reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information.  It uses lazy annotations to cache information about how
// structure types are laid out and used.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&.  None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_DATALAYOUT_H
#define LLVM_IR_DATALAYOUT_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>
#include <string>

// This needs to be outside of the namespace, to avoid conflict with llvm-c
// decl.
using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;

namespace llvm {

class GlobalVariable;
class LLVMContext;
class Module;
class StructLayout;
class Triple;
class Value;

/// Enum used to categorize the alignment types stored by LayoutAlignElem
enum AlignTypeEnum {
  INVALID_ALIGN = 0,
  INTEGER_ALIGN = 'i',
  VECTOR_ALIGN = 'v',
  FLOAT_ALIGN = 'f',
  AGGREGATE_ALIGN = 'a'
};

// FIXME: Currently the DataLayout string carries a "preferred alignment"
// for types. As the DataLayout is module/global, this should likely be
// sunk down to an FTTI element that is queried rather than a global
// preference.

/// Layout alignment element.
///
/// Stores the alignment data associated with a given alignment type (integer,
/// vector, float) and type bit width.
///
/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct LayoutAlignElem {
  /// Alignment type from \c AlignTypeEnum
  unsigned AlignType : 8;
  unsigned TypeBitWidth : 24;
  Align ABIAlign;
  Align PrefAlign;

  static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
                             Align pref_align, uint32_t bit_width);

  bool operator==(const LayoutAlignElem &rhs) const;
};

/// Layout pointer alignment element.
///
/// Stores the alignment data associated with a given pointer and address space.
///
/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct PointerAlignElem {
  Align ABIAlign;
  Align PrefAlign;
  uint32_t TypeByteWidth;
  uint32_t AddressSpace;
  uint32_t IndexWidth;

  /// Initializer
  static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
                              Align PrefAlign, uint32_t TypeByteWidth,
                              uint32_t IndexWidth);

  bool operator==(const PointerAlignElem &rhs) const;
};

/// A parsed version of the target data layout string in and methods for
/// querying it.
///
/// The target data layout string is specified *by the target* - a frontend
/// generating LLVM IR is required to generate the right target data for the
/// target being codegen'd to.
class DataLayout {
public:
  enum class FunctionPtrAlignType {
    /// The function pointer alignment is independent of the function alignment.
    Independent,
    /// The function pointer alignment is a multiple of the function alignment.
    MultipleOfFunctionAlign,
  };
private:
  /// Defaults to false.
  bool BigEndian;

  unsigned AllocaAddrSpace;
  MaybeAlign StackNaturalAlign;
  unsigned ProgramAddrSpace;

  MaybeAlign FunctionPtrAlign;
  FunctionPtrAlignType TheFunctionPtrAlignType;

  enum ManglingModeT {
    MM_None,
    MM_ELF,
    MM_MachO,
    MM_WinCOFF,
    MM_WinCOFFX86,
    MM_Mips
  };
  ManglingModeT ManglingMode;

  SmallVector<unsigned char, 8> LegalIntWidths;

  /// Primitive type alignment data. This is sorted by type and bit
  /// width during construction.
  using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
  AlignmentsTy Alignments;

  AlignmentsTy::const_iterator
  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
    return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
                                                                   BitWidth);
  }

  AlignmentsTy::iterator
  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);

  /// The string representation used to create this DataLayout
  std::string StringRepresentation;

  using PointersTy = SmallVector<PointerAlignElem, 8>;
  PointersTy Pointers;

  PointersTy::const_iterator
  findPointerLowerBound(uint32_t AddressSpace) const {
    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
  }

  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);

  // The StructType -> StructLayout map.
  mutable void *LayoutMap = nullptr;

