reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The machine combiner pass uses machine trace metrics to ensure the combined
// instructions do not lengthen the critical path or the resource depth.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "machine-combiner"

STATISTIC(NumInstCombined, "Number of machineinst combined");

static cl::opt<unsigned>
inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
              cl::desc("Incremental depth computation will be used for basic "
                       "blocks with more instructions."), cl::init(500));

static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
                                cl::desc("Dump all substituted intrs"),
                                cl::init(false));

#ifdef EXPENSIVE_CHECKS
static cl::opt<bool> VerifyPatternOrder(
    "machine-combiner-verify-pattern-order", cl::Hidden,
    cl::desc(
        "Verify that the generated patterns are ordered by increasing latency"),
    cl::init(true));
#else
static cl::opt<bool> VerifyPatternOrder(
    "machine-combiner-verify-pattern-order", cl::Hidden,
    cl::desc(
        "Verify that the generated patterns are ordered by increasing latency"),
    cl::init(false));
#endif

namespace {
class MachineCombiner : public MachineFunctionPass {
  const TargetSubtargetInfo *STI;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MCSchedModel SchedModel;
  MachineRegisterInfo *MRI;
  MachineLoopInfo *MLI; // Current MachineLoopInfo
  MachineTraceMetrics *Traces;
  MachineTraceMetrics::Ensemble *MinInstr;

  TargetSchedModel TSchedModel;

  /// True if optimizing for code size.
  bool OptSize;

public:
  static char ID;
  MachineCombiner() : MachineFunctionPass(ID) {
    initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;
  StringRef getPassName() const override { return "Machine InstCombiner"; }

private:
  bool doSubstitute(unsigned NewSize, unsigned OldSize);
  bool combineInstructions(MachineBasicBlock *);
  MachineInstr *getOperandDef(const MachineOperand &MO);
  unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
                    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                    MachineTraceMetrics::Trace BlockTrace);
  unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
                      MachineTraceMetrics::Trace BlockTrace);
  bool
  improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
                          MachineTraceMetrics::Trace BlockTrace,
                          SmallVectorImpl<MachineInstr *> &InsInstrs,
                          SmallVectorImpl<MachineInstr *> &DelInstrs,
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                          MachineCombinerPattern Pattern, bool SlackIsAccurate);
  bool preservesResourceLen(MachineBasicBlock *MBB,
                            MachineTraceMetrics::Trace BlockTrace,
                            SmallVectorImpl<MachineInstr *> &InsInstrs,
                            SmallVectorImpl<MachineInstr *> &DelInstrs);
  void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
                     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
  std::pair<unsigned, unsigned>
  getLatenciesForInstrSequences(MachineInstr &MI,
                                SmallVectorImpl<MachineInstr *> &InsInstrs,
                                SmallVectorImpl<MachineInstr *> &DelInstrs,
                                MachineTraceMetrics::Trace BlockTrace);

  void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
                          SmallVector<MachineCombinerPattern, 16> &Patterns);
};
}

char MachineCombiner::ID = 0;
char &llvm::MachineCombinerID = MachineCombiner::ID;

INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
                      "Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
                    false, false)

void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineTraceMetrics>();
  AU.addPreserved<MachineTraceMetrics>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
  MachineInstr *DefInstr = nullptr;
  // We need a virtual register definition.
  if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
    DefInstr = MRI->getUniqueVRegDef(MO.getReg());
  // PHI's have no depth etc.
  if (DefInstr && DefInstr->isPHI())
    DefInstr = nullptr;
  return DefInstr;
}

/// Computes depth of instructions in vector \InsInstr.
///
/// \param InsInstrs is a vector of machine instructions
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
/// of defining machine instruction in \p InsInstrs
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
unsigned
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                          MachineTraceMetrics::Trace BlockTrace) {
  SmallVector<unsigned, 16> InstrDepth;
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");

