reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
//===-ThinLTOCodeGenerator.h - LLVM Link Time Optimizer -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the ThinLTOCodeGenerator class, similar to the
// LTOCodeGenerator but for the ThinLTO scheme. It provides an interface for
// linker plugin.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LTO_THINLTOCODEGENERATOR_H
#define LLVM_LTO_THINLTOCODEGENERATOR_H

#include "llvm-c/lto.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/CachePruning.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Target/TargetOptions.h"

#include <string>

namespace llvm {
class StringRef;
class LLVMContext;
class TargetMachine;

/// Helper to gather options relevant to the target machine creation
struct TargetMachineBuilder {
  Triple TheTriple;
  std::string MCpu;
  std::string MAttr;
  TargetOptions Options;
  Optional<Reloc::Model> RelocModel;
  CodeGenOpt::Level CGOptLevel = CodeGenOpt::Aggressive;

  std::unique_ptr<TargetMachine> create() const;
};

/// This class define an interface similar to the LTOCodeGenerator, but adapted
/// for ThinLTO processing.
/// The ThinLTOCodeGenerator is not intended to be reuse for multiple
/// compilation: the model is that the client adds modules to the generator and
/// ask to perform the ThinLTO optimizations / codegen, and finally destroys the
/// codegenerator.
class ThinLTOCodeGenerator {
public:
  /// Add given module to the code generator.
  void addModule(StringRef Identifier, StringRef Data);

  /**
   * Adds to a list of all global symbols that must exist in the final generated
   * code. If a symbol is not listed there, it will be optimized away if it is
   * inlined into every usage.
   */
  void preserveSymbol(StringRef Name);

  /**
   * Adds to a list of all global symbols that are cross-referenced between
   * ThinLTO files. If the ThinLTO CodeGenerator can ensure that every
   * references from a ThinLTO module to this symbol is optimized away, then
   * the symbol can be discarded.
   */
  void crossReferenceSymbol(StringRef Name);

  /**
   * Process all the modules that were added to the code generator in parallel.
   *
   * Client can access the resulting object files using getProducedBinaries(),
   * unless setGeneratedObjectsDirectory() has been called, in which case
   * results are available through getProducedBinaryFiles().
   */
  void run();

  /**
   * Return the "in memory" binaries produced by the code generator. This is
   * filled after run() unless setGeneratedObjectsDirectory() has been
   * called, in which case results are available through
   * getProducedBinaryFiles().
   */
  std::vector<std::unique_ptr<MemoryBuffer>> &getProducedBinaries() {
    return ProducedBinaries;
  }

  /**
   * Return the "on-disk" binaries produced by the code generator. This is
   * filled after run() when setGeneratedObjectsDirectory() has been
   * called, in which case results are available through getProducedBinaries().
   */
  std::vector<std::string> &getProducedBinaryFiles() {
    return ProducedBinaryFiles;
  }

  /**
   * \defgroup Options setters
   * @{
   */

  /**
   * \defgroup Cache controlling options
   *
   * These entry points control the ThinLTO cache. The cache is intended to
   * support incremental build, and thus needs to be persistent accross build.
   * The client enabled the cache by supplying a path to an existing directory.
   * The code generator will use this to store objects files that may be reused
   * during a subsequent build.
   * To avoid filling the disk space, a few knobs are provided:
   *  - The pruning interval limit the frequency at which the garbage collector
   *    will try to scan the cache directory to prune it from expired entries.
   *    Setting to -1 disable the pruning (default). Setting to 0 will force
   *    pruning to occur.
   *  - The pruning expiration time indicates to the garbage collector how old
   *    an entry needs to be to be removed.
   *  - Finally, the garbage collector can be instructed to prune the cache till
   *    the occupied space goes below a threshold.
   * @{
   */

  struct CachingOptions {
    std::string Path;                    // Path to the cache, empty to disable.
    CachePruningPolicy Policy;
  };

  /// Provide a path to a directory where to store the cached files for
  /// incremental build.
  void setCacheDir(std::string Path) { CacheOptions.Path = std::move(Path); }

  /// Cache policy: interval (seconds) between two prunes of the cache. Set to a
  /// negative value to disable pruning. A value of 0 will force pruning to
  /// occur.
  void setCachePruningInterval(int Interval) {
    if(Interval < 0)
      CacheOptions.Policy.Interval.reset();
    else
      CacheOptions.Policy.Interval = std::chrono::seconds(Interval);
  }

  /// Cache policy: expiration (in seconds) for an entry.
  /// A value of 0 will be ignored.
  void setCacheEntryExpiration(unsigned Expiration) {
    if (Expiration)
      CacheOptions.Policy.Expiration = std::chrono::seconds(Expiration);
  }

  /**
   * Sets the maximum cache size that can be persistent across build, in terms
   * of percentage of the available space on the disk. Set to 100 to indicate
   * no limit, 50 to indicate that the cache size will not be left over
   * half the available space. A value over 100 will be reduced to 100, and a
   * value of 0 will be ignored.
   *
   *
   * The formula looks like:
   *  AvailableSpace = FreeSpace + ExistingCacheSize
   *  NewCacheSize = AvailableSpace * P/100
   *
   */
  void setMaxCacheSizeRelativeToAvailableSpace(unsigned Percentage) {
    if (Percentage)
      CacheOptions.Policy.MaxSizePercentageOfAvailableSpace = Percentage;
  }

  /// Cache policy: the maximum size for the cache directory in bytes. A value
  /// over the amount of available space on the disk will be reduced to the
  /// amount of available space. A value of 0 will be ignored.
  void setCacheMaxSizeBytes(uint64_t MaxSizeBytes) {
    if (MaxSizeBytes)
      CacheOptions.Policy.MaxSizeBytes = MaxSizeBytes;
  }