  /// Pointers in these address spaces are non-integral, and don't have a
  /// well-defined bitwise representation.
  SmallVector<unsigned, 8> NonIntegralAddressSpaces;

  void setAlignment(AlignTypeEnum align_type, Align abi_align, Align pref_align,
                    uint32_t bit_width);
  Align getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
                         bool ABIAlign, Type *Ty) const;
  void setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
                           uint32_t TypeByteWidth, uint32_t IndexWidth);

  /// Internal helper method that returns requested alignment for type.
  Align getAlignment(Type *Ty, bool abi_or_pref) const;

  /// Parses a target data specification string. Assert if the string is
  /// malformed.
  void parseSpecifier(StringRef LayoutDescription);

  // Free all internal data structures.
  void clear();

public:
  /// Constructs a DataLayout from a specification string. See reset().
  explicit DataLayout(StringRef LayoutDescription) {
    reset(LayoutDescription);
  }

  /// Initialize target data from properties stored in the module.
  explicit DataLayout(const Module *M);

  DataLayout(const DataLayout &DL) { *this = DL; }

  ~DataLayout(); // Not virtual, do not subclass this class

  DataLayout &operator=(const DataLayout &DL) {
    clear();
    StringRepresentation = DL.StringRepresentation;
    BigEndian = DL.isBigEndian();
    AllocaAddrSpace = DL.AllocaAddrSpace;
    StackNaturalAlign = DL.StackNaturalAlign;
    FunctionPtrAlign = DL.FunctionPtrAlign;
    TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
    ProgramAddrSpace = DL.ProgramAddrSpace;
    ManglingMode = DL.ManglingMode;
    LegalIntWidths = DL.LegalIntWidths;
    Alignments = DL.Alignments;
    Pointers = DL.Pointers;
    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
    return *this;
  }

  bool operator==(const DataLayout &Other) const;
  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }

  void init(const Module *M);

  /// Parse a data layout string (with fallback to default values).
  void reset(StringRef LayoutDescription);

  /// Layout endianness...
  bool isLittleEndian() const { return !BigEndian; }
  bool isBigEndian() const { return BigEndian; }

  /// Returns the string representation of the DataLayout.
  ///
  /// This representation is in the same format accepted by the string
  /// constructor above. This should not be used to compare two DataLayout as
  /// different string can represent the same layout.
  const std::string &getStringRepresentation() const {
    return StringRepresentation;
  }

  /// Test if the DataLayout was constructed from an empty string.
  bool isDefault() const { return StringRepresentation.empty(); }

  /// Returns true if the specified type is known to be a native integer
  /// type supported by the CPU.
  ///
  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
  /// on any known one. This returns false if the integer width is not legal.
  ///
  /// The width is specified in bits.
  bool isLegalInteger(uint64_t Width) const {
    for (unsigned LegalIntWidth : LegalIntWidths)
      if (LegalIntWidth == Width)
        return true;
    return false;
  }

  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }

  /// Returns true if the given alignment exceeds the natural stack alignment.
  bool exceedsNaturalStackAlignment(Align Alignment) const {
    return StackNaturalAlign && (Alignment > StackNaturalAlign);
  }

  Align getStackAlignment() const {
    assert(StackNaturalAlign && "StackNaturalAlign must be defined");
    return *StackNaturalAlign;
  }

  unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }

  /// Returns the alignment of function pointers, which may or may not be
  /// related to the alignment of functions.
  /// \see getFunctionPtrAlignType
  MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }

  /// Return the type of function pointer alignment.
  /// \see getFunctionPtrAlign
  FunctionPtrAlignType getFunctionPtrAlignType() const {
    return TheFunctionPtrAlignType;
  }

  unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }

  bool hasMicrosoftFastStdCallMangling() const {
    return ManglingMode == MM_WinCOFFX86;
  }

  /// Returns true if symbols with leading question marks should not receive IR
  /// mangling. True for Windows mangling modes.
  bool doNotMangleLeadingQuestionMark() const {
    return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
  }