  // For each instruction in the new sequence compute the depth based on the
  // operands. Use the trace information when possible. For new operands which
  // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
  for (auto *InstrPtr : InsInstrs) { // for each Use
    unsigned IDepth = 0;
    for (const MachineOperand &MO : InstrPtr->operands()) {
      // Check for virtual register operand.
      if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
        continue;
      if (!MO.isUse())
        continue;
      unsigned DepthOp = 0;
      unsigned LatencyOp = 0;
      DenseMap<unsigned, unsigned>::iterator II =
          InstrIdxForVirtReg.find(MO.getReg());
      if (II != InstrIdxForVirtReg.end()) {
        // Operand is new virtual register not in trace
        assert(II->second < InstrDepth.size() && "Bad Index");
        MachineInstr *DefInstr = InsInstrs[II->second];
        assert(DefInstr &&
               "There must be a definition for a new virtual register");
        DepthOp = InstrDepth[II->second];
        int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
        int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
        LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
                                                      InstrPtr, UseIdx);
      } else {
        MachineInstr *DefInstr = getOperandDef(MO);
        if (DefInstr) {
          DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
          LatencyOp = TSchedModel.computeOperandLatency(
              DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
              InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
        }
      }
      IDepth = std::max(IDepth, DepthOp + LatencyOp);
    }
    InstrDepth.push_back(IDepth);
  }
  unsigned NewRootIdx = InsInstrs.size() - 1;
  return InstrDepth[NewRootIdx];
}

/// Computes instruction latency as max of latency of defined operands.
///
/// \param Root is a machine instruction that could be replaced by NewRoot.
/// It is used to compute a more accurate latency information for NewRoot in
/// case there is a dependent instruction in the same trace (\p BlockTrace)
/// \param NewRoot is the instruction for which the latency is computed
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Latency of \p NewRoot
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
                                     MachineTraceMetrics::Trace BlockTrace) {
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");

  // Check each definition in NewRoot and compute the latency
  unsigned NewRootLatency = 0;

  for (const MachineOperand &MO : NewRoot->operands()) {
    // Check for virtual register operand.
    if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
      continue;
    if (!MO.isDef())
      continue;
    // Get the first instruction that uses MO
    MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
    RI++;
    if (RI == MRI->reg_end())
      continue;
    MachineInstr *UseMO = RI->getParent();
    unsigned LatencyOp = 0;
    if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
      LatencyOp = TSchedModel.computeOperandLatency(
          NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
          UseMO->findRegisterUseOperandIdx(MO.getReg()));
    } else {
      LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
    }
    NewRootLatency = std::max(NewRootLatency, LatencyOp);
  }
  return NewRootLatency;
}

/// The combiner's goal may differ based on which pattern it is attempting
/// to optimize.
enum class CombinerObjective {
  MustReduceDepth, // The data dependency chain must be improved.
  Default          // The critical path must not be lengthened.
};

static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
  // TODO: If C++ ever gets a real enum class, make this part of the
  // MachineCombinerPattern class.
  switch (P) {
  case MachineCombinerPattern::REASSOC_AX_BY:
  case MachineCombinerPattern::REASSOC_AX_YB:
  case MachineCombinerPattern::REASSOC_XA_BY:
  case MachineCombinerPattern::REASSOC_XA_YB:
    return CombinerObjective::MustReduceDepth;
  default:
    return CombinerObjective::Default;
  }
}

/// Estimate the latency of the new and original instruction sequence by summing
/// up the latencies of the inserted and deleted instructions. This assumes
/// that the inserted and deleted instructions are dependent instruction chains,
/// which might not hold in all cases.
std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
    MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    MachineTraceMetrics::Trace BlockTrace) {
  assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
  unsigned NewRootLatency = 0;
  // NewRoot is the last instruction in the \p InsInstrs vector.
  MachineInstr *NewRoot = InsInstrs.back();
  for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
    NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
  NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);

  unsigned RootLatency = 0;
  for (auto I : DelInstrs)
    RootLatency += TSchedModel.computeInstrLatency(I);