  /// Cache policy: the maximum number of files in the cache directory. A value
  /// of 0 will be ignored.
  void setCacheMaxSizeFiles(unsigned MaxSizeFiles) {
    if (MaxSizeFiles)
      CacheOptions.Policy.MaxSizeFiles = MaxSizeFiles;
  }

  /**@}*/

  /// Set the path to a directory where to save temporaries at various stages of
  /// the processing.
  void setSaveTempsDir(std::string Path) { SaveTempsDir = std::move(Path); }

  /// Set the path to a directory where to save generated object files. This
  /// path can be used by a linker to request on-disk files instead of in-memory
  /// buffers. When set, results are available through getProducedBinaryFiles()
  /// instead of getProducedBinaries().
  void setGeneratedObjectsDirectory(std::string Path) {
    SavedObjectsDirectoryPath = std::move(Path);
  }

  /// CPU to use to initialize the TargetMachine
  void setCpu(std::string Cpu) { TMBuilder.MCpu = std::move(Cpu); }

  /// Subtarget attributes
  void setAttr(std::string MAttr) { TMBuilder.MAttr = std::move(MAttr); }

  /// TargetMachine options
  void setTargetOptions(TargetOptions Options) {
    TMBuilder.Options = std::move(Options);
  }

  /// Enable the Freestanding mode: indicate that the optimizer should not
  /// assume builtins are present on the target.
  void setFreestanding(bool Enabled) { Freestanding = Enabled; }

  /// CodeModel
  void setCodePICModel(Optional<Reloc::Model> Model) {
    TMBuilder.RelocModel = Model;
  }

  /// CodeGen optimization level
  void setCodeGenOptLevel(CodeGenOpt::Level CGOptLevel) {
    TMBuilder.CGOptLevel = CGOptLevel;
  }

  /// IR optimization level: from 0 to 3.
  void setOptLevel(unsigned NewOptLevel) {
    OptLevel = (NewOptLevel > 3) ? 3 : NewOptLevel;
  }

  /// Disable CodeGen, only run the stages till codegen and stop. The output
  /// will be bitcode.
  void disableCodeGen(bool Disable) { DisableCodeGen = Disable; }

  /// Perform CodeGen only: disable all other stages.
  void setCodeGenOnly(bool CGOnly) { CodeGenOnly = CGOnly; }

  /**@}*/

  /**
   * \defgroup Set of APIs to run individual stages in isolation.
   * @{
   */

  /**
   * Produce the combined summary index from all the bitcode files:
   * "thin-link".
   */
  std::unique_ptr<ModuleSummaryIndex> linkCombinedIndex();

  /**
   * Perform promotion and renaming of exported internal functions,
   * and additionally resolve weak and linkonce symbols.
   * Index is updated to reflect linkage changes from weak resolution.
   */
  void promote(Module &Module, ModuleSummaryIndex &Index,
               const lto::InputFile &File);

  /**
   * Compute and emit the imported files for module at \p ModulePath.
   */
  void emitImports(Module &Module, StringRef OutputName,
                   ModuleSummaryIndex &Index,
                   const lto::InputFile &File);

  /**
   * Perform cross-module importing for the module identified by
   * ModuleIdentifier.
   */
  void crossModuleImport(Module &Module, ModuleSummaryIndex &Index,
                         const lto::InputFile &File);

  /**
   * Compute the list of summaries needed for importing into module.
   */
  void gatherImportedSummariesForModule(
      Module &Module, ModuleSummaryIndex &Index,
      std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex,
      const lto::InputFile &File);

  /**
   * Perform internalization. Index is updated to reflect linkage changes.
   */
  void internalize(Module &Module, ModuleSummaryIndex &Index,
                   const lto::InputFile &File);

  /**
   * Perform post-importing ThinLTO optimizations.
   */
  void optimize(Module &Module);

  /**
   * Write temporary object file to SavedObjectDirectoryPath, write symlink
   * to Cache directory if needed. Returns the path to the generated file in
   * SavedObjectsDirectoryPath.
   */
  std::string writeGeneratedObject(int count, StringRef CacheEntryPath,
                                   const MemoryBuffer &OutputBuffer);
  /**@}*/

private:
  /// Helper factory to build a TargetMachine
  TargetMachineBuilder TMBuilder;

  /// Vector holding the in-memory buffer containing the produced binaries, when
  /// SavedObjectsDirectoryPath isn't set.
  std::vector<std::unique_ptr<MemoryBuffer>> ProducedBinaries;

  /// Path to generated files in the supplied SavedObjectsDirectoryPath if any.
  std::vector<std::string> ProducedBinaryFiles;

  /// Vector holding the input buffers containing the bitcode modules to
  /// process.
  std::vector<std::unique_ptr<lto::InputFile>> Modules;

  /// Set of symbols that need to be preserved outside of the set of bitcode
  /// files.
  StringSet<> PreservedSymbols;

  /// Set of symbols that are cross-referenced between bitcode files.
  StringSet<> CrossReferencedSymbols;

  /// Control the caching behavior.
  CachingOptions CacheOptions;

  /// Path to a directory to save the temporary bitcode files.
  std::string SaveTempsDir;

  /// Path to a directory to save the generated object files.
  std::string SavedObjectsDirectoryPath;

  /// Flag to enable/disable CodeGen. When set to true, the process stops after
  /// optimizations and a bitcode is produced.
  bool DisableCodeGen = false;

  /// Flag to indicate that only the CodeGen will be performed, no cross-module
  /// importing or optimization.
  bool CodeGenOnly = false;

  /// Flag to indicate that the optimizer should not assume builtins are present
  /// on the target.
  bool Freestanding = false;

  /// IR Optimization Level [0-3].
  unsigned OptLevel = 3;
};
}
#endif