reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges: :
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0)     = {}       = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H

#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/Compiler.h"
#include <cstdint>

namespace llvm {

class MDNode;
class raw_ostream;
struct KnownBits;

/// This class represents a range of values.
class LLVM_NODISCARD ConstantRange {
  APInt Lower, Upper;

  /// Create empty constant range with same bitwidth.
  ConstantRange getEmpty() const {
    return ConstantRange(getBitWidth(), false);
  }

  /// Create full constant range with same bitwidth.
  ConstantRange getFull() const {
    return ConstantRange(getBitWidth(), true);
  }

public:
  /// Initialize a full or empty set for the specified bit width.
  explicit ConstantRange(uint32_t BitWidth, bool isFullSet);

  /// Initialize a range to hold the single specified value.
  ConstantRange(APInt Value);

  /// Initialize a range of values explicitly. This will assert out if
  /// Lower==Upper and Lower != Min or Max value for its type. It will also
  /// assert out if the two APInt's are not the same bit width.
  ConstantRange(APInt Lower, APInt Upper);

  /// Create empty constant range with the given bit width.
  static ConstantRange getEmpty(uint32_t BitWidth) {
    return ConstantRange(BitWidth, false);
  }

  /// Create full constant range with the given bit width.
  static ConstantRange getFull(uint32_t BitWidth) {
    return ConstantRange(BitWidth, true);
  }

  /// Create non-empty constant range with the given bounds. If Lower and
  /// Upper are the same, a full range is returned.
  static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
    if (Lower == Upper)
      return getFull(Lower.getBitWidth());
    return ConstantRange(std::move(Lower), std::move(Upper));
  }

  /// Initialize a range based on a known bits constraint. The IsSigned flag
  /// indicates whether the constant range should not wrap in the signed or
  /// unsigned domain.
  static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);

  /// Produce the smallest range such that all values that may satisfy the given
  /// predicate with any value contained within Other is contained in the
  /// returned range.  Formally, this returns a superset of
  /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
  /// answer is not representable as a ConstantRange, the return value will be a
  /// proper superset of the above.
  ///
  /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
  static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
                                             const ConstantRange &Other);

  /// Produce the largest range such that all values in the returned range
  /// satisfy the given predicate with all values contained within Other.
  /// Formally, this returns a subset of
  /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
  /// exact answer is not representable as a ConstantRange, the return value
  /// will be a proper subset of the above.
  ///
  /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
  static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
                                                const ConstantRange &Other);

  /// Produce the exact range such that all values in the returned range satisfy
  /// the given predicate with any value contained within Other. Formally, this
  /// returns the exact answer when the superset of 'union over all y in Other
  /// is exactly same as the subset of intersection over all y in Other.
  /// { x : icmp op x y is true}'.
  ///
  /// Example: Pred = ult and Other = i8 3 returns [0, 3)
  static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
                                           const APInt &Other);

  /// Produce the largest range containing all X such that "X BinOp Y" is
  /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
  /// be *some* Y in Other for which additional X not contained in the result
  /// also do not overflow.
  ///
  /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
  ///
  /// Examples:
  ///  typedef OverflowingBinaryOperator OBO;
  ///  #define MGNR makeGuaranteedNoWrapRegion
  ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
  ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
  ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
  ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
  ///  MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
  ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
  static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
                                                  const ConstantRange &Other,
                                                  unsigned NoWrapKind);

  /// Produce the range that contains X if and only if "X BinOp Other" does
  /// not wrap.
  static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
                                             const APInt &Other,
                                             unsigned NoWrapKind);

  /// Set up \p Pred and \p RHS such that
  /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
  /// successful.
  bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;

  /// Return the lower value for this range.
  const APInt &getLower() const { return Lower; }

  /// Return the upper value for this range.
  const APInt &getUpper() const { return Upper; }

  /// Get the bit width of this ConstantRange.
  uint32_t getBitWidth() const { return Lower.getBitWidth(); }

  /// Return true if this set contains all of the elements possible
  /// for this data-type.
  bool isFullSet() const;

  /// Return true if this set contains no members.
  bool isEmptySet() const;

  /// Return true if this set wraps around the unsigned domain. Special cases:
  ///  * Empty set: Not wrapped.
  ///  * Full set: Not wrapped.
  ///  * [X, 0) == [X, Max]: Not wrapped.
  bool isWrappedSet() const;

  /// Return true if the exclusive upper bound wraps around the unsigned
  /// domain. Special cases:
  ///  * Empty set: Not wrapped.
  ///  * Full set: Not wrapped.
  ///  * [X, 0): Wrapped.
  bool isUpperWrapped() const;