  return {NewRootLatency, RootLatency};
}

/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
/// The new code sequence ends in MI NewRoot. A necessary condition for the new
/// sequence to replace the old sequence is that it cannot lengthen the critical
/// path. The definition of "improve" may be restricted by specifying that the
/// new path improves the data dependency chain (MustReduceDepth).
bool MachineCombiner::improvesCriticalPathLen(
    MachineBasicBlock *MBB, MachineInstr *Root,
    MachineTraceMetrics::Trace BlockTrace,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
    MachineCombinerPattern Pattern,
    bool SlackIsAccurate) {
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");
  // Get depth and latency of NewRoot and Root.
  unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
  unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;

  LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
                    << NewRootDepth << "\tRootDepth: " << RootDepth);

  // For a transform such as reassociation, the cost equation is
  // conservatively calculated so that we must improve the depth (data
  // dependency cycles) in the critical path to proceed with the transform.
  // Being conservative also protects against inaccuracies in the underlying
  // machine trace metrics and CPU models.
  if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
    LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
    LLVM_DEBUG(NewRootDepth < RootDepth
                   ? dbgs() << "\t  and it does it\n"
                   : dbgs() << "\t  but it does NOT do it\n");
    return NewRootDepth < RootDepth;
  }

  // A more flexible cost calculation for the critical path includes the slack
  // of the original code sequence. This may allow the transform to proceed
  // even if the instruction depths (data dependency cycles) become worse.

  // Account for the latency of the inserted and deleted instructions by
  unsigned NewRootLatency, RootLatency;
  std::tie(NewRootLatency, RootLatency) =
      getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);

  unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
  unsigned NewCycleCount = NewRootDepth + NewRootLatency;
  unsigned OldCycleCount =
      RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
  LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
                    << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
                    << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
                    << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
                    << "\n\tRootDepth + RootLatency + RootSlack = "
                    << OldCycleCount;);
  LLVM_DEBUG(NewCycleCount <= OldCycleCount
                 ? dbgs() << "\n\t  It IMPROVES PathLen because"
                 : dbgs() << "\n\t  It DOES NOT improve PathLen because");
  LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
                    << ", OldCycleCount = " << OldCycleCount << "\n");

  return NewCycleCount <= OldCycleCount;
}

/// helper routine to convert instructions into SC
void MachineCombiner::instr2instrSC(
    SmallVectorImpl<MachineInstr *> &Instrs,
    SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
  for (auto *InstrPtr : Instrs) {
    unsigned Opc = InstrPtr->getOpcode();
    unsigned Idx = TII->get(Opc).getSchedClass();
    const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
    InstrsSC.push_back(SC);
  }
}

/// True when the new instructions do not increase resource length
bool MachineCombiner::preservesResourceLen(
    MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs) {
  if (!TSchedModel.hasInstrSchedModel())
    return true;

  // Compute current resource length

  //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
  SmallVector <const MachineBasicBlock *, 1> MBBarr;
  MBBarr.push_back(MBB);
  unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);

  // Deal with SC rather than Instructions.
  SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
  SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;

  instr2instrSC(InsInstrs, InsInstrsSC);
  instr2instrSC(DelInstrs, DelInstrsSC);

  ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
  ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);

  // Compute new resource length.
  unsigned ResLenAfterCombine =
      BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);

  LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
                    << ResLenBeforeCombine
                    << " and after: " << ResLenAfterCombine << "\n";);
  LLVM_DEBUG(
      ResLenAfterCombine <= ResLenBeforeCombine
          ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
          : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
                      "Length\n");

  return ResLenAfterCombine <= ResLenBeforeCombine;
}

/// \returns true when new instruction sequence should be generated
/// independent if it lengthens critical path or not
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
  if (OptSize && (NewSize < OldSize))
    return true;
  if (!TSchedModel.hasInstrSchedModelOrItineraries())
    return true;
  return false;
}

