1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
| //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information. It uses lazy annotations to cache information about how
// structure types are laid out and used.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&. None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DATALAYOUT_H
#define LLVM_IR_DATALAYOUT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>
#include <string>
// This needs to be outside of the namespace, to avoid conflict with llvm-c
// decl.
using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
namespace llvm {
class GlobalVariable;
class LLVMContext;
class Module;
class StructLayout;
class Triple;
class Value;
/// Enum used to categorize the alignment types stored by LayoutAlignElem
enum AlignTypeEnum {
INVALID_ALIGN = 0,
INTEGER_ALIGN = 'i',
VECTOR_ALIGN = 'v',
FLOAT_ALIGN = 'f',
AGGREGATE_ALIGN = 'a'
};
// FIXME: Currently the DataLayout string carries a "preferred alignment"
// for types. As the DataLayout is module/global, this should likely be
// sunk down to an FTTI element that is queried rather than a global
// preference.
/// Layout alignment element.
///
/// Stores the alignment data associated with a given alignment type (integer,
/// vector, float) and type bit width.
///
/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct LayoutAlignElem {
/// Alignment type from \c AlignTypeEnum
unsigned AlignType : 8;
unsigned TypeBitWidth : 24;
Align ABIAlign;
Align PrefAlign;
static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
Align pref_align, uint32_t bit_width);
bool operator==(const LayoutAlignElem &rhs) const;
};
/// Layout pointer alignment element.
///
/// Stores the alignment data associated with a given pointer and address space.
///
/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct PointerAlignElem {
Align ABIAlign;
Align PrefAlign;
uint32_t TypeByteWidth;
uint32_t AddressSpace;
uint32_t IndexWidth;
/// Initializer
static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
Align PrefAlign, uint32_t TypeByteWidth,
uint32_t IndexWidth);
bool operator==(const PointerAlignElem &rhs) const;
};
/// A parsed version of the target data layout string in and methods for
/// querying it.
///
/// The target data layout string is specified *by the target* - a frontend
/// generating LLVM IR is required to generate the right target data for the
/// target being codegen'd to.
class DataLayout {
public:
enum class FunctionPtrAlignType {
/// The function pointer alignment is independent of the function alignment.
Independent,
/// The function pointer alignment is a multiple of the function alignment.
MultipleOfFunctionAlign,
};
private:
/// Defaults to false.
bool BigEndian;
unsigned AllocaAddrSpace;
MaybeAlign StackNaturalAlign;
unsigned ProgramAddrSpace;
MaybeAlign FunctionPtrAlign;
FunctionPtrAlignType TheFunctionPtrAlignType;
enum ManglingModeT {
MM_None,
MM_ELF,
MM_MachO,
MM_WinCOFF,
MM_WinCOFFX86,
MM_Mips
};
ManglingModeT ManglingMode;
SmallVector<unsigned char, 8> LegalIntWidths;
/// Primitive type alignment data. This is sorted by type and bit
/// width during construction.
using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
AlignmentsTy Alignments;
AlignmentsTy::const_iterator
findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
BitWidth);
}
AlignmentsTy::iterator
findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
/// The string representation used to create this DataLayout
std::string StringRepresentation;
using PointersTy = SmallVector<PointerAlignElem, 8>;
PointersTy Pointers;
PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace) const {
return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
}
PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
// The StructType -> StructLayout map.
mutable void *LayoutMap = nullptr;
/// Pointers in these address spaces are non-integral, and don't have a
/// well-defined bitwise representation.
SmallVector<unsigned, 8> NonIntegralAddressSpaces;
void setAlignment(AlignTypeEnum align_type, Align abi_align, Align pref_align,
uint32_t bit_width);
Align getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
bool ABIAlign, Type *Ty) const;
void setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
uint32_t TypeByteWidth, uint32_t IndexWidth);
/// Internal helper method that returns requested alignment for type.