  /// Return true if this set wraps around the signed domain. Special cases:
  ///  * Empty set: Not wrapped.
  ///  * Full set: Not wrapped.
  ///  * [X, SignedMin) == [X, SignedMax]: Not wrapped.
  bool isSignWrappedSet() const;

  /// Return true if the (exclusive) upper bound wraps around the signed
  /// domain. Special cases:
  ///  * Empty set: Not wrapped.
  ///  * Full set: Not wrapped.
  ///  * [X, SignedMin): Wrapped.
  bool isUpperSignWrapped() const;

  /// Return true if the specified value is in the set.
  bool contains(const APInt &Val) const;

  /// Return true if the other range is a subset of this one.
  bool contains(const ConstantRange &CR) const;

  /// If this set contains a single element, return it, otherwise return null.
  const APInt *getSingleElement() const {
    if (Upper == Lower + 1)
      return &Lower;
    return nullptr;
  }

  /// If this set contains all but a single element, return it, otherwise return
  /// null.
  const APInt *getSingleMissingElement() const {
    if (Lower == Upper + 1)
      return &Upper;
    return nullptr;
  }

  /// Return true if this set contains exactly one member.
  bool isSingleElement() const { return getSingleElement() != nullptr; }

  /// Compare set size of this range with the range CR.
  bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;

  /// Compare set size of this range with Value.
  bool isSizeLargerThan(uint64_t MaxSize) const;

  /// Return true if all values in this range are negative.
  bool isAllNegative() const;

  /// Return true if all values in this range are non-negative.
  bool isAllNonNegative() const;

  /// Return the largest unsigned value contained in the ConstantRange.
  APInt getUnsignedMax() const;

  /// Return the smallest unsigned value contained in the ConstantRange.
  APInt getUnsignedMin() const;

  /// Return the largest signed value contained in the ConstantRange.
  APInt getSignedMax() const;

  /// Return the smallest signed value contained in the ConstantRange.
  APInt getSignedMin() const;

  /// Return true if this range is equal to another range.
  bool operator==(const ConstantRange &CR) const {
    return Lower == CR.Lower && Upper == CR.Upper;
  }
  bool operator!=(const ConstantRange &CR) const {
    return !operator==(CR);
  }

  /// Subtract the specified constant from the endpoints of this constant range.
  ConstantRange subtract(const APInt &CI) const;

  /// Subtract the specified range from this range (aka relative complement of
  /// the sets).
  ConstantRange difference(const ConstantRange &CR) const;

  /// If represented precisely, the result of some range operations may consist
  /// of multiple disjoint ranges. As only a single range may be returned, any
  /// range covering these disjoint ranges constitutes a valid result, but some
  /// may be more useful than others depending on context. The preferred range
  /// type specifies whether a range that is non-wrapping in the unsigned or
  /// signed domain, or has the smallest size, is preferred. If a signedness is
  /// preferred but all ranges are non-wrapping or all wrapping, then the
  /// smallest set size is preferred. If there are multiple smallest sets, any
  /// one of them may be returned.
  enum PreferredRangeType { Smallest, Unsigned, Signed };

  /// Return the range that results from the intersection of this range with
  /// another range. If the intersection is disjoint, such that two results
  /// are possible, the preferred range is determined by the PreferredRangeType.
  ConstantRange intersectWith(const ConstantRange &CR,
                              PreferredRangeType Type = Smallest) const;

  /// Return the range that results from the union of this range
  /// with another range.  The resultant range is guaranteed to include the
  /// elements of both sets, but may contain more.  For example, [3, 9) union
  /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
  /// in either set before.
  ConstantRange unionWith(const ConstantRange &CR,
                          PreferredRangeType Type = Smallest) const;

  /// Return a new range representing the possible values resulting
  /// from an application of the specified cast operator to this range. \p
  /// BitWidth is the target bitwidth of the cast.  For casts which don't
  /// change bitwidth, it must be the same as the source bitwidth.  For casts
  /// which do change bitwidth, the bitwidth must be consistent with the
  /// requested cast and source bitwidth.
  ConstantRange castOp(Instruction::CastOps CastOp,
                       uint32_t BitWidth) const;

  /// Return a new range in the specified integer type, which must
  /// be strictly larger than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// zero extended to BitWidth.
  ConstantRange zeroExtend(uint32_t BitWidth) const;

  /// Return a new range in the specified integer type, which must
  /// be strictly larger than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// sign extended to BitWidth.
  ConstantRange signExtend(uint32_t BitWidth) const;

  /// Return a new range in the specified integer type, which must be
  /// strictly smaller than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// truncated to the specified type.
  ConstantRange truncate(uint32_t BitWidth) const;

  /// Make this range have the bit width given by \p BitWidth. The
  /// value is zero extended, truncated, or left alone to make it that width.
  ConstantRange zextOrTrunc(uint32_t BitWidth) const;