/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
/// depths if requested.
///
/// \param MBB basic block to insert instructions in
/// \param MI current machine instruction
/// \param InsInstrs new instructions to insert in \p MBB
/// \param DelInstrs instruction to delete from \p MBB
/// \param MinInstr is a pointer to the machine trace information
/// \param RegUnits set of live registers, needed to compute instruction depths
/// \param IncrementalUpdate if true, compute instruction depths incrementally,
///                          otherwise invalidate the trace
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
                                     SmallVector<MachineInstr *, 16> InsInstrs,
                                     SmallVector<MachineInstr *, 16> DelInstrs,
                                     MachineTraceMetrics::Ensemble *MinInstr,
                                     SparseSet<LiveRegUnit> &RegUnits,
                                     bool IncrementalUpdate) {
  for (auto *InstrPtr : InsInstrs)
    MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);

  for (auto *InstrPtr : DelInstrs) {
    InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
    // Erase all LiveRegs defined by the removed instruction
    for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
      if (I->MI == InstrPtr)
        I = RegUnits.erase(I);
      else
        I++;
    }
  }

  if (IncrementalUpdate)
    for (auto *InstrPtr : InsInstrs)
      MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
  else
    MinInstr->invalidate(MBB);

  NumInstCombined++;
}

// Check that the difference between original and new latency is decreasing for
// later patterns. This helps to discover sub-optimal pattern orderings.
void MachineCombiner::verifyPatternOrder(
    MachineBasicBlock *MBB, MachineInstr &Root,
    SmallVector<MachineCombinerPattern, 16> &Patterns) {
  long PrevLatencyDiff = std::numeric_limits<long>::max();
  (void)PrevLatencyDiff; // Variable is used in assert only.
  for (auto P : Patterns) {
    SmallVector<MachineInstr *, 16> InsInstrs;
    SmallVector<MachineInstr *, 16> DelInstrs;
    DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
    TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
                                    InstrIdxForVirtReg);
    // Found pattern, but did not generate alternative sequence.
    // This can happen e.g. when an immediate could not be materialized
    // in a single instruction.
    if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
      continue;

    unsigned NewRootLatency, RootLatency;
    std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
        Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
    long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
    assert(CurrentLatencyDiff <= PrevLatencyDiff &&
           "Current pattern is better than previous pattern.");
    PrevLatencyDiff = CurrentLatencyDiff;
  }
}

/// Substitute a slow code sequence with a faster one by
/// evaluating instruction combining pattern.
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
/// combining based on machine trace metrics. Only combine a sequence of
/// instructions  when this neither lengthens the critical path nor increases
/// resource pressure. When optimizing for codesize always combine when the new
/// sequence is shorter.
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");

  bool IncrementalUpdate = false;
  auto BlockIter = MBB->begin();
  decltype(BlockIter) LastUpdate;
  // Check if the block is in a loop.
  const MachineLoop *ML = MLI->getLoopFor(MBB);
  if (!MinInstr)
    MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);

  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(TRI->getNumRegUnits());

  while (BlockIter != MBB->end()) {
    auto &MI = *BlockIter++;
    SmallVector<MachineCombinerPattern, 16> Patterns;
    // The motivating example is:
    //
    //     MUL  Other        MUL_op1 MUL_op2  Other
    //      \    /               \      |    /
    //      ADD/SUB      =>        MADD/MSUB
    //      (=Root)                (=NewRoot)

    // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
    // usually beneficial for code size it unfortunately can hurt performance
    // when the ADD is on the critical path, but the MUL is not. With the
    // substitution the MUL becomes part of the critical path (in form of the
    // MADD) and can lengthen it on architectures where the MADD latency is
    // longer than the ADD latency.
    //
    // For each instruction we check if it can be the root of a combiner
    // pattern. Then for each pattern the new code sequence in form of MI is
    // generated and evaluated. When the efficiency criteria (don't lengthen
    // critical path, don't use more resources) is met the new sequence gets
    // hooked up into the basic block before the old sequence is removed.
    //
    // The algorithm does not try to evaluate all patterns and pick the best.
    // This is only an artificial restriction though. In practice there is
    // mostly one pattern, and getMachineCombinerPatterns() can order patterns
    // based on an internal cost heuristic. If
    // machine-combiner-verify-pattern-order is enabled, all patterns are
    // checked to ensure later patterns do not provide better latency savings.