  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }

  StringRef getLinkerPrivateGlobalPrefix() const {
    if (ManglingMode == MM_MachO)
      return "l";
    return "";
  }

  char getGlobalPrefix() const {
    switch (ManglingMode) {
    case MM_None:
    case MM_ELF:
    case MM_Mips:
    case MM_WinCOFF:
      return '\0';
    case MM_MachO:
    case MM_WinCOFFX86:
      return '_';
    }
    llvm_unreachable("invalid mangling mode");
  }

  StringRef getPrivateGlobalPrefix() const {
    switch (ManglingMode) {
    case MM_None:
      return "";
    case MM_ELF:
    case MM_WinCOFF:
      return ".L";
    case MM_Mips:
      return "$";
    case MM_MachO:
    case MM_WinCOFFX86:
      return "L";
    }
    llvm_unreachable("invalid mangling mode");
  }

  static const char *getManglingComponent(const Triple &T);

  /// Returns true if the specified type fits in a native integer type
  /// supported by the CPU.
  ///
  /// For example, if the CPU only supports i32 as a native integer type, then
  /// i27 fits in a legal integer type but i45 does not.
  bool fitsInLegalInteger(unsigned Width) const {
    for (unsigned LegalIntWidth : LegalIntWidths)
      if (Width <= LegalIntWidth)
        return true;
    return false;
  }

  /// Layout pointer alignment
  Align getPointerABIAlignment(unsigned AS) const;

  /// Return target's alignment for stack-based pointers
  /// FIXME: The defaults need to be removed once all of
  /// the backends/clients are updated.
  Align getPointerPrefAlignment(unsigned AS = 0) const;

  /// Layout pointer size
  /// FIXME: The defaults need to be removed once all of
  /// the backends/clients are updated.
  unsigned getPointerSize(unsigned AS = 0) const;

  /// Returns the maximum pointer size over all address spaces.
  unsigned getMaxPointerSize() const;

  // Index size used for address calculation.
  unsigned getIndexSize(unsigned AS) const;

  /// Return the address spaces containing non-integral pointers.  Pointers in
  /// this address space don't have a well-defined bitwise representation.
  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
    return NonIntegralAddressSpaces;
  }

  bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
    return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
  }

  bool isNonIntegralPointerType(PointerType *PT) const {
    return isNonIntegralAddressSpace(PT->getAddressSpace());
  }

  bool isNonIntegralPointerType(Type *Ty) const {
    auto *PTy = dyn_cast<PointerType>(Ty);
    return PTy && isNonIntegralPointerType(PTy);
  }

  /// Layout pointer size, in bits
  /// FIXME: The defaults need to be removed once all of
  /// the backends/clients are updated.
  unsigned getPointerSizeInBits(unsigned AS = 0) const {
    return getPointerSize(AS) * 8;
  }

  /// Returns the maximum pointer size over all address spaces.
  unsigned getMaxPointerSizeInBits() const {
    return getMaxPointerSize() * 8;
  }

  /// Size in bits of index used for address calculation in getelementptr.
  unsigned getIndexSizeInBits(unsigned AS) const {
    return getIndexSize(AS) * 8;
  }

  /// Layout pointer size, in bits, based on the type.  If this function is
  /// called with a pointer type, then the type size of the pointer is returned.
  /// If this function is called with a vector of pointers, then the type size
  /// of the pointer is returned.  This should only be called with a pointer or
  /// vector of pointers.
  unsigned getPointerTypeSizeInBits(Type *) const;

  /// Layout size of the index used in GEP calculation.
  /// The function should be called with pointer or vector of pointers type.
  unsigned getIndexTypeSizeInBits(Type *Ty) const;

  unsigned getPointerTypeSize(Type *Ty) const {
    return getPointerTypeSizeInBits(Ty) / 8;
  }

  /// Size examples:
  ///
  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
  /// ----        ----------  ---------------  ---------------
  ///  i1            1           8                8
  ///  i8            8           8                8
  ///  i19          19          24               32
  ///  i32          32          32               32
  ///  i100        100         104              128
  ///  i128        128         128              128
  ///  Float        32          32               32
  ///  Double       64          64               64
  ///  X86_FP80     80          80               96
  ///
  /// [*] The alloc size depends on the alignment, and thus on the target.
  ///     These values are for x86-32 linux.