Align getAlignment(Type *Ty, bool abi_or_pref) const;
/// Parses a target data specification string. Assert if the string is
/// malformed.
void parseSpecifier(StringRef LayoutDescription);
// Free all internal data structures.
void clear();
public:
/// Constructs a DataLayout from a specification string. See reset().
explicit DataLayout(StringRef LayoutDescription) {
reset(LayoutDescription);
}
/// Initialize target data from properties stored in the module.
explicit DataLayout(const Module *M);
DataLayout(const DataLayout &DL) { *this = DL; }
~DataLayout(); // Not virtual, do not subclass this class
DataLayout &operator=(const DataLayout &DL) {
clear();
StringRepresentation = DL.StringRepresentation;
BigEndian = DL.isBigEndian();
AllocaAddrSpace = DL.AllocaAddrSpace;
StackNaturalAlign = DL.StackNaturalAlign;
FunctionPtrAlign = DL.FunctionPtrAlign;
TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
ProgramAddrSpace = DL.ProgramAddrSpace;
ManglingMode = DL.ManglingMode;
LegalIntWidths = DL.LegalIntWidths;
Alignments = DL.Alignments;
Pointers = DL.Pointers;
NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
return *this;
}
bool operator==(const DataLayout &Other) const;
bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
void init(const Module *M);
/// Parse a data layout string (with fallback to default values).
void reset(StringRef LayoutDescription);
/// Layout endianness...
bool isLittleEndian() const { return !BigEndian; }
bool isBigEndian() const { return BigEndian; }
/// Returns the string representation of the DataLayout.
///
/// This representation is in the same format accepted by the string
/// constructor above. This should not be used to compare two DataLayout as
/// different string can represent the same layout.
const std::string &getStringRepresentation() const {
return StringRepresentation;
}
/// Test if the DataLayout was constructed from an empty string.
bool isDefault() const { return StringRepresentation.empty(); }
/// Returns true if the specified type is known to be a native integer
/// type supported by the CPU.
///
/// For example, i64 is not native on most 32-bit CPUs and i37 is not native
/// on any known one. This returns false if the integer width is not legal.
///
/// The width is specified in bits.
bool isLegalInteger(uint64_t Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (LegalIntWidth == Width)
return true;
return false;
}
bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
/// Returns true if the given alignment exceeds the natural stack alignment.
bool exceedsNaturalStackAlignment(Align Alignment) const {
return StackNaturalAlign && (Alignment > StackNaturalAlign);
}
Align getStackAlignment() const {
assert(StackNaturalAlign && "StackNaturalAlign must be defined");
return *StackNaturalAlign;
}
unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
/// Returns the alignment of function pointers, which may or may not be
/// related to the alignment of functions.
/// \see getFunctionPtrAlignType
MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
/// Return the type of function pointer alignment.
/// \see getFunctionPtrAlign
FunctionPtrAlignType getFunctionPtrAlignType() const {
return TheFunctionPtrAlignType;
}
unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
bool hasMicrosoftFastStdCallMangling() const {
return ManglingMode == MM_WinCOFFX86;
}
/// Returns true if symbols with leading question marks should not receive IR
/// mangling. True for Windows mangling modes.
bool doNotMangleLeadingQuestionMark() const {
return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
}
bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
StringRef getLinkerPrivateGlobalPrefix() const {
if (ManglingMode == MM_MachO)
return "l";
return "";
}
char getGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
case MM_ELF:
case MM_Mips:
case MM_WinCOFF:
return '\0';
case MM_MachO:
case MM_WinCOFFX86:
return '_';
}
llvm_unreachable("invalid mangling mode");
}
StringRef getPrivateGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
return "";
case MM_ELF:
case MM_WinCOFF:
return ".L";
case MM_Mips:
return "$";
case MM_MachO:
case MM_WinCOFFX86:
return "L";
}
llvm_unreachable("invalid mangling mode");
}
static const char *getManglingComponent(const Triple &T);
/// Returns true if the specified type fits in a native integer type
/// supported by the CPU.
///
/// For example, if the CPU only supports i32 as a native integer type, then
/// i27 fits in a legal integer type but i45 does not.
bool fitsInLegalInteger(unsigned Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (Width <= LegalIntWidth)
return true;
return false;
}
/// Layout pointer alignment
Align getPointerABIAlignment(unsigned AS) const;
/// Return target's alignment for stack-based pointers
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
Align getPointerPrefAlignment(unsigned AS = 0) const;
/// Layout pointer size
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerSize(unsigned AS = 0) const;
/// Returns the maximum pointer size over all address spaces.
unsigned getMaxPointerSize() const;
// Index size used for address calculation.
unsigned getIndexSize(unsigned AS) const;
/// Return the address spaces containing non-integral pointers. Pointers in
/// this address space don't have a well-defined bitwise representation.
ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
return NonIntegralAddressSpaces;
}
bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
}
bool isNonIntegralPointerType(PointerType *PT) const {
return isNonIntegralAddressSpace(PT->getAddressSpace());
}
bool isNonIntegralPointerType(Type *Ty) const {
auto *PTy = dyn_cast<PointerType>(Ty);
return PTy && isNonIntegralPointerType(PTy);
}
/// Layout pointer size, in bits
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerSizeInBits(unsigned AS = 0) const {
return getPointerSize(AS) * 8;
}
/// Returns the maximum pointer size over all address spaces.
unsigned getMaxPointerSizeInBits() const {
return getMaxPointerSize() * 8;
}
/// Size in bits of index used for address calculation in getelementptr.
unsigned getIndexSizeInBits(unsigned AS) const {
return getIndexSize(AS) * 8;
}
/// Layout pointer size, in bits, based on the type. If this function is
/// called with a pointer type, then the type size of the pointer is returned.
/// If this function is called with a vector of pointers, then the type size
/// of the pointer is returned. This should only be called with a pointer or
/// vector of pointers.
unsigned getPointerTypeSizeInBits(Type *) const;
/// Layout size of the index used in GEP calculation.
/// The function should be called with pointer or vector of pointers type.
unsigned getIndexTypeSizeInBits(Type *Ty) const;
unsigned getPointerTypeSize(Type *Ty) const {
return getPointerTypeSizeInBits(Ty) / 8;
}
/// Size examples:
///
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
/// ---- ---------- --------------- ---------------
/// i1 1 8 8
/// i8 8 8 8
/// i19 19 24 32
/// i32 32 32 32
/// i100 100 104 128
/// i128 128 128 128
/// Float 32 32 32
/// Double 64 64 64
/// X86_FP80 80 80 96
///
/// [*] The alloc size depends on the alignment, and thus on the target.
/// These values are for x86-32 linux.
/// Returns the number of bits necessary to hold the specified type.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
/// have a size (Type::isSized() must return true).
TypeSize getTypeSizeInBits(Type *Ty) const;
/// Returns the maximum number of bytes that may be overwritten by
/// storing the specified type.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 5 for i36 and 10 for x86_fp80.
TypeSize getTypeStoreSize(Type *Ty) const {
TypeSize BaseSize = getTypeSizeInBits(Ty);
return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
}
/// Returns the maximum number of bits that may be overwritten by
/// storing the specified type; always a multiple of 8.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 40 for i36 and 80 for x86_fp80.
TypeSize getTypeStoreSizeInBits(Type *Ty) const {
return 8 * getTypeStoreSize(Ty);
}
/// Returns true if no extra padding bits are needed when storing the
/// specified type.
///
/// For example, returns false for i19 that has a 24-bit store size.
bool typeSizeEqualsStoreSize(Type *Ty) const {
return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
}
/// Returns the offset in bytes between successive objects of the
/// specified type, including alignment padding.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// This is the amount that alloca reserves for this type. For example,
/// returns 12 or 16 for x86_fp80, depending on alignment.
TypeSize getTypeAllocSize(Type *Ty) const {
// Round up to the next alignment boundary.
return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
}
/// Returns the offset in bits between successive objects of the
/// specified type, including alignment padding; always a multiple of 8.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// This is the amount that alloca reserves for this type. For example,
/// returns 96 or 128 for x86_fp80, depending on alignment.
TypeSize getTypeAllocSizeInBits(Type *Ty) const {
return 8 * getTypeAllocSize(Ty);
}
/// Returns the minimum ABI-required alignment for the specified type.
unsigned getABITypeAlignment(Type *Ty) const;
/// Helper function to return `Alignment` if it's set or the result of
/// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
Type *Ty) const {
return Alignment ? *Alignment : Align(getABITypeAlignment(Ty));
}
/// Returns the minimum ABI-required alignment for an integer type of
/// the specified bitwidth.
Align getABIIntegerTypeAlignment(unsigned BitWidth) const;
/// Returns the preferred stack/global alignment for the specified
/// type.
///
/// This is always at least as good as the ABI alignment.
unsigned getPrefTypeAlignment(Type *Ty) const;
/// Returns an integer type with size at least as big as that of a
/// pointer in the given address space.
IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
/// Returns an integer (vector of integer) type with size at least as
/// big as that of a pointer of the given pointer (vector of pointer) type.
Type *getIntPtrType(Type *) const;
/// Returns the smallest integer type with size at least as big as
/// Width bits.
Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
/// Returns the largest legal integer type, or null if none are set.
Type *getLargestLegalIntType(LLVMContext &C) const {
unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
}
/// Returns the size of largest legal integer type size, or 0 if none
/// are set.
unsigned getLargestLegalIntTypeSizeInBits() const;
/// Returns the type of a GEP index.
/// If it was not specified explicitly, it will be the integer type of the
/// pointer width - IntPtrType.
Type *getIndexType(Type *PtrTy) const;
/// Returns the offset from the beginning of the type for the specified
/// indices.
///
/// Note that this takes the element type, not the pointer type.
/// This is used to implement getelementptr.
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
/// Returns a StructLayout object, indicating the alignment of the
/// struct, its size, and the offsets of its fields.
///
/// Note that this information is lazily cached.
const StructLayout *getStructLayout(StructType *Ty) const;
/// Returns the preferred alignment of the specified global.
///
/// This includes an explicitly requested alignment (if the global has one).
unsigned getPreferredAlignment(const GlobalVariable *GV) const;
/// Returns the preferred alignment of the specified global, returned
/// in log form.
///
/// This includes an explicitly requested alignment (if the global has one).
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
};
inline DataLayout *unwrap(LLVMTargetDataRef P) {
return reinterpret_cast<DataLayout *>(P);
}
inline LLVMTargetDataRef wrap(const DataLayout *P) {
return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
}
/// Used to lazily calculate structure layout information for a target machine,
/// based on the DataLayout structure.
class StructLayout {
uint64_t StructSize;
Align StructAlignment;
unsigned IsPadded : 1;
unsigned NumElements : 31;
uint64_t MemberOffsets[1]; // variable sized array!
public:
uint64_t getSizeInBytes() const { return StructSize; }
uint64_t getSizeInBits() const { return 8 * StructSize; }
Align getAlignment() const { return StructAlignment; }
/// Returns whether the struct has padding or not between its fields.
/// NB: Padding in nested element is not taken into account.
bool hasPadding() const { return IsPadded; }
/// Given a valid byte offset into the structure, returns the structure
/// index that contains it.
unsigned getElementContainingOffset(uint64_t Offset) const;
uint64_t getElementOffset(unsigned Idx) const {
assert(Idx < NumElements && "Invalid element idx!");
return MemberOffsets[Idx];
}
uint64_t getElementOffsetInBits(unsigned Idx) const {
return getElementOffset(Idx) * 8;
}
private:
friend class DataLayout; // Only DataLayout can create this class
StructLayout(StructType *ST, const DataLayout &DL);
};
// The implementation of this method is provided inline as it is particularly
// well suited to constant folding when called on a specific Type subclass.
inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
case Type::LabelTyID:
return TypeSize::Fixed(getPointerSizeInBits(0));
case Type::PointerTyID:
return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
return ATy->getNumElements() *
getTypeAllocSizeInBits(ATy->getElementType());
}
case Type::StructTyID:
// Get the layout annotation... which is lazily created on demand.
return TypeSize::Fixed(
getStructLayout(cast<StructType>(Ty))->getSizeInBits());
case Type::IntegerTyID:
return TypeSize::Fixed(Ty->getIntegerBitWidth());
case Type::HalfTyID:
return TypeSize::Fixed(16);
case Type::FloatTyID:
return TypeSize::Fixed(32);
case Type::DoubleTyID:
case Type::X86_MMXTyID:
return TypeSize::Fixed(64);
case Type::PPC_FP128TyID:
case Type::FP128TyID:
return TypeSize::Fixed(128);
// In memory objects this is always aligned to a higher boundary, but
// only 80 bits contain information.
case Type::X86_FP80TyID:
return TypeSize::Fixed(80);
case Type::VectorTyID: {
VectorType *VTy = cast<VectorType>(Ty);
auto EltCnt = VTy->getElementCount();
uint64_t MinBits = EltCnt.Min *
getTypeSizeInBits(VTy->getElementType()).getFixedSize();
return TypeSize(MinBits, EltCnt.Scalable);
}
default:
llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
}
}
} // end namespace llvm
#endif // LLVM_IR_DATALAYOUT_H
|