  /// Make this range have the bit width given by \p BitWidth. The
  /// value is sign extended, truncated, or left alone to make it that width.
  ConstantRange sextOrTrunc(uint32_t BitWidth) const;

  /// Return a new range representing the possible values resulting
  /// from an application of the specified binary operator to an left hand side
  /// of this range and a right hand side of \p Other.
  ConstantRange binaryOp(Instruction::BinaryOps BinOp,
                         const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an application of the specified overflowing binary operator to a
  /// left hand side of this range and a right hand side of \p Other given
  /// the provided knowledge about lack of wrapping \p NoWrapKind.
  ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
                                    const ConstantRange &Other,
                                    unsigned NoWrapKind) const;

  /// Return a new range representing the possible values resulting
  /// from an addition of a value in this range and a value in \p Other.
  ConstantRange add(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an addition with wrap type \p NoWrapKind of a value in this
  /// range and a value in \p Other.
  /// If the result range is disjoint, the preferred range is determined by the
  /// \p PreferredRangeType.
  ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
                              PreferredRangeType RangeType = Smallest) const;

  /// Return a new range representing the possible values resulting
  /// from a subtraction of a value in this range and a value in \p Other.
  ConstantRange sub(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a multiplication of a value in this range and a value in \p Other,
  /// treating both this and \p Other as unsigned ranges.
  ConstantRange multiply(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a signed maximum of a value in this range and a value in \p Other.
  ConstantRange smax(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned maximum of a value in this range and a value in \p Other.
  ConstantRange umax(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a signed minimum of a value in this range and a value in \p Other.
  ConstantRange smin(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned minimum of a value in this range and a value in \p Other.
  ConstantRange umin(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned division of a value in this range and a value in
  /// \p Other.
  ConstantRange udiv(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a signed division of a value in this range and a value in
  /// \p Other. Division by zero and division of SignedMin by -1 are considered
  /// undefined behavior, in line with IR, and do not contribute towards the
  /// result.
  ConstantRange sdiv(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned remainder operation of a value in this range and a
  /// value in \p Other.
  ConstantRange urem(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a signed remainder operation of a value in this range and a
  /// value in \p Other.
  ConstantRange srem(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a binary-and of a value in this range by a value in \p Other.
  ConstantRange binaryAnd(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a binary-or of a value in this range by a value in \p Other.
  ConstantRange binaryOr(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a left shift of a value in this range by a value in \p Other.
  /// TODO: This isn't fully implemented yet.
  ConstantRange shl(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting from a
  /// logical right shift of a value in this range and a value in \p Other.
  ConstantRange lshr(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting from a
  /// arithmetic right shift of a value in this range and a value in \p Other.
  ConstantRange ashr(const ConstantRange &Other) const;

  /// Perform an unsigned saturating addition of two constant ranges.
  ConstantRange uadd_sat(const ConstantRange &Other) const;

  /// Perform a signed saturating addition of two constant ranges.
  ConstantRange sadd_sat(const ConstantRange &Other) const;

  /// Perform an unsigned saturating subtraction of two constant ranges.
  ConstantRange usub_sat(const ConstantRange &Other) const;

  /// Perform a signed saturating subtraction of two constant ranges.
  ConstantRange ssub_sat(const ConstantRange &Other) const;

  /// Return a new range that is the logical not of the current set.
  ConstantRange inverse() const;

  /// Calculate absolute value range. If the original range contains signed
  /// min, then the resulting range will also contain signed min.
  ConstantRange abs() const;

  /// Represents whether an operation on the given constant range is known to
  /// always or never overflow.
  enum class OverflowResult {
    /// Always overflows in the direction of signed/unsigned min value.
    AlwaysOverflowsLow,
    /// Always overflows in the direction of signed/unsigned max value.
    AlwaysOverflowsHigh,
    /// May or may not overflow.
    MayOverflow,
    /// Never overflows.
    NeverOverflows,
  };

  /// Return whether unsigned add of the two ranges always/never overflows.
  OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;

  /// Return whether signed add of the two ranges always/never overflows.
  OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;

  /// Return whether unsigned sub of the two ranges always/never overflows.
  OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;

  /// Return whether signed sub of the two ranges always/never overflows.
  OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;

  /// Return whether unsigned mul of the two ranges always/never overflows.
  OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;

  /// Print out the bounds to a stream.
  void print(raw_ostream &OS) const;

  /// Allow printing from a debugger easily.
  void dump() const;
};

inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
  CR.print(OS);
  return OS;
}

/// Parse out a conservative ConstantRange from !range metadata.
///
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);

} // end namespace llvm

#endif // LLVM_IR_CONSTANTRANGE_H