  /// Returns the number of bits necessary to hold the specified type.
  ///
  /// If Ty is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
  /// have a size (Type::isSized() must return true).
  TypeSize getTypeSizeInBits(Type *Ty) const;

  /// Returns the maximum number of bytes that may be overwritten by
  /// storing the specified type.
  ///
  /// If Ty is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// For example, returns 5 for i36 and 10 for x86_fp80.
  TypeSize getTypeStoreSize(Type *Ty) const {
    TypeSize BaseSize = getTypeSizeInBits(Ty);
    return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
  }

  /// Returns the maximum number of bits that may be overwritten by
  /// storing the specified type; always a multiple of 8.
  ///
  /// If Ty is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// For example, returns 40 for i36 and 80 for x86_fp80.
  TypeSize getTypeStoreSizeInBits(Type *Ty) const {
    return 8 * getTypeStoreSize(Ty);
  }

  /// Returns true if no extra padding bits are needed when storing the
  /// specified type.
  ///
  /// For example, returns false for i19 that has a 24-bit store size.
  bool typeSizeEqualsStoreSize(Type *Ty) const {
    return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
  }

  /// Returns the offset in bytes between successive objects of the
  /// specified type, including alignment padding.
  ///
  /// If Ty is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// This is the amount that alloca reserves for this type. For example,
  /// returns 12 or 16 for x86_fp80, depending on alignment.
  TypeSize getTypeAllocSize(Type *Ty) const {
    // Round up to the next alignment boundary.
    return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
  }

  /// Returns the offset in bits between successive objects of the
  /// specified type, including alignment padding; always a multiple of 8.
  ///
  /// If Ty is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// This is the amount that alloca reserves for this type. For example,
  /// returns 96 or 128 for x86_fp80, depending on alignment.
  TypeSize getTypeAllocSizeInBits(Type *Ty) const {
    return 8 * getTypeAllocSize(Ty);
  }

  /// Returns the minimum ABI-required alignment for the specified type.
  unsigned getABITypeAlignment(Type *Ty) const;

  /// Helper function to return `Alignment` if it's set or the result of
  /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
  inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
                                          Type *Ty) const {
    return Alignment ? *Alignment : Align(getABITypeAlignment(Ty));
  }

  /// Returns the minimum ABI-required alignment for an integer type of
  /// the specified bitwidth.
  Align getABIIntegerTypeAlignment(unsigned BitWidth) const;

  /// Returns the preferred stack/global alignment for the specified
  /// type.
  ///
  /// This is always at least as good as the ABI alignment.
  unsigned getPrefTypeAlignment(Type *Ty) const;

  /// Returns an integer type with size at least as big as that of a
  /// pointer in the given address space.
  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;

  /// Returns an integer (vector of integer) type with size at least as
  /// big as that of a pointer of the given pointer (vector of pointer) type.
  Type *getIntPtrType(Type *) const;

  /// Returns the smallest integer type with size at least as big as
  /// Width bits.
  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;

  /// Returns the largest legal integer type, or null if none are set.
  Type *getLargestLegalIntType(LLVMContext &C) const {
    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
  }

  /// Returns the size of largest legal integer type size, or 0 if none
  /// are set.
  unsigned getLargestLegalIntTypeSizeInBits() const;

  /// Returns the type of a GEP index.
  /// If it was not specified explicitly, it will be the integer type of the
  /// pointer width - IntPtrType.
  Type *getIndexType(Type *PtrTy) const;

  /// Returns the offset from the beginning of the type for the specified
  /// indices.
  ///
  /// Note that this takes the element type, not the pointer type.
  /// This is used to implement getelementptr.
  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;