    if (!TII->getMachineCombinerPatterns(MI, Patterns))
      continue;

    if (VerifyPatternOrder)
      verifyPatternOrder(MBB, MI, Patterns);

    for (auto P : Patterns) {
      SmallVector<MachineInstr *, 16> InsInstrs;
      SmallVector<MachineInstr *, 16> DelInstrs;
      DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
      TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
                                      InstrIdxForVirtReg);
      unsigned NewInstCount = InsInstrs.size();
      unsigned OldInstCount = DelInstrs.size();
      // Found pattern, but did not generate alternative sequence.
      // This can happen e.g. when an immediate could not be materialized
      // in a single instruction.
      if (!NewInstCount)
        continue;

      LLVM_DEBUG(if (dump_intrs) {
        dbgs() << "\tFor the Pattern (" << (int)P
               << ") these instructions could be removed\n";
        for (auto const *InstrPtr : DelInstrs)
          InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
                          /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
        dbgs() << "\tThese instructions could replace the removed ones\n";
        for (auto const *InstrPtr : InsInstrs)
          InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
                          /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
      });

      bool SubstituteAlways = false;
      if (ML && TII->isThroughputPattern(P))
        SubstituteAlways = true;

      if (IncrementalUpdate) {
        // Update depths since the last incremental update.
        MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
        LastUpdate = BlockIter;
      }

      // Substitute when we optimize for codesize and the new sequence has
      // fewer instructions OR
      // the new sequence neither lengthens the critical path nor increases
      // resource pressure.
      if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
        insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
                                 RegUnits, IncrementalUpdate);
        // Eagerly stop after the first pattern fires.
        Changed = true;
        break;
      } else {
        // For big basic blocks, we only compute the full trace the first time
        // we hit this. We do not invalidate the trace, but instead update the
        // instruction depths incrementally.
        // NOTE: Only the instruction depths up to MI are accurate. All other
        // trace information is not updated.
        MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
        Traces->verifyAnalysis();
        if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
                                    InstrIdxForVirtReg, P,
                                    !IncrementalUpdate) &&
            preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
          if (MBB->size() > inc_threshold) {
            // Use incremental depth updates for basic blocks above treshold
            IncrementalUpdate = true;
            LastUpdate = BlockIter;
          }

          insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
                                   RegUnits, IncrementalUpdate);

          // Eagerly stop after the first pattern fires.
          Changed = true;
          break;
        }
        // Cleanup instructions of the alternative code sequence. There is no
        // use for them.
        MachineFunction *MF = MBB->getParent();
        for (auto *InstrPtr : InsInstrs)
          MF->DeleteMachineInstr(InstrPtr);
      }
      InstrIdxForVirtReg.clear();
    }
  }

  if (Changed && IncrementalUpdate)
    Traces->invalidate(MBB);
  return Changed;
}

bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget();
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  SchedModel = STI->getSchedModel();
  TSchedModel.init(STI);
  MRI = &MF.getRegInfo();
  MLI = &getAnalysis<MachineLoopInfo>();
  Traces = &getAnalysis<MachineTraceMetrics>();
  MinInstr = nullptr;
  OptSize = MF.getFunction().hasOptSize();

  LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
  if (!TII->useMachineCombiner()) {
    LLVM_DEBUG(
        dbgs()
        << "  Skipping pass: Target does not support machine combiner\n");
    return false;
  }

  bool Changed = false;

  // Try to combine instructions.
  for (auto &MBB : MF)
    Changed |= combineInstructions(&MBB);

  return Changed;
}