& operator|=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) |= RHS;
    return *this;
  }
  APSInt& operator^=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) ^= RHS;
    return *this;
  }

  APSInt operator&(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
  }

  APSInt operator|(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
  }

  APSInt operator^(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
  }

  APSInt operator*(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
  }
  APSInt operator+(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
  }
  APSInt operator-(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
  }
  APSInt operator~() const {
    return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
  }

  /// getMaxValue - Return the APSInt representing the maximum integer value
  ///  with the given bit width and signedness.
  static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
    return APSInt(Unsigned ? APInt::getMaxValue(numBits)
                           : APInt::getSignedMaxValue(numBits), Unsigned);
  }

  /// getMinValue - Return the APSInt representing the minimum integer value
  ///  with the given bit width and signedness.
  static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
    return APSInt(Unsigned ? APInt::getMinValue(numBits)
                           : APInt::getSignedMinValue(numBits), Unsigned);
  }

  /// Determine if two APSInts have the same value, zero- or
  /// sign-extending as needed.
  static bool isSameValue(const APSInt &I1, const APSInt &I2) {
    return !compareValues(I1, I2);
  }

  /// Compare underlying values of two numbers.
  static int compareValues(const APSInt &I1, const APSInt &I2) {
    if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
      return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2);

    // Check for a bit-width mismatch.
    if (I1.getBitWidth() > I2.getBitWidth())
      return compareValues(I1, I2.extend(I1.getBitWidth()));
    if (I2.getBitWidth() > I1.getBitWidth())
      return compareValues(I1.extend(I2.getBitWidth()), I2);

    // We have a signedness mismatch. Check for negative values and do an
    // unsigned compare if both are positive.
    if (I1.isSigned()) {
      assert(!I2.isSigned() && "Expected signed mismatch");
      if (I1.isNegative())
        return -1;
    } else {
      assert(I2.isSigned() && "Expected signed mismatch");
      if (I2.isNegative())
        return 1;
    }

    return I1.compare(I2);
  }

  static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
  static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }

  /// Profile - Used to insert APSInt objects, or objects that contain APSInt
  ///  objects, into FoldingSets.
  void Profile(FoldingSetNodeID& ID) const;
};

inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }

inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
  I.print(OS, I.isSigned());
  return OS;
}

} // end namespace llvm

#endif