  /// Returns a StructLayout object, indicating the alignment of the
  /// struct, its size, and the offsets of its fields.
  ///
  /// Note that this information is lazily cached.
  const StructLayout *getStructLayout(StructType *Ty) const;

  /// Returns the preferred alignment of the specified global.
  ///
  /// This includes an explicitly requested alignment (if the global has one).
  unsigned getPreferredAlignment(const GlobalVariable *GV) const;

  /// Returns the preferred alignment of the specified global, returned
  /// in log form.
  ///
  /// This includes an explicitly requested alignment (if the global has one).
  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
};

inline DataLayout *unwrap(LLVMTargetDataRef P) {
  return reinterpret_cast<DataLayout *>(P);
}

inline LLVMTargetDataRef wrap(const DataLayout *P) {
  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
}

/// Used to lazily calculate structure layout information for a target machine,
/// based on the DataLayout structure.
class StructLayout {
  uint64_t StructSize;
  Align StructAlignment;
  unsigned IsPadded : 1;
  unsigned NumElements : 31;
  uint64_t MemberOffsets[1]; // variable sized array!

public:
  uint64_t getSizeInBytes() const { return StructSize; }

  uint64_t getSizeInBits() const { return 8 * StructSize; }

  Align getAlignment() const { return StructAlignment; }

  /// Returns whether the struct has padding or not between its fields.
  /// NB: Padding in nested element is not taken into account.
  bool hasPadding() const { return IsPadded; }

  /// Given a valid byte offset into the structure, returns the structure
  /// index that contains it.
  unsigned getElementContainingOffset(uint64_t Offset) const;

  uint64_t getElementOffset(unsigned Idx) const {
    assert(Idx < NumElements && "Invalid element idx!");
    return MemberOffsets[Idx];
  }

  uint64_t getElementOffsetInBits(unsigned Idx) const {
    return getElementOffset(Idx) * 8;
  }

private:
  friend class DataLayout; // Only DataLayout can create this class

  StructLayout(StructType *ST, const DataLayout &DL);
};

// The implementation of this method is provided inline as it is particularly
// well suited to constant folding when called on a specific Type subclass.
inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  case Type::LabelTyID:
    return TypeSize::Fixed(getPointerSizeInBits(0));
  case Type::PointerTyID:
    return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
  case Type::ArrayTyID: {
    ArrayType *ATy = cast<ArrayType>(Ty);
    return ATy->getNumElements() *
           getTypeAllocSizeInBits(ATy->getElementType());
  }
  case Type::StructTyID:
    // Get the layout annotation... which is lazily created on demand.
    return TypeSize::Fixed(
                        getStructLayout(cast<StructType>(Ty))->getSizeInBits());
  case Type::IntegerTyID:
    return TypeSize::Fixed(Ty->getIntegerBitWidth());
  case Type::HalfTyID:
    return TypeSize::Fixed(16);
  case Type::FloatTyID:
    return TypeSize::Fixed(32);
  case Type::DoubleTyID:
  case Type::X86_MMXTyID:
    return TypeSize::Fixed(64);
  case Type::PPC_FP128TyID:
  case Type::FP128TyID:
    return TypeSize::Fixed(128);
  // In memory objects this is always aligned to a higher boundary, but
  // only 80 bits contain information.
  case Type::X86_FP80TyID:
    return TypeSize::Fixed(80);
  case Type::VectorTyID: {
    VectorType *VTy = cast<VectorType>(Ty);
    auto EltCnt = VTy->getElementCount();
    uint64_t MinBits = EltCnt.Min *
                        getTypeSizeInBits(VTy->getElementType()).getFixedSize();
    return TypeSize(MinBits, EltCnt.Scalable);
  }
  default:
    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
  }
}

} // end namespace llvm

#endif // LLVM_IR_DATALAYOUT_H